Skip to main content
Log in

MiR-144 inhibits cell proliferation of renal cell carcinoma by targeting MTOR

  • Published:
Journal of Huazhong University of Science and Technology [Medical Sciences] Aims and scope Submit manuscript

Summary

MicroRNAs (miRNAs) modulate the expression of tumorigenesis-related genes and play important roles in the development of various types of cancers. It has been reported that miR-144 is dysregulated and involved in multiple malignant tumors, but its role in renal cell carcinoma (RCC) remains elusive. In this study, we demonstrated miR-144 was significantly downregulated in human RCC. The decreased miR-144 correlated with tumor size and TNM stage. Moreover, overexpression of miR-144 in vitro suppressed RCC cell proliferation and G2 transition, which were reversed by inhibition of miR-144. Bioinformatic analysis predicted that mTOR was a potential target of miR-144, which was further confirmed by dual luciferase reporter assay. Additionally, the examination of clinical RCC specimens revealed that miR-144 was inversely related to mTOR. Furthermore, knocking down mTOR with siRNA had the same biological effects as those of miR-144 overexpression in RCC cells, including cell proliferation inhibition and S/G2 cell cycle arrest. In conclusion, our results indicate that miR-144 affects RCC progression by inhibiting mTOR expression, and targeting miR-144 may act as a novel strategy for RCC treatment.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Siegel R, Ma J, Zou Z, et al. Cancer statistics, 2014. CA Cancer J Clin, 2014,64(1):9–29

    Article  PubMed  Google Scholar 

  2. Motzer RJ, Molina AM. Targeting renal cell carcinoma. J Clin Oncol, 2009,27(20):3274–3276

    Article  CAS  PubMed  Google Scholar 

  3. Russo P. Renal cell carcinoma: presentation, staging, and surgical treatment. Semin Oncol, 2000,27(2):160–176

    CAS  PubMed  Google Scholar 

  4. Bartel DP. MicroRNAs: genomics, biogenesis, mechanism, and function. Cell, 2004,116(2):281–297

    Article  CAS  PubMed  Google Scholar 

  5. Winter J, Jung S, Keller S, et al. Many roads to maturity: microRNA biogenesis pathways and their regulation. Nat Cell Biol, 2009,11(3):228–234

    Article  CAS  PubMed  Google Scholar 

  6. Fu YF, Du TT, Dong M, et al. Mir-144 selectively regulates embryonic alpha-hemoglobin synthesis during primitive erythropoiesis. Blood, 2009,113(6):1340–1349

    Article  CAS  PubMed  Google Scholar 

  7. Rasmussen KD, Simmini S, Abreu-Goodger C, et al. The miR-144/451 locus is required for erythroid homeostasis. J Exp Med, 2010,207(7):1351–1358

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Fu X, Huang X, Li P, et al. 7-Ketocholesterol inhibits isocitrate dehydrogenase 2 expression and impairs endothelial function via microRNA-144. Free Radic Biol Med, 2014,71(6):1–15

    Article  PubMed  Google Scholar 

  9. Fan JY, Yang Y, Xie JY, et al. MicroRNA-144 mediates metabolic shift in ovarian cancer cells by directly targeting Glut1. Tumour Biol, 2015, [PMID: 26662316]

    Google Scholar 

  10. Liu J, Xue H, Zhang J, et al. MicroRNA-144 inhibits the metastasis of gastric cancer by targeting MET expression. J Exp Clin Cancer Res, 2015,34(1):35

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Matsushita R, Seki N, Chiyomaru T, et al. Tumour-suppressive microRNA-144-5p directly targets CCNE1/2 as potential prognostic markers in bladder cancer. Br J Cancer, 2015,113(2):282–289

    Article  CAS  PubMed  Google Scholar 

  12. Lovat F, Valeri N, Croce CM. MicroRNAs in the pathogenesis of cancer. Semin Oncol, 2011,38(6):724–733

    Article  CAS  PubMed  Google Scholar 

  13. Poudel S, Song J, Jin EJ, et al. Sulfuretin-induced miR-30C selectively downregulates cyclin D1 and D2 and triggers cell death in human cancer cell lines. Biochem Biophys Res Commun, 2013,431(3):572–578

    Article  CAS  PubMed  Google Scholar 

  14. Budhu A, Jia HL, Forgues M, et al. Identification of metastasis-related microRNAs in hepatocellular carcinoma. Hepatology, 2008,47(3):897–907

    Article  CAS  PubMed  Google Scholar 

  15. Zhao LY, Yao Y, Han J, et al. miR-638 suppresses cell proliferation in gastric cancer by targeting Sp2. Dig Dis Sci, 2014,59(8):1743–1753

    Article  CAS  PubMed  Google Scholar 

  16. Aravalli RN, Steer CJ, Cressman EN. Molecular mechanisms of hepatocellular carcinoma. Hepatology, 2008, 48(6):2047–2063

    Article  CAS  PubMed  Google Scholar 

  17. Zhai J, Qu S, Li X, et al. miR-129 suppresses tumor cell growth and invasion by targeting PAK5 in hepatocellular carcinoma. Biochem Biophys Res Commun, 2015,464(1): 161–167

    Article  CAS  PubMed  Google Scholar 

  18. Kasinski AL, Kelnar K, Stahlhut C, et al. A combinatorial microRNA therapeutics approach to suppressing non-small cell lung cancer. Oncogene, 2015,34(27): 3547–3555

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Kelnar K, Peltier HJ, Leatherbury N, et al. Quantification of therapeutic miRNA mimics in whole blood from nonhuman primates. Anal Chem, 2014,86(3):1534–1542

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Si ML, Zhu S, Wu H, et al. miR-21-mediated tumor growth. Oncogene, 2007,26(19):2799–2803

    Article  CAS  PubMed  Google Scholar 

  21. Chen S, Li P, Li J, et al. MiR-144 inhibits proliferation and induces apoptosis and autophagy in lung cancer cells by targeting TIGAR. Cell Physiol Biochem, 2015,35(3): 997–1007

    Article  CAS  PubMed  Google Scholar 

  22. Yu H, Sun H, Bai Y, et al. MEF2D overexpression contributes to the progression of osteosarcoma. Gene, 2015,563(2):130–135

    Article  CAS  PubMed  Google Scholar 

  23. Cao T, Li H, Hu Y, et al. miR-144 suppresses the proliferation and metastasis of hepatocellular carcinoma by targeting E2F3. Tumour Biol, 2014,35(11):10759–10764

    Article  CAS  PubMed  Google Scholar 

  24. Guan H, Liang W, Xie Z, et al. Down-regulation of miR-144 promotes thyroid cancer cell invasion by targeting ZEB1 and ZEB2. Endocrine, 2015,48(2):566–574

    Article  CAS  PubMed  Google Scholar 

  25. Guertin DA, Sabatini DM. Defining the role of mTOR in cancer. Cancer Cell, 2007,12(1):9–22

    Article  CAS  PubMed  Google Scholar 

  26. Xiong Y, Yepuri G, Forbiteh M, et al. ARG2 impairs endothelial autophagy through regulation of MTOR and PRKAA/AMPK signaling in advanced atherosclerosis. Autophagy, 2014,10(12):2223–2238

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Ribback S, Cigliano A, Kroeger N, et al. PI3K/AKT/ mTOR pathway plays a major pathogenetic role in glycogen accumulation and tumor development in renal distal tubules of rats and men. Oncotarget, 2015,6(15): 13036–13048

    Article  PubMed  PubMed Central  Google Scholar 

  28. Bailey ST, Zhou B, Damrauer JS, et al. mTOR inhibition induces compensatory, therapeutically targetable MEK activation in renal cell carcinoma. PLoS One, 2014,9(9): e104413

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to You Ke  (柯 悠).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Xiang, C., Cui, Sp. & Ke, Y. MiR-144 inhibits cell proliferation of renal cell carcinoma by targeting MTOR. J. Huazhong Univ. Sci. Technol. [Med. Sci.] 36, 186–192 (2016). https://doi.org/10.1007/s11596-016-1564-0

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11596-016-1564-0

Key words

Navigation