Skip to main content

Advertisement

Log in

Changes in cortical slow wave activity in healthy aging

  • Original Research
  • Published:
Brain Imaging and Behavior Aims and scope Submit manuscript

Abstract

A number of studies have demonstrated enhanced slow wave activity associated with pathological brain function e.g. in stroke patients, schizophrenia, depression, Morbus Alzheimer, and post-traumatic stress disorder. However, the association between slow wave activity and healthy aging has remained largely unexplored. This study examined whether the frequency at which focal generators of delta waves appear in the healthy cerebral cortex changes with age and whether this measure relates to cognitive performance. We investigated 53 healthy individuals aged 18 to 89 years and assessed MEG during a resting condition. Generators of focal magnetic slow waves were localized. Results showed a significant influence of age: dipole density decreases with increasing age. The relationship between cognitive performance and delta dipole density was not significant. The results suggest that in healthy aging slow waves decrease with aging and emphasize the importance of age-matched control groups for further studies. Increased appearance of slow waves as a marker for pathological stages can only be detected in relation to a control group of the same age.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1

Similar content being viewed by others

References

  • Ackenheil, M., Stotz, G., Dietz-Bauer, R., & Vossen, A. I. (1999). M.I.N.I. 5.0.0. German version / DSM-IV. Munich: Psychiatrische Universitätsklinik.

    Google Scholar 

  • Aizenstein, H. J., Nebes, R. D., Saxton, J. A., Price, J. C., Mathis, C. A., Tsopelas, N. D., et al. (2008). Frequent amyloid deposition without significant cognitive impairment among the elderly. Archives of Neurology, 65(11), 1509–1517.

    Article  PubMed  Google Scholar 

  • Akaike, H. (1973). Information theory and an extension of the maximum likelihood principle. Paper presented at the 2nd International Symposium on Information Theory, Akademiai Kiado.

  • Amzica, F., & Steriade, M. (1997). The K-complex: its slow (<1-Hz) rhythmicity and relation to delta waves. Neurology, 49(4), 952–959.

    PubMed  CAS  Google Scholar 

  • Baayen, J. C., de Jongh, A., Stam, C. J., de Munck, J. C., Jonkman, J. J., Trenite, D. G., et al. (2003). Localization of slow wave activity in patients with tumor-associated epilepsy. Brain Topography, 16(2), 85–93.

    Article  PubMed  Google Scholar 

  • Backman, L., Nyberg, L., Lindenberger, U., Li, S. C., & Farde, L. (2006). The correlative triad among aging, dopamine, and cognition: current status and future prospects. Neuroscience and Biobehavioral Reviews, 30(6), 791–807.

    Article  PubMed  Google Scholar 

  • Bartzokis, G. (2004). Age-related myelin breakdown: a developmental model of cognitive decline and Alzheimer’s disease. Neurobiology of Aging, 25(1), 5–18. author reply 49–62.

    Article  PubMed  CAS  Google Scholar 

  • Burnham, K. P., & Anderson, D. R. (2002). Model selection and multi-model inference: A practical information-theoretic approach. Springer.

  • Colsher, P. L., & Wallace, R. B. (1991). Longitudinal application of cognitive function measures in a defined population of community-dwelling elders. Annals of Epidemiology, 1(3), 215–230.

    Article  PubMed  CAS  Google Scholar 

  • Corral, M., Rodriguez, M., Amenedo, E., Sanchez, J. L., & Diaz, F. (2006). Cognitive reserve, age, and neuropsychological performance in healthy participants. Developmental Neuropsychology, 29(3), 479–491.

    Article  PubMed  Google Scholar 

  • de Jongh, A., de Munck, J. C., Baayen, J. C., Jonkman, E. J., Heethaar, R. M., & van Dijk, B. W. (2001). The localization of spontaneous brain activity: first results in patients with cerebral tumors. Clinical Neurophysiology, 112(2), 378–385.

    Article  PubMed  Google Scholar 

  • Elbert, T. (1998). Neuromagnetism. In W. Andrä & H. Nowak (Eds.), Magnetism in medicine (pp. 190–261). London: Wiley.

    Google Scholar 

  • Evans, D. A., Beckett, L. A., Albert, M. S., Hebert, L. E., Scherr, P. A., Funkenstein, H. H., et al. (1993). Level of education and change in cognitive function in a community population of older persons. Annals of Epidemiology, 3(1), 71–77.

    Article  PubMed  Google Scholar 

  • Fehr, T., Kissler, J., Moratti, S., Wienbruch, C., Rockstroh, B., & Elbert, T. (2001). Source distribution of neuromagnetic slow waves and MEG-Delta activity in Schizophrenic patients. Biological Psychiatry, 49, 1–10.

    Google Scholar 

  • Fehr, T., Kissler, J., Wienbruch, C., Moratti, S., Elbert, T., Watzl, H., et al. (2003). Source distribution of neuromagnetic slow-wave activity in schizophrenic patients—effects of activation. Schizophrenia Research, 63, 63–71.

    Article  PubMed  Google Scholar 

  • Fernández, A., Maestú, F., Amo, C., Gil, P., Fehr, T., Wienbruch, C., et al. (2002). Focal temporoparietal slow activity in Alzheimer’s Disease revealed by magnetencephalography. Biological Psychiatry, 52, 764–770.

    Article  PubMed  Google Scholar 

  • Fernández, A., Arrazola, J., Maestu, F., Amo, C., Gil-Gregorio, P., Wienbruch, C., et al. (2003). Correlations of hippocampal atrophy and focal low-frequency magnetic activity in Alzheimer disease: volumetric MR imaging-magnetoencephalographic study. AJNR. American Journal of Neuroradiology, 24(3), 481–487.

    PubMed  Google Scholar 

  • Fernández, A., Rodriguez-Palancas, A., López-Ibor, M., Zuluaga, P., Turrero, A., Maestú, F., et al. (2005). Increased occipital delta dipole density in major depressive disorder determined by magnetoencephalography. Journal of Psychiatry & Neuroscience, 30(1), 17–23.

    Google Scholar 

  • Fernández, A., Hornero, R., Mayo, A., Poza, J., Gil-Gregorio, P., & Ortiz, T. (2006). MEG spectral profile in Alzheimer’s disease and mild cognitive impairment. Clinical Neurophysiology, 117(2), 306–314.

    Article  PubMed  Google Scholar 

  • Fernandez, A., Turrero, A., Zuluaga, P., Gil, P., Maestu, F., Campo, P., et al. (2006). Magnetoencephalographic parietal delta dipole density in mild cognitive impairment: preliminary results of a method to estimate the risk of developing Alzheimer disease. Archives of Neurology, 63(3), 427–430.

    Article  PubMed  Google Scholar 

  • Galluzzi, S., Beltramello, A., Filippi, M., & Frisoni, G. B. (2008). Aging. Neurological Sciences, 29(Suppl 3), 296–300.

    Article  PubMed  Google Scholar 

  • Giedd, J. N., Blumenthal, J., Jeffries, N. O., Castellanos, F. X., Liu, H., Zijdenbos, A., et al. (1999). Brain development during childhood and adolescence: a longitudinal MRI study. Nature Neuroscience, 2(10), 861–863.

    Article  PubMed  CAS  Google Scholar 

  • Gloor, P., Ball, G., & Schaul, N. (1977). Brain lesions that produce delta waves in the EEG. Neurology, 27(4), 326–333.

    PubMed  CAS  Google Scholar 

  • Good, C. D., Johnsrude, I. S., Ashburner, J., Henson, R. N., Friston, K. J., & Frackowiak, R. S. (2001). A voxel-based morphometric study of ageing in 465 normal adult human brains. NeuroImage, 14(1 Pt 1), 21–36.

    Article  PubMed  CAS  Google Scholar 

  • Kolassa, I. T., Wienbruch, C., Neuner, F., Schauer, M., Ruf, M., Odenwald, M., et al. (2007). Altered oscillatory brain dynamics after repeated traumatic stress. BMC Psychiatry, 7, 56.

    Article  PubMed  Google Scholar 

  • Lindenberger, U., & Reischies, F. M. (1999). Limits and potentials of intellectual functioning in old age. In P. B. Baltes & K. U. Mayer (Eds.), The Berlin aging study: Aging from 70 to 100. Berlin: Akademie Verlag.

    Google Scholar 

  • Meinzer, M., Elbert, T., Wienbruch, C., Djundja, D., Barthel, G., & Rockstroh, B. (2004). Intensive language training enhances brain plasticity in chronic aphasia. BMC Biology, 2, 20.

    Article  PubMed  Google Scholar 

  • Mintun, M. A., Larossa, G. N., Sheline, Y. I., Dence, C. S., Lee, S. Y., Mach, R. H., et al. (2006). [11C]PIB in a nondemented population: potential antecedent marker of Alzheimer disease. Neurology, 67(3), 446–452.

    Article  PubMed  CAS  Google Scholar 

  • Morris, J. C., Mohs, R. C., Rogers, H., Fillenbaum, G., & Heyman, A. (1988). Consortium to establish a registry for Alzheimer’s disease (CERAD) clinical and neuropsychological assessment of Alzheimer’s disease. Psychopharmacology Bulletin, 24(4), 641–652.

    PubMed  CAS  Google Scholar 

  • Niedermeyer, E., & Lopes da Silva, F. (1987). Electroencephalography: Basic principles, clinical applications and related fields. Baltimore: Urban & Schwarzenberg.

    Google Scholar 

  • Oldfield, R. (1971). The assessment and analysis of handedness: the Edinburgh inventory. Neuropsychologia, 9(1), 97–113.

    Article  PubMed  CAS  Google Scholar 

  • Pike, K. E., Savage, G., Villemagne, V. L., Ng, S., Moss, S. A., Maruff, P., et al. (2007). Beta-amyloid imaging and memory in non-demented individuals: evidence for preclinical Alzheimer’s disease. Brain, 130(Pt 11), 2837–2844.

    Article  PubMed  Google Scholar 

  • Raz, N., Lindenberger, U., Rodrigue, K. M., Kennedy, K. M., Head, D., Williamson, A., et al. (2005). Regional brain changes in aging healthy adults: general trends, individual differences and modifiers. Cerebral Cortex, 15(11), 1676–1689.

    Article  PubMed  Google Scholar 

  • Rockstroh, B. S., Wienbruch, C., Ray, W. J., & Elbert, T. (2007). Abnormal oscillatory brain dynamics in schizophrenia: a sign of deviant communication in neural network? BMC Psychiatry, 7, 44.

    Article  PubMed  Google Scholar 

  • Salthouse, T. A. (2006). Mental exercise and mental aging: evaluating the validity of the “Use It or Lose It” hypothesis. Perspectives on Psychological Science, 1, 68–87.

    Article  Google Scholar 

  • Steck, P. H. (2005). A revision of A. L. Benton’s Visual Retention Test (BVRT) in two parallel forms. Archives of Clinical Neuropsychology, 20, 409–416.

    Article  PubMed  Google Scholar 

  • Team, R. D. C. (2008). R: A language and environment for statistical computing (version 2.8.1). Vienna, Austria: R Foundation for Statisitcal Computing.

  • Terry, R. D., & Katzman, R. (2001). Life span and synapses: will there be a primary senile dementia? Neurobiology of Aging, 22(3), 347–348. discussion 353–344.

    Article  PubMed  CAS  Google Scholar 

  • Tewes, U. (1991). Hamburg-Wechsler-Intelligenztest für Erwachsene (HAWIE-R). Bern: Verlag Hans Huber.

    Google Scholar 

  • Vieth, J. B., Kober, H., & Grummich, P. (1996). Sources of spontaneous slow waves associated with brain lesions, localized by using the MEG. Brain Topography, 8(3), 215–221.

    Article  PubMed  CAS  Google Scholar 

  • Wienbruch, C. (2007). Abnormal slow wave mapping (ASWAM)–A tool for the investigation of abnormal slow wave activity in the human brain. Journal of Neuroscience Methods, 163(1), 119–127.

    Article  PubMed  Google Scholar 

  • Wienbruch, C., Moratti, S., Elbert, T., Vogel, U., Fehr, T., Kissler, J., et al. (2003). Source distribution of neuromagnetic slow wave activity in schizophrenic and depressive patients. Clinical Neurophysiology, 114, 2052–2060.

    Article  PubMed  Google Scholar 

  • Wilson, R. S., Beckett, L. A., Bennett, D. A., Albert, M. S., & Evans, D. A. (1999). Change in cognitive function in older persons from a community population: relation to age and Alzheimer disease. Archives of Neurology, 56(10), 1274–1279.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Iris-Tatjana Kolassa.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Leirer, V.M., Wienbruch, C., Kolassa, S. et al. Changes in cortical slow wave activity in healthy aging. Brain Imaging and Behavior 5, 222–228 (2011). https://doi.org/10.1007/s11682-011-9126-3

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11682-011-9126-3

Keywords

Navigation