Skip to main content

Advertisement

Log in

Mechanical Properties of Plant Underground Storage Organs and Implications for Dietary Models of Early Hominins

  • Research Article
  • Published:
Evolutionary Biology Aims and scope Submit manuscript

Abstract

The diet of early human ancestors has received renewed theoretical interest since the discovery of elevated δ13C values in the enamel of Australopithecus africanus and Paranthropus robustus. As a result, the hominin diet is hypothesized to have included C4 grass or the tissues of animals which themselves consumed C4 grass. On mechanical grounds, such a diet is incompatible with the dental morphology and dental microwear of early hominins. Most inferences, particularly for Paranthropus, favor a diet of hard or mechanically resistant foods. This discrepancy has invigorated the longstanding hypothesis that hominins consumed plant underground storage organs (USOs). Plant USOs are attractive candidate foods because many bulbous grasses and cormous sedges use C4 photosynthesis. Yet mechanical data for USOs—or any putative hominin food—are scarcely known. To fill this empirical void we measured the mechanical properties of USOs from 98 plant species from across sub-Saharan Africa. We found that rhizomes were the most resistant to deformation and fracture, followed by tubers, corms, and bulbs. An important result of this study is that corms exhibited low toughness values (mean = 265.0 J m−2) and relatively high Young’s modulus values (mean = 4.9 MPa). This combination of properties fits many descriptions of the hominin diet as consisting of hard-brittle objects. When compared to corms, bulbs are tougher (mean = 325.0 J m−2) and less stiff (mean = 2.5 MPa). Again, this combination of traits resembles dietary inferences, especially for Australopithecus, which is predicted to have consumed soft-tough foods. Lastly, we observed the roasting behavior of Hadza hunter-gatherers and measured the effects of roasting on the toughness on undomesticated tubers. Our results support assumptions that roasting lessens the work of mastication, and, by inference, the cost of digestion. Together these findings provide the first mechanical basis for discussing the adaptive advantages of roasting tubers and the plausibility of USOs in the diet of early hominins.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Ackermann, R. R., & Cheverud, J. M. (2004). Detecting genetic drift versus selection in human evolution. Proceedings of the National Academy of Sciences of the United States of America, 101, 17946–17951. doi:10.1073/pnas.0405919102.

    Article  PubMed  CAS  Google Scholar 

  • Agnew, A. D. Q., & Agnew, S. (1994). Kenya upland wild flowers. Nairobi: East African Natural History Society.

    Google Scholar 

  • Altmann, S. A. (1998). Foraging for survival: Yearling baboons in Africa. Chicago: University of Chicago Press.

    Google Scholar 

  • Altmann, S. A., & Altmann, J. (1970). Baboon ecology: African field research. Basel: S. Karger.

    Google Scholar 

  • Barton, R. A. (1993). Sociospatial mechanisms of feeding competition in female olive baboons, Papio anubis. Animal Behaviour, 46, 791–802. doi:10.1006/anbe.1993.1256.

    Article  Google Scholar 

  • Boag, P. T., & Grant, P. R. (1981). Intense natural selection in a population of Darwin’s finches (Geospizinae) in the Galapagos. Science, 214, 82–85. doi:10.1126/science.214.4516.82.

    Article  PubMed  CAS  Google Scholar 

  • Boag, P. T., & Grant, P. R. (1984). Darwin’s finches (Geospiza) on Isla Daphne Major, Galapagos: Breeding and feeding ecology in a climatically variable environment. Ecological Monographs, 54, 463–489. doi:10.2307/1942596.

    Article  Google Scholar 

  • Bonyongo, M. C., Bredenkamp, G. J., & Veenendaal, E. (2000). Floodplain vegetation in the Nxaraga Lagoon area, Okavango Delta, Botswana. South African Journal of Botany, 66, 15–21.

  • Campbell, A. (1986). The use of wild food plants, and drought in Botswana. Journal of Arid Environments, 11, 81–91.

    Google Scholar 

  • Codron, J., Codron, D., Lee-Thorp, J. A., Sponheimer, M., Bond, W. J., de Ruiter, D., et al. (2005). Taxonomic, anatomical, and spatio-temporal variations in the stable carbon and nitrogen isotopic compositions of plants from an African savanna. Journal of Archaeological Science, 32, 1757–1772. doi:10.1016/j.jas.2005.06.006.

    Article  Google Scholar 

  • Conklin-Brittain, N. L., Wrangham, R. W., & Smith, C. C. (2002). A two-stage model of increased dietary quality in early hominid evolution: The role of fiber. In P. S. Ungar & M. F. Teaford (Eds.), Human diet: Its origin and evolution (pp. 61–76). London: Bergin and Garvey.

    Google Scholar 

  • Coursey, D. G. (1973). Hominid evolution and hypogeous plant foods. Man, 8, 634–635.

    Google Scholar 

  • Cowling, R. M., Esler, K. J., & Rundel, P. W. (1999). Namaqualand, South Africa—An overview of a unique winter-rainfall desert ecosystem. Plant Ecology, 142, 3–21. doi:10.1023/A:1009831308074.

    Article  Google Scholar 

  • Daegling, D. J., & Grine, F. E. (1999). Terrestrial foraging and dental microwear in Papio ursinus. Primates, 40, 559–572. doi:10.1007/BF02574831.

    Article  Google Scholar 

  • Darvell, B. W., Lee, P. K. D., Yuen, T. D. B., & Lucas, P. W. (1996). A portable fracture toughness tester for biological materials. Measurement Science & Technology, 7, 954–962. doi:10.1088/0957-0233/7/6/016.

    Article  CAS  Google Scholar 

  • Deacon, H. J. (1976). Where hunters gathered: A study of Holocene Stone Age people in the Eastern Cape. Claremont: South African Archaeological Society.

    Google Scholar 

  • Deacon, H. J. (1995). Two late Pleistocene-Holocene archaeological depositories from the southern Cape, South Africa. South African Archaeological Bulletin, 50, 121–131. doi:10.2307/3889061.

    Article  Google Scholar 

  • Demes, B., & Creel, N. (1988). Bite force, diet, and cranial morphology of fossil hominids. Journal of Human Evolution, 17, 657–670. doi:10.1016/0047-2484(88)90023-1.

    Article  Google Scholar 

  • Elgart-Berry, A. (2004). Fracture toughness of mountain gorilla (Gorilla gorilla beringei) food plants. American Journal of Primatology, 62, 275–285. doi:10.1002/ajp.20021.

    Article  PubMed  Google Scholar 

  • Ellery, K., & Ellery, W. (1997). Plants of the Okavango Delta: A field guide. Durban: Tsaro Publishers.

    Google Scholar 

  • Goldblatt, P., & Manning, J. C. (2002). Plant diversity of the Cape Region of southern Africa. Annals of the Missouri Botanical Garden, 89, 281–302. doi:10.2307/3298566.

    Article  Google Scholar 

  • Grant, P. R., & Grant, B. R. (2002). Unpredictable evolution in a 30-year study of Darwin’s finches. Science, 296, 707–711. doi:10.1126/science.1070315.

    Article  PubMed  CAS  Google Scholar 

  • Gregory, W. K., & Hellman, M. (1939). The South African fossil man-apes and the origin of the human dentition. The Journal of the American Dental Association, 26, 558–564.

    Google Scholar 

  • Grine, F. E., & Kay, R. F. (1988). Early hominid diets from quantitative image analysis of dental microwear. Nature, 333, 765–768. doi:10.1038/333765a0.

    Article  PubMed  CAS  Google Scholar 

  • Grine, F. E., Ungar, P. S., & Teaford, M. F. (2006a). Was the early Pliocene hominin ‘Australopithecusanamensis a hard object feeder? South African Journal of Science, 102, 301–310.

    Google Scholar 

  • Grine, F. E., Ungar, P. S., Teaford, M. F., & El-Zaatari, S. (2006b). Molar microwear in Praeanthropus afarensis: Evidence for dietary stasis through time and under diverse paleoecological conditions. Journal of Human Evolution, 51, 297–319. doi:10.1016/j.jhevol.2006.04.004.

    Article  PubMed  Google Scholar 

  • Hamilton, W. J., Buskirk, R. E., & Buskirk, W. H. (1978). Omnivory and utilization of food resources by chacma baboons, Papio ursinus. American Naturalist, 112, 911–924. doi:10.1086/283331.

    Article  Google Scholar 

  • Hatley, T., & Kappelman, J. (1980). Bears, pigs, and Plio-Pleistocene hominids: A case for the exploitation of belowground food resources. Human Ecology, 8, 371–387. doi:10.1007/BF01561000.

    Article  Google Scholar 

  • Hernandez-Aguilar, R. A., Moore, J., & Pickering, T. R. (2007). Savanna chimpanzees use tools to harvest the underground storage organs of plants. Proceedings of the National Academy of Sciences of the United States of America, 104, 19210–19213. doi:10.1073/pnas.0707929104.

    Article  PubMed  CAS  Google Scholar 

  • Hladik, A., Bahuchet, C., Ducatillion, C., & Hladik, C. M. (1984). Les plantes à tubercules de la forêt dense d’Afrique Centrale. Revue d’Ecologie: La Terre et la Vie, 39, 249–290.

    Google Scholar 

  • Hesla, B. I., Tieszen, L. L., & Imbamba, S. K. (1982). A systematic survey of C3 and C4 photosynthesis in the Cyperaceae of Kenya, East Africa. Photosynthetica, 16, 196–205.

  • Hylander, W. L. (1988). Implications of in vivo experiments for interpretating the functional significance of “robust” australopithecine jaws. In F. E. Grine (Ed.), Evolutionary history of the “robust” australopithecines (pp. 55–83). New York: Aldine de Gruyter.

    Google Scholar 

  • Jolly, C. J. (1970). The seed-eaters: A new model of hominid differentiation based on a baboon analogy. Man, 5, 5–26. doi:10.2307/2798801.

    Article  Google Scholar 

  • Kay, R. F. (1985). Dental evidence for the diet of Australopithecus. Annual Review of Anthropology, 14, 315–341. doi:10.1146/annurev.an.14.100185.001531.

    Article  Google Scholar 

  • Kinzey, W. G., & Norconk, M. A. (1990). Hardness as a basis of fruit choice in two sympatric primates. American Journal of Physical Anthropology, 81, 5–16. doi:10.1002/ajpa.1330810103.

    Article  PubMed  CAS  Google Scholar 

  • Kinzey, W. G., & Norconk, M. A. (1993). Physical and chemical properties of fruit and seeds eaten by Pithecia and Chiropotes in Surinam and Venezuela. International Journal of Primatology, 14, 207–227. doi:10.1007/BF02192632.

    Article  Google Scholar 

  • Laden, G., & Wrangham, R. W. (2005). The rise of the hominids as an adaptive shift in fallback foods: Plant underground storage organs (USOs) and australopith origins. Journal of Human Evolution, 49, 482–498. doi:10.1016/j.jhevol.2005.05.007.

    Article  PubMed  Google Scholar 

  • Lambert, J. E., Chapman, C. A., Wrangham, R. W., & Conklin-Brittain, N. L. (2004). Hardness of cercopithecine foods: Implications for the critical function of enamel thickness in exploiting fallback foods. American Journal of Physical Anthropology, 125, 363–368. doi:10.1002/ajpa.10403.

    Article  PubMed  Google Scholar 

  • Lanjouw, A. (2002). Behavioural adaptations to water scarcity in Tongo chimpanzees. In C. Boesch, G. Hohmann, & L. F. Marchant (Eds.), Behavioural diversity in chimpanzees and bonobos (pp. 52–60). Cambridge: Cambridge University Press.

    Google Scholar 

  • Le Roux, A. (2005). Namaqualand: South African wildflower guide no. 1. Cape Town: Botanical Society of South Africa.

    Google Scholar 

  • Lee-Thorp, J., & Sponheimer, M. (2006). Contributions of biogeochemistry to understanding hominin dietary ecology. Yearbook of Physical Anthropology, 49, 131–148. doi:10.1002/ajpa.20519.

    Article  Google Scholar 

  • Lockwood, C. A., Menter, C. G., Moggi-Cecchi, J., & Keyser, A. W. (2007). Extended male growth in a fossil hominin species. Science, 318, 1443–1446. doi:10.1126/science.1149211.

    Article  PubMed  CAS  Google Scholar 

  • Lovegrove, B. G., & Jarvis, J. U. M. (1986). Coevolution between mole-rats (Bathyergidae) and a geophyte, Micranthus (Iridaceae). Cimbebasia, 8, 80–85.

    Google Scholar 

  • Lucas, P. W. (2004). Dental functional morphology: How teeth work. Cambridge: Cambridge University Press.

    Google Scholar 

  • Lucas, P. W., Beta, T., Darvell, B. W., Dominy, N. J., Essackjee, H. C., Lee, P. K. D., et al. (2001). Field kit to characterize physical, chemical and spatial aspects of potential primate foods. Folia Primatologica, 72, 11–25. doi:10.1159/000049914.

    Article  CAS  Google Scholar 

  • Lucas, P. W., Corlett, R. T., & Luke, D. A. (1985). Plio-Pleistocene hominid diets: An approach combining masticatory and ecological analysis. Journal of Human Evolution, 14, 187–202. doi:10.1016/S0047-2484(85)80006-3.

    Article  Google Scholar 

  • Lucas, P. W., & Peters, C. R. (2000). Function of postcanine tooth shape in mammals. In M. F. Teaford, M. M. Smith, & M. W. J. Ferguson (Eds.), Development, function and evolution of teeth (pp. 282–289). Cambridge: Cambridge University Press.

    Google Scholar 

  • Macho, G. A., Shimizu, D., Jiang, Y., & Spears, I. R. (2005). Australopithecus anamensis: A finite-element approach to studying the functional adaptations of extinct hominins. The Anatomical Record. Part A, Discoveries in Molecular, Cellular, and Evolutionary Biology, 283, 310–318. doi:10.1002/ar.a.20175.

    Article  PubMed  Google Scholar 

  • Malaisse, F., & Parent, G. (1985). Edible wild vegetable products in the Zambezian woodland area: A nutritional and ecological approach. Ecology of Food and Nutrition, 18, 43–82.

    Google Scholar 

  • Manning, J. C., Goldblatt, P., & Snijman, D. (2002). The color encyclopedia of Cape bulbs. Portland: Timber Press.

    Google Scholar 

  • Marlowe, F. W. (2002). Why the Hadza are still hunter-gatherers. In S. Kent (Ed.), Ethnicity, hunter-gatherers, and the “other”: Association or assimilation in Africa (pp. 247–275). Washington, D.C.: Smithsonian Institution Press.

    Google Scholar 

  • Marlowe, F. W. (2003). A critical period for provisioning by Hadza men: Implications for pair bonding. Evolution and Human Behavior, 24, 217–229. doi:10.1016/S1090-5138(03)00014-X.

    Article  Google Scholar 

  • Marshall, A. J., & Wrangham, R. W. (2007). Evolutionary consequences of fallback foods. International Journal of Primatology, 28, 1219–1235. doi:10.1007/s10764-007-9218-5.

    Article  Google Scholar 

  • Mason, H. (1972). Western Cape sandveld flowers. Cape Town: Struik Publishers.

    Google Scholar 

  • McCarthy, T. S., & Ellery, W. N. (1998). The Okavango Delta. Transactions of the Royal Society of South Africa, 53, 157–182.

    Google Scholar 

  • van der Merwe, N. J., Thackeray, J. F., Lee-Thorp, J. A., & Luyt, J. (2003). The carbon isotope ecology and diet of Australopithecus africanus at Sterkfontein, South Africa. Journal of Human Evolution, 44, 581–597. doi:10.1016/S0047-2484(03)00050-2.

    Article  PubMed  Google Scholar 

  • O’Connell, J. F., Hawkes, K., & Blurton Jones, N. G. (1999). Grandmothering and the evolution of Homo erectus. Journal of Human Evolution, 36, 461–485. doi:10.1006/jhev.1998.0285.

    Article  PubMed  CAS  Google Scholar 

  • O’Connell, J., Hawkes, K., & Jones, N. B. (2002). Meat-eating, grandmothering, and the evolution of early human diets. In P. S. Ungar & M. F. Teaford (Eds.), Human diet: Its origin and evolution (pp. 49–60). London: Bergin and Garvey.

    Google Scholar 

  • O’Connell, J. F., Hawkes, K., & Jones, N. B. (1988). Hadza hunting, butchering, and bone transport and their archaeological implications. Journal of Anthropological Research, 44, 113–161.

    Google Scholar 

  • Orthen, B. (2001). A survey of the polysaccharide reserves in geophytes native to the winter-rainfall region of South Africa. South African Journal of Botany, 67, 371–375.

    CAS  Google Scholar 

  • Pate, J. S., & Dixon, K. W. (1982). Tuberous, cormous and bulbous plants: Biology of an adaptive strategy in Western Australia. Nedlands: University of Western Australia Press.

    Google Scholar 

  • Perry, G. H., Dominy, N. J., Claw, K. G., Lee, A. S., Fiegler, H., Redon, R., et al. (2007). Diet and the evolution of human amylase gene copy number variation. Nature Genetics, 39, 1256–1260. doi:10.1038/ng2123.

    Article  PubMed  CAS  Google Scholar 

  • Peters, C. R. (1987). Nut-like oil seeds: Food for monkeys, chimpanzees, humans, and probably ape-men. American Journal of Physical Anthropology, 73, 333–363. doi:10.1002/ajpa.1330730306.

    Article  PubMed  CAS  Google Scholar 

  • Peters, C. R. (1990). African wild plants with rootstocks reported to be eaten raw: The monocotyledons, part I. Mitteilungen aus dem Institut fur Allgemeine Botanik Hamburg, 23, 935–952.

    Google Scholar 

  • Peters, C. R. (1993). Shell strength and primate seed predation of nontoxic species in eastern and southern Africa. International Journal of Primatology, 14, 315–344. doi:10.1007/BF02192636.

    Article  Google Scholar 

  • Peters, C. R. (1994). African wild plants with rootstocks reported to be eaten raw: The monocotyledons, part II. In J. H. Seyani & A. C. Chikuni (Eds.), Proceedings of the XIIIth Plenary Meeting of AETFAT, Zomba, Malawi (pp. 25–38). Zomba: National Herbarium and Botanic Gardens of Malawi.

    Google Scholar 

  • Peters, C. R. (1996). African wild plants with rootstocks reported to be eaten raw: The monocotyledons, part III. In L. J. G. van der Maesen, X. M. van der Burgt, J. M. van Medenbach, & de Rooy (Eds.), The biodiversity of African plants (pp. 665–677). Dordrecht: Kluwer Academic.

    Google Scholar 

  • Peters, C. R., & Maguire, B. (1981). Wild plant foods of the Makapansgat area: A modern ecosystems analogue for Australopithecus africanus adaptations. Journal of Human Evolution, 10, 565–583. doi:10.1016/S0047-2484(81)80048-6.

    Article  Google Scholar 

  • Peters, C. R., & O’Brien, E. M. (1981). The early hominid plant-food niche: Insights from an analysis of plant exploitation by Homo, Pan, and Papio in eastern and southern Africa. Current Anthropology, 22, 127–140. doi:10.1086/202631.

    Article  Google Scholar 

  • Peters, C. R., O’Brien, E. M., & Drummond, R. B. (1992). Edible wild plants of sub-Saharan Africa: An annotated check list, emphasizing the woodland and savanna floras of eastern and southern Africa, including plants utilized for food by chimpanzees and baboons. Kew: Royal Botanic Gardens.

    Google Scholar 

  • Peters, C. R., & Vogel, J. C. (2005). Africa’s wild C4 plant foods and possible early hominid diets. Journal of Human Evolution, 48, 219–236. doi:10.1016/j.jhevol.2004.11.003.

    Article  PubMed  Google Scholar 

  • Procheş, Ş., Cowling, R. M., & du Preez, D. R. (2005). Patterns of geophyte diversity and storage organ size in the winter rainfall region of southern Africa. Diversity & Distributions, 11, 101–109. doi:10.1111/j.1366-9516.2005.00132.x.

    Article  Google Scholar 

  • Procheş, Ş., Cowling, R. M., Goldblatt, P., Manning, J. C., & Snijman, D. A. (2006). An overview of the Cape geophytes. Biological Journal of the Linnean Society, 87, 27–43. doi:10.1111/j.1095-8312.2006.00557.x.

    Article  Google Scholar 

  • Reed, K. E. (1997). Early hominid evolution and ecological change through the African Plio-Pleistocene. Journal of Human Evolution, 32, 289–322. doi:10.1006/jhev.1996.0106.

    Article  PubMed  CAS  Google Scholar 

  • Robinson, J. T. (1954). Prehominid dentition and hominid evolution. Evolution; International Journal of Organic Evolution, 8, 324–334. doi:10.2307/2405779.

    Google Scholar 

  • Rosenberger, A. L., & Kinzey, W. G. (1976). Functional patterns of molar occlusion in platyrrhine primates. American Journal of Physical Anthropology, 45, 281–298. doi:10.1002/ajpa.1330450214.

    Article  PubMed  CAS  Google Scholar 

  • Rundel, P. W., Esler, K. J., & Cowling, R. M. (1999). Ecological and phylogenetic patterns of carbon isotope discrimination in the winter-rainfall flora of the Richtersveld, South Africa. Plant Ecology, 142, 133–148. doi:10.1023/A:1009878429455.

    Article  Google Scholar 

  • Ryan, A. S., & Johanson, D. C. (1989). Anterior dental microwear in Australopithecus afarensis. Journal of Human Evolution, 18, 235–268. doi:10.1016/0047-2484(89)90051-1.

    Article  Google Scholar 

  • Sage, R. F., & Monson, R. K. (1999). C 4 plant biology. New York: Academic Press.

    Google Scholar 

  • Schluter, D., & Grant, P. R. (1984). Determinants of morphological patterns in communities of Darwin’s finches. American Naturalist, 123, 175–196. doi:10.1086/284196.

    Article  Google Scholar 

  • Schoeninger, M. J., Bunn, H. T., Murray, S. S., & Marlett, J. A. (2001). Composition of tubers used by Hadza foragers of Tanzania. Journal of Food Composition and Analysis, 14, 15–25. doi:10.1006/jfca.2000.0961.

    Article  CAS  Google Scholar 

  • Schoeninger, M. J., Moore, J., & Sept, J. M. (1999). Subsistence strategies of two “savanna” chimpanzee populations: The stable isotope evidence. American Journal of Primatology, 49, 297–314. doi :10.1002/(SICI)1098-2345(199912)49:4<297::AID-AJP2>3.0.CO;2-N.

  • Scott, R. S., Ungar, P. S., Bergstrom, T. S., Brown, C. A., Grine, F. E., Teaford, M. F., et al. (2005). Dental microwear texture analysis shows within-species diet variability in fossil hominins. Nature, 436, 693–695. doi:10.1038/nature03822.

    Article  PubMed  CAS  Google Scholar 

  • Sealy, J. C. (1986). Stable carbon isotopes and prehistoric diets in the south-western Cape Province, South Africa. Oxford: British Archaeological Reports International Series 293.

  • Sillen, A., Hall, G., & Armstrong, R. (1995). Strontium calcium ratios (Sr/Ca) and strontium isotopic ratios (87Sr/86Sr) of Australopithecus robustus and Homo sp. from Swartkrans. Journal of Human Evolution, 28, 277–285. doi:10.1006/jhev.1995.1020.

    Article  Google Scholar 

  • Sponheimer, M., de Ruiter, D., Lee-Thorp, J., & Späth, A. (2005a). Sr/Ca and early hominin diets revisited: new data from modern and fossil tooth enamel. Journal of Human Evolution, 48, 147–156. doi:10.1016/j.jhevol.2004.09.003.

    Article  PubMed  Google Scholar 

  • Sponheimer, M., & Lee-Thorp, J. A. (1999). Isotopic evidence for the diet of an early hominid, Australopithecus africanus. Science, 283, 368–370. doi:10.1126/science.283.5400.368.

    Article  PubMed  CAS  Google Scholar 

  • Sponheimer, M., & Lee-Thorp, J. A. (2003). Differential resource utilization by extant great apes and australopithecines: Towards solving the C4 conundrum. Comparative Biochemistry and Physiology. Part A, 136, 27–34.

    Article  CAS  Google Scholar 

  • Sponheimer, M., Lee-Thorp, J., de Ruiter, D., Codron, D., Codron, J., Baugh, A. T., et al. (2005b). Hominins, sedges, and termites: New carbon isotope data from the Sterkfontein valley and Kruger National Park. Journal of Human Evolution, 48, 301–312. doi:10.1016/j.jhevol.2004.11.008.

    Article  PubMed  Google Scholar 

  • Stahl, A. B. (1984). Hominid dietary selection before fire. Current Anthropology, 25, 151–168. doi:10.1086/203106.

    Article  Google Scholar 

  • Stock, W. D., Chuba, D. K., & Verboom, G. A. (2004). Distribution of South African C3 and C4 species of Cyperaceae in relation to climate and phylogeny. Austral Ecology, 29, 313–319. doi:10.1111/j.1442-9993.2004.01368.x.

    Article  Google Scholar 

  • Teaford, M. F., & Ungar, P. S. (2000). Diet and the evolution of the earliest human ancestors. Proceedings of the National Academy of Sciences of the United States of America, 97, 13506–13511. doi:10.1073/pnas.260368897.

    Article  PubMed  CAS  Google Scholar 

  • Terborgh, J. (1983). Five New World primates: A study in comparative ecology. Princeton: Princeton University Press.

    Google Scholar 

  • Tomita, K. (1966). The sources of food for the Hadzapi tribe: The life of a hunting tribe in East Africa. Kyoto University African Studies, 1, 157–171.

    Google Scholar 

  • Ungar, P. S. (2004). Dental topography and diets of Australopithecus afarensis and early Homo. Journal of Human Evolution, 46, 605–622. doi:10.1016/j.jhevol.2004.03.004.

    Article  PubMed  Google Scholar 

  • Ungar, P. S. (Ed.). (2007). Evolution of the human diet: The known, the unknown, and the unknowable. Oxford: Oxford University Press.

    Google Scholar 

  • Ungar, P. S., Grine, F. E., & Teaford, M. F. (2006a). Diet in early Homo: A review of the evidence and a new model of adaptive versatility. Annual Review of Anthropology, 35, 209–228. doi:10.1146/annurev.anthro.35.081705.123153.

    Article  Google Scholar 

  • Ungar, P. S., Grine, F. E., & Teaford, M. F. (2008). Dental microwear and diet of the Plio-Pleistocene hominin Paranthropus boisei. PLoS ONE, 3, e2044. doi:10.1371/journal.pone.0002044.

    Article  PubMed  CAS  Google Scholar 

  • Ungar, P. S., Grine, F. E., Teaford, M. F., & El Zaatari, S. (2006b). Dental microwear and diets of African early Homo. Journal of Human Evolution, 50, 78–95. doi:10.1016/j.jhevol.2005.08.007.

    Article  PubMed  Google Scholar 

  • Vincent, A. S. (1985a). Plant foods in savanna environments: A preliminary report of tubers eaten by the Hadza of northern Tanzania. World Archaeology, 17, 131–148.

    Article  PubMed  CAS  Google Scholar 

  • Vincent, A. S. (1985b). Wild tubers as a harvestable resource in the East African savannas: Ecological and ethnographic studies. PhD thesis, University of California, Berkeley.

  • Vogel, E. R., van Woerden, J. T., Lucas, P. W., Utami Atmoko, S. S., van Schaik, C. P., & Dominy, N. J. (2008). Functional ecology and evolution of hominoid molar enamel thickness: Pan troglodytes schweinfurthii and Pongo pygmaeus wurmbii. Journal of Human Evolution, 55, 60–74. doi:10.1016/j.jhevol.2007.12.005.

  • Walker, A. (1981). Dietary hypotheses and human evolution. Philosophical Transactions of the Royal Society of London. Series B, Biological Sciences, 292, 57–64. doi:10.1098/rstb.1981.0013.

    Article  PubMed  CAS  Google Scholar 

  • White, T. D., WoldeGabriel, G., Asfaw, B., Ambrose, S., Beyene, Y., Bernor, R. L., et al. (2006). Asa Issie, Aramis and the origin of Australopithecus. Nature, 440, 883–889. doi:10.1038/nature04629.

    Article  PubMed  CAS  Google Scholar 

  • Whiten, A., Byrne, R. W., & Henzi, S. P. (1987). The behavioral ecology of mountain baboons. International Journal of Primatology, 8, 367–388. doi:10.1007/BF02737389.

    Article  Google Scholar 

  • Wood, B., & Constantino, P. (2007). Paranthropus boisei: Fifty years of evidence and analysis. Yearbook of Physical Anthropology, 50, 106–132. doi:10.1002/ajpa.20732.

    Article  Google Scholar 

  • Wood, B., & Strait, D. (2004). Patterns of resource use in early Homo and Paranthropus. Journal of Human Evolution, 46, 119–162. doi:10.1016/j.jhevol.2003.11.004.

    Article  PubMed  Google Scholar 

  • Woodburn, J. (1966). The Hadza: The food quest of a hunting and gathering tribe of Tanzania (16 mm. film). London: London School of Economics.

    Google Scholar 

  • Woodburn, J. (1968). An introduction to Hadza ecology. In R. B. Lee & I. DeVore (Eds.), Man the hunter (pp. 49–55). Chicago: Aldine.

    Google Scholar 

  • Woodburn, J. (1970). Hunters and gatherers: The material culture of the nomadic Hadza. London: British Museum.

    Google Scholar 

  • Wrangham, R. W. (2005). The delta hypothesis. In D. E. Lieberman, R. J. Smith, & J. Kelley (Eds.), Interpreting the past: Essays on human, primate, and mammal evolution (pp. 231–243). Leiden: Brill Academic.

    Google Scholar 

  • Wrangham, R. W. (2007). The cooking enigma. In P. S. Ungar (Ed.), Evolution of the human diet: The known, the unknown, and the unknowable (pp. 308–323). Oxford: Oxford University Press.

    Google Scholar 

  • Wrangham, R., & Conklin-Brittain, N. L. (2003). ‘Cooking as a biological trait’. Comparative Biochemistry and Physiology. Part A, 136, 35–46. doi:10.1016/S1095-6433(03)00020-5.

    Article  CAS  Google Scholar 

  • Wrangham, R. W., Conklin, N. L., Chapman, C. A., & Hunt, K. D. (1991). The significance of fibrous foods for Kibale Forest chimpanzees. Philosophical Transactions of the Royal Society of London. Series B, Biological Sciences, 334, 171–178. doi:10.1098/rstb.1991.0106.

    Article  PubMed  CAS  Google Scholar 

  • Wrangham, R. W., Jones, J. H., Laden, G., Pilbeam, D., & Conklin-Brittain, N. (1999). The raw and the stolen: Cooking and the ecology of human origins. Current Anthropology, 40, 567–594. doi:10.1086/300083.

    Article  PubMed  Google Scholar 

  • Wrangham, R. W., Rogers, M. E., & Isabirye-Basuta, G. (1993). Ape food density in the ground layer in Kibale Forest, Uganda. African Journal of Ecology, 31, 49–57. doi:10.1111/j.1365-2028.1993.tb00517.x.

    Article  Google Scholar 

  • Wright, B. W. (2005). Craniodental biomechanics and dietary toughness in the genus Cebus. Journal of Human Evolution, 48, 473–492. doi:10.1016/j.jhevol.2005.01.006.

    Article  PubMed  Google Scholar 

  • Yeakel, J. D., Bennett, N. C., Koch, P. L., & Dominy, N. J. (2007). The isotopic ecology of African mole rats informs hypotheses on the evolution of human diet. Proceedings of the Royal Society B: Biological Sciences, 274, 1723–1730. doi:10.1098/rspb.2007.0330.

    Article  PubMed  Google Scholar 

  • Youngblood, D. (2004). Identifications and quantification of edible plant foods in the Upper (Nama) Karoo, South Africa. Economic Botany, 58, 43–65. doi:10.1663/0013-0001(2004)58[S43:IAQOEP]2.0.CO;2.

    Article  Google Scholar 

Download references

Acknowledgements

We are grateful to Nigel C. Bennett, M. Casper Bonyongo, Erin E. Butler, Georges Chuyong, Maricela Constantino, the Duckitt family (Jeanette, John, Michael, Richard, Susan, and Wilferd), Nick Georgiadis, Gudo, Johannes and Lene Kleppe, Alicia Krige, Annelise LeRoux, Lomojo, Sarah L. McCabe, George H. Perry, Eric Philander, Frank W. Marlowe, Mustaffa, Kerry Outram, Moses Sainge, Bongani Sethebe, Marietjie Smit, Shirley C. Strum, Duncan Thomas, Carel P. van Schaik, Dirk Wolters, and Bernard Wood. Research permission was granted by CapeNature (permit no. AAA005-00055-0028), the Henry Oppenheimer Okavango Research Center, the Mpala Research Center, and the Northern Cape Department of Nature and Environmental Conservation (permit no. 030/2006). Research funding was received from the American Philosophical Society, the National Science Foundation (BCS-0643122 and IGERT 9987590), the University of California Santa Cruz (grants from the Committee on Research and the Division of Social Sciences), and the Wenner-Gren Foundation.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nathaniel J. Dominy.

Appendix

Appendix

Mechanical properties of plant underground storage organs

USO form, genus, and species

Family

Collection locality

Fracture toughness (J m−2)

Young’s modulus (MPa)

Bulbs

    Albuca canadensis

Hyacinthaceae

WF

184.0

3.3

    Albuca cooperi

Hyacinthaceae

WF

329.0

0.8

    Albuca juncifolia

Hyacinthaceae

WF

350.0

5.0

    Albuca maxima

Hyacinthaceae

K

40.0

1.4

    Albuca setosa

Hyacinthaceae

WF

219.0

3.1

    Albuca spiralis

Hyacinthaceae

K

87.0

1.7

    Amaryllis belladonna

Amaryllidaceae

WF

600.0

0.3

    Boophane disticha

Amaryllidaceae

Maun

161.0

3.2

    Brunsvigia orientalis

Amaryllidaceae

WF

2293.0

2.9

    Brunsvigia sp.

Amaryllidaceae

K

260.0

1.0

    Crinum foetidum

Amaryllidaceae

Maun

126.0

1.1

    Crinum sp.

Amaryllidaceae

HOORC

101.0

2.8

    Dipcadi crispum

Hyacinthaceae

WF

451.0

0.8

    Gethyllis affra

Amaryllidaceae

WF

313.0

2.4

    Haemanthus coccineus

Amaryllidaceae

WF

560.0

4.7

    Haemanthus crispus

Amaryllidaceae

K

247.0

2.1

    Hessea chaplinii

Amaryllidaceae

WF

77.0

0.3

    Lachenalia carnosa

Hyacinthaceae

K

150.0

2.7

    Lachenalia mutabilis

Hyacinthaceae

WF

126.0

3.1

    Lachenalia unifolia

Hyacinthaceae

WF

100.0

1.2

    Ledebouria cooperi

Hyacinthaceae

D

120.0

3.2

    Ornithogalum thyrsoides

Hyacinthaceae

WF

202.0

1.9

    Oxalis hirta var. tenuicaulis

Oxalidaceae

WF

324.0

1.5

    Oxalis obliquifolia

Oxalidaceae

D

183.0

    Oxalis purpurea

Oxalidaceae

WF

437.0

1.3

    Oxalis pusilla

Oxalidaceae

WF

683.0

1.7

    Oxalis versicolor

Oxalidaceae

WF

606.0

2.1

    Oxalis sp. A

Oxalidaceae

K

135.0

1.8

    Oxalis sp. B

Oxalidaceae

K

221.0

3.6

    Scilla dracomontana

Hyacinthaceae

D

336.0

3.9

    Tulbaghia capensis

Alliaceae

WF

519.0

8.0

    Veltheimia glauca

Hyacinthaceae

WF

420.0

4.1

Corms

    Babiana ambigua

Iridaceae

WF

194.0

7.2

    Babiana scariosa

Iridaceae

K

362.0

7.1

    Chlorophytum triflorum

Anthericaceae

WF

180.0

3.1

    Cyperus alatus

Cyperaceae

MRC

288.0

8.8

    Cyperus cristatus

Cyperaceae

MRC

117.0

4.7

    Empodium veratrifolium

Hypoxidaceae

WF

234.0

2.3

    Ferraria uncinata

Iridaceae

K

325.0

8.8

    Gladiolus carinatus

Iridaceae

WF

100.0

6.2

    Gladiolus gracilis

Iridaceae

WF

220.0

2.4

    Hesperantha falcata

Iridaceae

WF

634.0

4.6

    Ixia maculata

Iridaceae

WF

291.0

5.8

    Ixia monodelphia

Iridaceae

WF

426.0

4.4

    Lapeirousia jacquinii

Iridaceae

WF

86.0

3.8

    Lapeirousia silenoides

Iridaceae

K

487.0

5.7

    Melasphaerula ramosa

Iridaceae

WF

261.0

3.1

    Moraea fugax

Iridaceae

WF

158.0

1.8

    Moraea miniata

Iridaceae

K

241.0

3.6

    Moraea tricolor

Iridaceae

WF

299.0

3.5

    Romulea flava

Iridaceae

WF

232.0

3.4

    Romulea cf. tabularis

Iridaceae

WF

292.0

5.7

    Sparaxis bulbifera

Iridaceae

WF

269.0

12.0

    Spiloxene ovata

Hypoxidaceae

WF

245.0

3.9

    Wachendorffia paniculata

Haemodoraceae

WF

100.0

3.5

    Watsonia coccinea

Iridaceae

WF

328.0

2.3

Rhizomes

    Bulbinella triquetra

Asphodelaceae

WF

3645.0

2.5

    Cynodon dactylon

Poaceae

MRC

3770.0

14.0

    Cyperus dives

Cyperaceae

HOORC

2379.0

13.7

    Ficinia lateralis

Cyperaceae

WF

7967.0

13.6

    Nymphea lotus

Nymphaeaceae

HOORC

414.0

    Phragmites australis

Poaceae

HOORC

451.0

6.2

    Schoenoplectus corymbosus

Cyperaceae

HOORC

4743.0

13.9

    Willdenowia incurvata

Restionaceae

WF

25468.0

18.7

    Zantedeschia aethiopica

Araceae

WF

193.0

5.5

Root tubers

    Acanthosicyos naudinianus

Cucurbitaceae

H

979.0

8.0

    Arctopus echinatus

Apiaceae

WF

2758.0

2.7

    Asparagus asparagoides

Liliaceae

WF

114.0

2.8

    Asparagus exuvialis

Liliaceae

Maun

143.0

2.2

    Asparagus rubicundus

Liliaceae

WF

296.0

1.5

    Cissampelos capensis

Menispermaceae

WF

3484.0

9.2

    Coccinea aurantiaca

Cucurbitaceae

Mangola

399.0

3.5

    Conicosia elongata

Aizoaceae

K

874.0

4.8

    Cucumis africanus

Cucurbitaceae

H

1397.0

8.3

    Dioscorea sp.

Dioscoreaceae

Korup

5955.0

5.3

    Eriospermum capense

Rusaceae

WF

466.0

5.4

    Eriospermum nanum

Rusaceae

WF

1089.0

3.8

    Eriospermum sp.

Rusaceae

K

205.0

2.6

    Euphorbia tuberosa

Euphorbiaceae

WF

2080.0

3.2

    Helichrysum cf. cochleariforme

Asteraceae

WF

916.0

2.9

    Hypoxis argenta

Hypoxidaceae

D

825.0

0.8

    Hypoxis hemerocallidea

Hypoxidaceae

Pretoria

1290.0

7.8

    Monsonia longipes

Geroniaceae

MRC

1243.0

5.6

    Nymphea lotus

Nymphaeaceae

HOORC

1139.0

5.5

    Nymphea nouchali

Nymphaeaceae

HOORC

1064.0

9.4

    Pelargonium seneciodes

Geraniaceae

WF

902.0

8.2

    Pelargonium triste

Geraniaceae

WF

742.0

4.6

    Pergularia daemia

Asclepiadaceae

Maun

2303.0

5.1

    Pteronia divaricata

Asteraceae

WF

754.0

7.6

    Rumex lativalvis

Polygalaceae

WF

735.0

5.9

    Vatovaea pseudolablab

Fabaceae

Mangola

448.0

    Vigna frutescens

Fabaceae

Mangola

4859.0

    Vigna macrorhyncha

Fabaceae

Mangola

543.0

4.2

    Vigna sp. A

Fabaceae

Mangola

848.0

    Unidentified no 1

Apiaceae

MRC

1081.0

5.5

    Unidentified no 2

Apiaceae

MRC

679.0

4.2

    Unidentified legume no 1

Leguminosae

WF

2114.0

7.0

    Unidentified legume no 2

Leguminosae

WF

318.0

1.4

  1. Collection locality key: D Drakensberg Mountains, HOORC Henry Oppenheimer Okavango Research Center, H Hotazel, K Kamieskroon (Namaqualand), MRC Mpala Research Centre, WF Wayland’s Farm

Rights and permissions

Reprints and permissions

About this article

Cite this article

Dominy, N.J., Vogel, E.R., Yeakel, J.D. et al. Mechanical Properties of Plant Underground Storage Organs and Implications for Dietary Models of Early Hominins. Evol Biol 35, 159–175 (2008). https://doi.org/10.1007/s11692-008-9026-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11692-008-9026-7

Keywords

Navigation