Skip to main content
Log in

Using Correlation Proximity Graphs to Study Phenotypic Integration

  • Research Article
  • Published:
Evolutionary Biology Aims and scope Submit manuscript

Abstract

Characterizing and comparing the covariance or correlation structure of phenotypic traits lies at the heart of studies concerned with multivariate evolution. I describe an approach that represents the geometric structure of a correlation matrix as a type of proximity graph called a Correlation Proximity graph. Correlation Proximity graphs provide a compact representation of the geometric relationships inherent in correlation matrices, and these graphs have simple and intuitive properties. I demonstrate how this framework can be used to study patterns of phenotypic integration by employing this approach to compare phenotypic and additive genetic correlation matrices within and between species. I also outline a graph-based method for testing whether an inferred correlation proximity graph is one of a number of possible models that are consistent with a “soft” biological hypothesis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Bookstein, F. L., Chernoff, B., Elder, R., Humphries, J., Smith, G., & Strauss, R. (1985). Morphometerics in evolutionary biology. Philadelphia, PA: Academy of Natural Sciences.

    Google Scholar 

  • Chernoff, B., & Magwene, P. M. (1999). Morphological integration: Forty years later. In: E. C. Oslon & R. C. Miller (Eds.), Morphological integration (pp. 316–360). Chicago: University of Chicago.

  • Cheverud, J. M. (1982). Phenotypic, genetic, and environmental morphological integration in the cranium. Evolution, 36, 499–516.

    Article  Google Scholar 

  • Drton, M., & Perlman, M. D. (2004). Model selection for Gaussian concentration graphs. Biometrika, 91, 591–602.

    Article  Google Scholar 

  • Dunn, L. C. (1928). The effect of inbreeding on the bones of the fowl. Bulletin Storrs Agricultural Experiment Station, 152, 1–112.

    Google Scholar 

  • Gabriel, K. R., & Sokal, R. R. (1969). A new statistical approach to geographic variation analysis. Systematic Zoology, 18, 259–278.

    Article  Google Scholar 

  • Hansen, T. F. (2003). Is modularity necessary for evolvability? Remarks on the relationship between pleiotropy and evolvability. Biosystems, 69, 83–94.

    Article  PubMed  Google Scholar 

  • Higham, N. J. (2002). Computing the nearest correlation matrix–a problem from finance. IMA Journal of Numerical Analysis, 22, 329–343.

    Article  Google Scholar 

  • Jaromczyk, J. W., & Toussaint, G. T. (1992). Relative neighborhood graphs and their relatives. Proceedings of the IEEE, 80, 1502–1517.

    Article  Google Scholar 

  • Kohn, L. A. P., & Atchley, W. R. (1988). How similar are genetic correlation structures data from mice and rats. Evolution, 42, 467–481.

    Article  Google Scholar 

  • Krzanowksi, W. J. (1988). Principles of multivariate analysis. Oxford: Clarendon Press.

    Google Scholar 

  • Lande, R., & Arnold, S. J. (1983). The measurement of selection on correlated characters. Evolution, 37, 1210–1226.

    Article  Google Scholar 

  • Lauritzen, S. L. (1996). Graphical models. Oxford: Oxford University Press.

  • Magwene, P. M. (2001). New tools for studying integration and modularity. Evolution, 55, 1734–1745.

    PubMed  CAS  Google Scholar 

  • Magwene, P. M., & Kim, J. (2004). Estimating genomic coexpression networks using first-order conditional independence. Genome Biology, 5, 1–100.

    Article  Google Scholar 

  • Matula, D. W., & Sokal, R. R. (1980). Properties of gabriel graphs relevant to geographic variation research and clustering of points in the plane. Geographic Analysis, 12, 205–222.

    Google Scholar 

  • Olson, E. C., & Miller, R. L. (1958). Morphological integration. Chicago: University of Chicago Press.

  • O’Quigley, T. G. (1993). A geometric interpretation of partial correlation using spherical triangles. American Statistician, 47, 30–32.

    Article  Google Scholar 

  • Phillips, P. C., & Arnold, S. J. (1999). Hierarchical comparison of genetic variance-covariance matrices. I. Using the flury hierarchy. Evolution, 53, 1506–1515.

    Article  Google Scholar 

  • Wagner, G. P., & Altenberg, L. (1996). Complex adaptations and the evolution of evolvability. Evolution, 50, 967–976.

    Article  Google Scholar 

  • Wagner, G. P., Pavlicev, M., & Cheverud, J. M. (2007). The road to modularity. Nature Reviews Genetics, 8, 921–931.

    Article  PubMed  CAS  Google Scholar 

  • Whittaker, J. (1990). Graphical models in applied mathematical multivariate statistics. Chichester: Wiley.

  • Wickens, T. D. (1995). The geometry of multivariate statistics. Hilldales: Lawrence Erlbaum Associates.

  • Wille, A., & Buhlmann, P. (2006). Low-order conditional independence graphs for inferring genetic networks. Statistical Applications in Genetics and Molecular Biology 5: Article 1.

  • Wille, A., Zimmermann, P., Vranova, E., Furholz, A., Laule, O., Bleuler, S., Hennig, L., Prelic, A., von Rohr, P., Thiele, L., Zitzler, E., Gruissem, W., & Buhlmann, P. (2004). Sparse graphical Gaussian modeling of the isoprenoid gene network in Arabidopsis thaliana. Genome Biology, 5, R92.

    Article  PubMed  Google Scholar 

  • Wright, S. (1932). General, group and special size factors. Genetics, 15, 603–619.

    Google Scholar 

  • Young, N. M., & Hallgrimsson, B. (2005). Serial homology and the evolution of mammalian limb covariation structure. Evolution, 59, 2691–2704.

    PubMed  Google Scholar 

  • Zelditch, M. L. (1987). Evaluating models of developmental integration in the laboratory rat using confirmatory factor analysis. Systematic Zoology, 36, 368–380.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Paul M. Magwene.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Magwene, P.M. Using Correlation Proximity Graphs to Study Phenotypic Integration. Evol Biol 35, 191–198 (2008). https://doi.org/10.1007/s11692-008-9030-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11692-008-9030-y

Keywords

Navigation