Skip to main content

Advertisement

Log in

The Measurement of Local Variation in Shape

  • Tools and Techniques
  • Published:
Evolutionary Biology Aims and scope Submit manuscript

Abstract

Geometric morphometrics comprises tools for measuring and analyzing shape as captured by an entire set of landmark configurations. Many interesting questions in evolutionary, genetic, and developmental research, however, are only meaningful at a local level, where a focus on “parts” or “traits” takes priority over properties of wholes. To study variational properties of such traits, current approaches partition configurations into subsets of landmarks which are then studied separately. This approach is unable to fully capture both variational and spatial characteristics of these subsets because interpretability of shape differences is context-dependent. Landmarks omitted from a partition usually contain information about that partition’s shape. We present an interpolation-based approach that can be used to model shape differences at a local, infinitesimal level as a function of information available globally. This approach belongs in a large family of methods that see shape differences as continuous “fields” spanning an entire structure, for which landmarks serve as reference parameters rather than as data. We show, via analyses of simulated and real data, how interpolation models provide a more accurate representation of regional shapes than partitioned data. A key difference of this interpolation approach from current morphometric practice is that one must assume an explicit interpolation model, which in turn implies a particular kind of behavior of the regions between landmarks. This choice presents novel methodological challenges, but also an opportunity to incorporate and test biomechanical models that have sought to explain tissue-level processes underlying the generation of morphological shape.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  • Ackermann, R. R. (2009). Morphological integration and the interpretation of fossil hominin diversity. Evolutionary Biology, 36, 149–156.

    Article  Google Scholar 

  • Aegerter-Wilmsen, T., Smith, A. C., Christen, A. J., Aegerter, C. M., Hafen, E., & Basler, K. (2010). Exploring the effects of mechanical feedback on epithelial topology. Development, 137, 499–506.

    Article  PubMed  CAS  Google Scholar 

  • Aigouy, B., Farhadifar, R., Staple, D. B., Sagner, A., Röper, J.-C., Jülicher, F., et al. (2010). Cell flow reorients the axis of planar polarity in the wing epithelium of Drosophila. Cell, 142, 773–786.

    Article  PubMed  CAS  Google Scholar 

  • Albert, A. Y. K., Sawaya, S., Vines, T. H., Knecht, A. K., Miller, C. T., Summers, B. R., et al. (2008). The genetics of adaptive shape shift in stickleback: Pleiotropy and effect size. Evolution, 61, 76–85.

    Google Scholar 

  • Atchley, W. R., Cowley, D. E., Vogl, C., & McLellan, T. (1992). Evolutionary divergence, shape change, and genetic correlation structure in the rodent mandible. Systematic Biology, 41, 196–221.

    Google Scholar 

  • Atchley, W. R., & Hall, B. K. (1991). A model for development and evolution of complex morphological structures. Biological Reviews of the Cambridge Philosophical Society, 66, 101–157.

    Article  PubMed  CAS  Google Scholar 

  • Ayroles, J. F., Carbone, M. A., Stone, E. A., Jordan, K. W., Lyman, R. F., Magwire, M. M., et al. (2009). Systems genetics of complex traits in Drosophila melanogaster. Nature Genetics, 41, 299–307.

    Article  PubMed  CAS  Google Scholar 

  • Baylor College of Medicine/Human Genome Sequencing Center. (2010). Drosophila Genetic Reference Panel lines at Human Genome Sequencing Center. http://www.hgsc.bcm.tmc.edu/project-species-i-DGRP_lines.hgsc. Cited 7 July 2011.

  • Blanchard, G. B., Kabla, A. J., Schultz, N. L., Butler, L. C., Sanson, B., Gorfinkiel, N., et al. (2009). Tissue tectonics: Morphogenetic strain rates, cell shape change and intercalation. Nature Methods, 6, 458–464.

    Article  PubMed  CAS  Google Scholar 

  • Bookstein, F. L. (1986). Size and shape spaces for landmark data in two dimensions. Statistical Science, 1, 181–242.

    Article  Google Scholar 

  • Bookstein, F. L. (1992). Morphometric tools for landmark data: Geometry and biology. Cambridge: Cambridge University Press.

    Book  Google Scholar 

  • Boyer, D. M., Lipman, Y., St. Clair, E., Puente, J., Patel, B. A., Funkhouser, T., Jernvall, J., Daubechies, I. (2011). Algorithms to automatically quantify the geometric similarity of anatomical surfaces. Proceedings of National Academy of Science USA, 108, 18221–18226.

  • Burgio, G., Baylac, M., Heyer, E., & Montagutelli, X. (2009). Genetic analysis of skull shape variation and morphological integration in the mouse using interspecific recombinant congenic strains between C57Bl/6 and mice of the Mus spretus species. Evolution, 63, 2668–2686.

    Article  PubMed  Google Scholar 

  • Cardini, A. (2003). The geometry of the marmot (Rodentia: Sciuridae) mandible: Phylogeny and patterns of morphological evolution. Systematic Biology, 52, 186–205.

    Article  PubMed  Google Scholar 

  • Catalano, S. A., Goloboff, P. A., & Giannini, N. P. (2010). Phylogenetic morphometrics (I): The use of landmark data in a phylogenetic framework. Cladistics, 26, 539–549.

    Article  Google Scholar 

  • Caumul, R., & Polly, P. D. (2005). Phylogenetic and environmental components of morphological variation: Skull, mandible, and molar shape in marmots (Marmota, Rodentia). Evolution, 59, 2460–2472.

    PubMed  Google Scholar 

  • Chen, X., & Brodland, G. W. (2008). Multi-scale finite element modeling allows the mechanics of amphibian neurulation to be elucidated. Physics and Biology, 5, 15003.

    Article  Google Scholar 

  • Cheverud, J. M., Hartman, S. E., Richtsmeier, J. T., & Atchley, W. R. (1991). A quantitative genetic analysis of localized morphology in mandibles of inbred mice using finite element scaling analysis. Journal of Craniofacial Genetics and Developmental Biology, 11, 122–137.

    PubMed  CAS  Google Scholar 

  • Cheverud, J. M., Lewis, J. L., Bachrach, W., & Lew, W. D. (1983). The measurement of form and variation in form: An application of 3-dimensional quantitative morphology by finite-element methods. American Journal of Physical Anthropology, 62, 151–165.

    Article  PubMed  CAS  Google Scholar 

  • Cheverud, J. M., & Richtsmeier, J. T. (1986). Finite-element scaling applied to sexual dimorphism in rhesus macaques (Macaca mulatta) facial growth. Systematic Zoology, 35, 381–399.

    Article  Google Scholar 

  • Cheverud, J. M., Wagner, G. P., & Dow, M. M. (1989). Methods for the comparative analysis of variation patterns. Systematic Biology, 38, 201–213.

    Google Scholar 

  • Commonwick, O., Stefanescu, R., Fillard, P., Arsigny, V., Ayache, N., Pennec, X., et al. (2005). Incorporating statistical measures of anatomical variability in atlas-to-subject registration for conformal brain radiotherapy. Medical Image Computing and Computer-Assisted Intervention, 8, 927–934.

    Article  Google Scholar 

  • Cressie, N. A. C. (1993). Statistics for spatial data. Chichester: Wiley.

    Google Scholar 

  • Davidson, M., von Dassow, M., & Zhou, J. (2009). Multi-scale mechanics from molecules to morphogenesis. International Journal of Biochemistry and Cell Biology, 41, 2147–2162.

    Article  PubMed  CAS  Google Scholar 

  • Davis, M. H., Khotanzad, A., Flamig, D. P., & Harms, S. E. (1995). Elastic body splines: A physics-based approach to coordinate transformation in medical image matching. In Proceedings of 8th IEEE Symposium on Computer and Medical Systems, pp. 81–88.

  • Davis, M. H., Khotanzad, A., Flamig, D. P., & Harms, S. E. (1997). A physics-based coordinate transformation for 3-D image matching. IEEE Transactions on Medical Imaging, 16, 317–328.

    Article  PubMed  CAS  Google Scholar 

  • Dryden, I. L., & Mardia, K. V. (1998). Statistical shape analysis. Chichester: Wiley.

    Google Scholar 

  • Dworkin, I., & Gibson, G. (2006). Epidermal growth factor receptor and transforming growth factor-beta signaling contributes to variation for wing shape in Drosophila melanogaster. Genetics, 173, 1417–1431.

    Article  PubMed  CAS  Google Scholar 

  • Dworkin, I., Palsson, A., & Gibson, G. (2005). Replication of an Egfr-wing shape association in a wild-caught cohort of Drosophila melanogaster. Genetics, 169, 2115–2125.

    Article  PubMed  CAS  Google Scholar 

  • Escoufier, Y. (1973). Le traitement des variables vectorielles. Biometrics, 29, 751–760.

    Article  Google Scholar 

  • Farhadifar, R., Roper, J. C., Algouy, B., Eaton, S., & Julicher, F. (2007). The influence of cell mechanics, cell–cell interactions, and proliferation on epithelial packing. Current Biology, 17, 2095–2104.

    Article  PubMed  CAS  Google Scholar 

  • Feng, X., Wilson, Y., Bowers, J., Kennaway, R., Bangham, A., Hannah, A., et al. (2009). Evolution of allometry in Antirrhinum. The Plant Cell, 21, 2999–3007.

    Article  PubMed  CAS  Google Scholar 

  • González-José, R., Escapa, I., Neves, W. A., Cúneo, R., & Pucciarelli, H. M. (2008). Cladistic analysis of continuous modularized traits provides phylogenetic signals in Homo evolution. Nature, 453, 775–778.

    Article  PubMed  Google Scholar 

  • Goovaerts, P. (1997). Geostatistics for natural resources evaluation. New York: Oxford University Press.

    Google Scholar 

  • Grenander, U., & Miller, M. I. (1998). Computational anatomy: An emerging discipline. Quarterly of Applied Mathematics, 56, 617–694.

    Google Scholar 

  • Haley, C. S., & Knott, S. A. (1992). A simple regression method for mapping quantitative trait loci in line crosses using flanking markers. Heredity, 69, 315–324.

    Article  PubMed  CAS  Google Scholar 

  • Hall, B. K., & Miyake, T. (2000). All for one and one for all: Condensations and the initiation of skeletal development. Bioessays, 22, 138–147.

    Article  PubMed  CAS  Google Scholar 

  • Hallgrímsson, B., Jamniczky, H. A., Young, N. M., Rolian, C., Parsons, T. E., Boughner, J. C., et al. (2009). Deciphering the Palimpsest: Studying the relationship between morphological integration and phenotypic covariation. Evolutionary Biology, 36, 355–376.

    Article  Google Scholar 

  • Hine, E., & Blows, M. W. (2006). Determining the effective dimensionality of the genetic variance-covariance matrix. Genetics, 173, 1135–1144.

    Article  PubMed  CAS  Google Scholar 

  • Holden, M. (2008). A review of geometric transformations for nonrigid body registration. IEEE Transactions on Medical Imaging, 27, 111–128.

    Article  PubMed  CAS  Google Scholar 

  • Houle, D. (2010). Numbering the hairs on our heads: The shared challenge and promise of phenomics. Proceedings of National Academy of Science USA, 107, 1793–1799.

    Article  CAS  Google Scholar 

  • Humphrey, J. D. (2003). Continuum biomechanics of soft biological tissues. Proceedings of the Royal Society (Part A): Mathematical, Physical, and Engineering Sciences, 459, 3–46.

    Article  Google Scholar 

  • Hutchinson, M. F., & Gessler, P. E. (1994). Splines—More than just a smooth interpolator. Geoderma, 62, 45–67.

    Article  Google Scholar 

  • Klingenberg, C. P. (2008). Morphological integration and developmental modularity. Annual Review of Ecology and Systematics, 39, 115–132.

    Article  Google Scholar 

  • Klingenberg, C. P. (2009). Morphometric integration and modularity in configurations of landmarks: Tools for evaluating a priori hypotheses. Evolution & Development, 11, 405–421.

    Article  Google Scholar 

  • Klingenberg, C. P. (2010). Evolution and development of shape: Integrating quantitative approaches. Nature Review, 11, 623–635.

    CAS  Google Scholar 

  • Klingenberg, C. P., & Gidaszweski, N. A. (2010). Testing and quantifying phylogenetic signals and homoplasy in morphometric data. Systematic Biology, 59, 245–261.

    Article  PubMed  CAS  Google Scholar 

  • Klingenberg, C. P., Leamy, L. J., Routman, E. J., & Cheverud, J. M. (2001). Genetic architecture of mandible shape in mice: Effects of quantitative trait loci analyzed by geometric morphometrics. Genetics, 157, 785–802.

    PubMed  CAS  Google Scholar 

  • Klingenberg, C. P., Mebus, K., & Auffray, J. C. (2003). Developmental integration in a complex morphological structure: How distinct are the modules in the mouse mandible? Evolution & Development, 5, 522–531.

    Article  Google Scholar 

  • Laslett, G. M. (1994). Kriging and splines: An empirical comparison of their predictive performance in some applications. Journal of the American Statistical Association, 89, 391–400.

    Article  Google Scholar 

  • Leamy, L. J., Klingenberg, C. P., Sherratt, E., Wolf, J. B., & Cheverud, J. M. (2008). A search for quantitative trait loci exhibiting imprinting effects on mouse mandible size and shape. Heredity, 101, 518–526.

    Article  PubMed  CAS  Google Scholar 

  • Leamy, L. J., Routman, E. J., & Cheverud, J. M. (1999). Quantitative trait loci for early- and late-developing skull characters in mice: A test of the genetic independence model of morphological integration. American Naturalist, 153, 201–214.

    Article  Google Scholar 

  • Lewis, J. L., Lew, W. D., & Zimmerman, J. R. (1980). A nonhomogeneous anthropometric scaling method based on finite element principles. Journal of Biomechanics, 13, 815–824.

    Article  PubMed  CAS  Google Scholar 

  • MacLeod, N. (2002). Phylogenetic signals in morphometric data. In N. MacLeod & P. L. Forey (Eds.), Morphology, shape and phylogeny (pp. 100–138). London: Taylor & Francis.

    Chapter  Google Scholar 

  • Mardia, K. V., Kent, J. T., Goodall, C. R., & Little, J. A. (1996). Kriging and splines with derivative information. Biometrika, 83, 207–221.

    Article  Google Scholar 

  • Márquez, E. J. (2008). A statistical framework for testing modularity in multidimensional data. Evolution, 62, 2688–2708.

    Article  PubMed  Google Scholar 

  • Márquez, E. J., & Knowles, L. L. (2007). Correlated evolution of multivariate traits: Detecting co-divergence across multiple dimensions. Journal of Evolutionary Biology, 20, 2334–2348.

    Article  PubMed  Google Scholar 

  • Marroig, G., & Cheverud, J. M. (2001). A comparison of phenotypic variation and covariation patterns and the role of phylogeny, ecology and ontogeny during cranial evolution of New World Monkeys. Evolution, 55, 2576–2600.

    PubMed  CAS  Google Scholar 

  • Martínez-Abadías, N., Paschetta, C., de Azevedo, S., Esparza, M., & González-José, R. (2009). Developmental and genetic constraints on neurocranial globularity: Insights from analyses of deformed skulls and quantitative genetics. Evolutionary Biology, 36, 37–56.

    Article  Google Scholar 

  • Matheron, G. (1973). The intrinsic random functions and their applications. Advances in Applied Probability, 5, 439–468.

    Article  Google Scholar 

  • McAlarney, M. E. (1995). Use of the boundary element method for biological morphometrics. Journal of Biomechanics, 28, 609–616.

    Article  PubMed  CAS  Google Scholar 

  • McAlarney, M. E., & Chiu, W.-K. (1997). Comparison of numeric techniques in the analysis of cleft palate dental arch form change. The Cleft Palate-Craniofacial Journal, 34, 281–291.

    Article  PubMed  CAS  Google Scholar 

  • McGuigan, K., & Blows, M. W. (2010). Evolvability of individual traits in a multivariate context: Partitioning the additive genetic variance into common and specific components. Evolution, 64, 1899–1911.

    PubMed  CAS  Google Scholar 

  • Meinguet, J. (1979). Multivariate interpolation at arbitrary points made simple. Journal of Applied Mathematics and Physics, 30, 292–304.

    Article  Google Scholar 

  • Mezey, J. G., Cheverud, J. M., & Wagner, G. P. (2000). Is the genotype-phenotype map modular?: A statistical approach using mouse quantitative trait loci data. Genetics, 156, 305–311.

    PubMed  CAS  Google Scholar 

  • Mezey, J. G., & Houle, D. (2005). The dimensionality of genetic variation for wing shape in Drosophila melanogaster. Evolution, 59, 1027–1038.

    PubMed  Google Scholar 

  • Mezey, J. G., Houle, D., & Nuzhdin, S. V. (2005). Naturally segregating quantitative trait loci affecting wing shape of Drosophila melanogaster. Genetics, 169, 2101–2113.

    Article  PubMed  CAS  Google Scholar 

  • Mitteroecker, P., & Bookstein, F. (2007). The conceptual and statistical relationship between modularity and morphological integration. Systematic Biology, 56, 818–836.

    Article  PubMed  Google Scholar 

  • Monteiro, L. R., Bonato, V., & dos Reis, S. F. (2005). Evolutionary integration and morphological diversification in complex morphological structures: Mandible shape divergence in spiny rats (Rodentia, Echimyidae). Evolution & Development, 7, 429–439.

    Article  Google Scholar 

  • Monteiro, L. R., & Nogueira, M. R. (2010). Adaptive radiations, ecological specialization, and the evolutionary integration of complex morphological structures. Evolution, 64, 724–743.

    Article  PubMed  Google Scholar 

  • Moss, M. L., Vilmann, H., Moss-Salentjin, L., Sen, K., Pucciarelli, H. M., & Skalak, R. (1987). Studies on orthocephalization: Growth behavior of the rat skull in the period 13–49 days as described by the finite element method. American Journal of Physical Anthropology, 72, 323–342.

    Article  PubMed  CAS  Google Scholar 

  • Nelson, C. M., Jean, R. P., Tan, J. L., Liu, W. F., Sniadecki, N. J., Spector, A. A., et al. (2005). Emergent patterns of growth controlled by multicellular form and mechanics. Proceeding of National Academy of Science, USA, 102, 11594–11599.

    Article  CAS  Google Scholar 

  • Pepper, D. W., & Heinrich, J. C. (1992). The finite element method: Basic concepts and applications. New York: Hemisphere Pub Co.

  • Rauzi, M., & Lenne, P. F. (2011). Cortical forces in cell shape changes and tissue morphogenesis. Current Topics in Developmental Biolology, 95, 93–144.

    Article  Google Scholar 

  • Rauzi, M., Verant, P., Lecuit, T., & Lenne, P. F. (2008). Nature and anisotropy of cortical forces orienting Drosophila tissue morphogenesis. Nature Cell Biology, 10, 1401–1410.

    Article  PubMed  CAS  Google Scholar 

  • Richstmeier, J. T., & DeLeon, V. B. (2009). Morphological integration of the skull in craniofacial anomalies. Orthodontics and Craniofacial Research, 12, 149–158.

    Article  Google Scholar 

  • Richtsmeier, J. T., Lele, S. R., & Cole, III, T. M. (2005). Landmark morphometrics and the analysis of variation. In B. Hallgrímsson, B. K. Hall (Eds.), Variation: A central concept in biology. Burlington: Academic Press, pp. 49–69.

  • Roeder, A. H. K., Tarr, P. T., Tobin, C., Zhang, X., Chickarmane, V., Cunha, A., et al. (2011). Computational morphodynamics of plants: Integrating development over space and time. Nature Reviews. Molecular Cell Biology, 12, 265–273.

    Article  PubMed  CAS  Google Scholar 

  • Rohlf, F. J. (1999). Shape statistics: Procrustes superimpositions and tangent spaces. Journal of Classification, 16, 197–223.

    Article  Google Scholar 

  • Rohr, K. (2001). Landmark-based image analysis: Using geometric and intensity models. Dordrecth: Kluwer.

    Google Scholar 

  • Rohr, K. (2003). Spline-based elastic image registration. Proceedings in Applied Mathematics and Mechanics, 3, 36–39.

    Article  Google Scholar 

  • Rohr, K., Stiehl, H. S., Sprengel, R., Buzug, T. M., Weese, J., & Kuhn, M. H. (2001). Landmark-based elastic registration using approximating thin-plate splines. IEEE Transactions on Medical Imaging, 20, 526–534.

    Article  PubMed  CAS  Google Scholar 

  • Schabenberger, O., & Gotway, C. A. (2005). Statistical methods for spatial data analysis. Boca Raton: CRC Press.

  • Shraiman, B. I. (2005). Mechanical feedback as a possible regulator of tissue growth. Proceedings of the National Academy of Science USA, 102, 3318–3323.

    Article  CAS  Google Scholar 

  • Stelkens, R. B., Schmid, C., Selz, O., & Seehausen, O. (2009). Phenotypic novelty in experimental hybrids is predicted by the genetic distance between species of cichlid fish. BMC Evolutionary Biology, 9, 283.

    Article  PubMed  Google Scholar 

  • van der Linde, K., & Houle, D. (2009). Inferring the nature of allometry from geometric data. Evolutionary Biology, 36, 311–322.

    Article  Google Scholar 

  • Wagner, G. P. (1990). A comparative study of morphological integration in Apis mellifera (Insecta, Hymenoptera). Journal of Zoological Systematics and Evolutionary Research, 28, 48–61.

    Google Scholar 

  • Wagner, G. P., & Altenberg, L. (1996). Complex adaptations and the evolution of evolvability. Evolution, 50, 967–976.

    Article  Google Scholar 

  • Wahba, G. (1990). Spline models for observational data. CBMS-NSF Regional Conference Series in Applied Mathematics, Vol. 59.

  • Walker, J. A. (2000). Ability of geometric morphometric methods to estimate a known covariance matrix. Systematic Biology, 49, 686–696.

    Article  PubMed  CAS  Google Scholar 

  • Woods, R. P. (2003). Characterizing volume and surface deformations in an atlas framework: Theory, applications, and implementation. NeuroImage, 18, 769–788.

    Article  PubMed  Google Scholar 

  • Workman, M. S., Leamy, L. J., Routman, E. J., & Cheverud, J. M. (2002). Analysis of quantitative trait locus effects on the size and shape of mandibular molars in mice. Genetics, 160, 1573–1586.

    PubMed  CAS  Google Scholar 

  • Yang, J., Lee, S. H., Goddard, M. E., & Visscher, P. M. (2011). GCTA: A tool for genome-wide complex trait analysis. American Journal of Human Genetics, 88, 76–82.

    Article  PubMed  CAS  Google Scholar 

  • Young, R. L., & Badyaev, A. (2006). Evolutionary persistence of phenotypic integration: Influence of developmental and functional relationships on complex traits evolution. Evolution, 60, 1291–1299.

    PubMed  Google Scholar 

  • Zelditch, M. L., Swiderski, D. L., Sheets, H. D., Fink, W. L. (2004). Geometric morphometrics for biologists: A primer. San Diego: Elsevier.

  • Zelditch, M. L., Wood, A. R., Bonett, R. M., & Swiderski, D. L. (2008). Modularity of the rodent mandible: Integrating bones, muscles, and teeth. Evolution & Development, 10, 756–768.

    Article  Google Scholar 

  • Zelditch, M. L., Wood, A. R., & Swiderski, D. L. (2009). Building developmental integration into functional systems: Function-induced integration of mandibular shape. Evolutionary Biology, 36, 71–87.

    Article  Google Scholar 

  • Zienkiewicz, O. C. (1971). The finite element method in engineering science. London: McGraw-Hill.

  • Zimmerman, E., Palsson, A., & Gibson, G. (2000). Quantitative trait loci affecting components of wing shape in Drosophila melanogaster. Genetics, 155, 671–683.

    PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This work was funded by the National Institutes of Health through the NIH Roadmap for Medical Research, Grant U54 RR021813 and through National Science Foundation grant DEB-0950002. Information on the National Centers for Biomedical Computing can be obtained from http://nihroadmap.nih.gov/bioinformatics. We thank Thomas Hansen for his valuable insights on uses of interpolation methods, and J. Kent and three anonymous reviewers for insightful comments. Analyses and simulations were based on code written on SAS, Matlab, Java, C++, and Python. Code used for simulations and in the computation of Jacobians for Drosophila wing data is available upon request from E.M. and R.C., respectively. In addition, a user-friendly Matlab-based standalone package to carry out most of the analyses and to generate all of the graphic outputs shown in this paper has been made available at http://bio.fsu.edu/~dhoule/Software/.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Eladio J. Márquez.

Appendix

Appendix

The following sections provide mathematical details for the interpolation approaches discussed in this work, emphasizing common principles shared by these methods.

Interpolating Splines

Interpolating spline functions use information contained in landmark-wise differences between two configurations to map every location in a reference configuration onto a target form (Woods 2003). In general, m-dimensional interpolant functions are optimized by minimizing a roughness penalty \( \rho \in \mathbb{R}^{m} \) (m = 1, 2, 3), defined in terms of the second order partial derivatives of the interpolant function \( {{\Upphi}}( {\mathbf{p}} ) \)

$$ \rho \left( {{{\Upphi}}_{x,y} } \right) = \int {\int_{R^{2}}} {\left( {\frac{{\partial^{2} {{\Upphi}}}}{{\partial x^{2} }}} \right)^{2} + \left( {\frac{{\partial^{2} {{\Upphi}}}}{{\partial y^{2} }}} \right)^{2} + 2\left( {\frac{{\partial^{2} {{\Upphi}}}}{\partial x\partial y}} \right)^{2} {\text{d}}x{\text{d}}y} $$
(3)

for the 2-D case (Dryden and Mardia 1998), and

$$ \rho \left( {{{\Upphi}}_{x,y,z} } \right) = \int\int{\int_{R^{3}} {\left( {\frac{{\partial^{2} {{\Upphi}}}}{{\partial x^{2} }}} \right)^{2} + \left( {\frac{{\partial^{2} {{\Upphi}}}}{{\partial y^{2} }}} \right)^{2} + \left( {\frac{{\partial^{2} {{\Upphi}}}}{{\partial z^{2} }}} \right)^{2} + 2\left( {\frac{{\partial^{2} {{\Upphi}}}}{\partial x\partial y}} \right)^{2} + 2\left( {\frac{{\partial^{2} {{\Upphi}}}}{\partial x\partial z}} \right)^{2} + 2\left( {\frac{{\partial^{2} {{\Upphi}}}}{\partial y\partial z}} \right)^{2} {\text{d}}x{\text{d}}y{\text{d}}z} } $$
(4)

for the 3-D case (Meinguet 1979). The minimized sum of \( \rho \left( {{\Upphi}} \right) \) over splines is the minimum penalty incurred from deforming a set of fixed set of landmarks into another set of equivalent (e.g., homologous) landmarks (Bookstein 1992), and it is termed the total bending energy. Minimization of Eqns. 3 and 4 leads to the smooth interpolation of deformation values at arbitrary locations of the form.

The interpolating splines emphasized in this study, namely TPS, belongs to a class of interpolants termed radial basis functions (RBF; Rohr 2001; Holden 2008), with general form

$$ {{\Upphi}}( {\mathbf{p}} ) = \mathop \sum \limits_{j}^{h} \beta_{j} U_{j} ({\mathbf{p}}) + \mathop \sum \limits_{i}^{k} \alpha_{i} R\left( {\left\| {{\mathbf{p}} - {\mathbf{q}}_{i} } \right\|} \right) $$
(5)

where \( {{\Upphi}}( {\mathbf{p}} ) \) represents the interpolation function at the 2- or 3-D point p (Holden 2008). In this formalism, a deformation is modeled as the sum of an affine component, given by \( U({\mathbf{p}}) \), and a function R that provides the non-affine component of the deformation, which smoothes the propagation of deformations throughout an object as a function of the distance between the interpolation point p and sampled landmarks q i (i = 1, …, k). Thus, the influence of a landmark on the non-affine component of an interpolated site decays with the distance between the two locations, i.e., \( \left\| {{\mathbf{p}} - {\mathbf{q}}_{i} } \right\| \). Finally, β j and α i are weights for the affine and non-affine components, respectively. Eqns. 3 and 4 can be solved as a set of linear equations with general form:

$$ \left[ {\begin{array}{*{20}c} {\mathbf{R}} & {\mathbf{Q}} \\ {\mathbf{Q}} & 0 \\ \end{array} } \right]\left[ {\begin{array}{*{20}c} \alpha \\ \beta \\ \end{array} } \right] = \left[ {\begin{array}{*{20}c} {\mathbf{P}} \\ 0 \\ \end{array} } \right] $$
(6)

which describes a deformation of a reference configuration Q onto a known target configuration P (Holden 2008). Deformation functions \( R_{i} = R\left( {\left\| {{\mathbf{p}}-{\mathbf{q}}_{i} } \right\|} \right) \) are collected in matrix R, and we solve for vectors of coefficients α and β.

A set of thin-plate splines is given by the function

$$ \left[ {{{\Upphi}}_{1} ( {\mathbf{p}} ), \ldots ,{{\Upphi}}_{m} ( {\mathbf{p}} )} \right]^{T} = {\mathbf{b}} + {\mathbf{Ap}} + {\mathbf{W}}^{T} r( {\mathbf{p}} ) $$
(7)

where \( {\mathbf{b}} + {\mathbf{Ap}} \) defines the affine component of the deformation, b (m × 1), A (m × m), and W (k × m) are represented by coefficients α and β in Eqns. 5 and 6, and \( r( {\mathbf{p}} ) = \left( {R\left( {{\mathbf{p}} - {\mathbf{q}}_{1} } \right), \ldots ,R\left( {{\mathbf{p}} - {\mathbf{q}}_{k} } \right)} \right)^{T} \) is computed using the logarithmic interpolants \( R_{i} = r_{i}^{2} \log r_{i} \) (for 2-D) and \( R_{i} = r_{i} \) (for 3-D), where r i represent the Euclidean distances between each landmark and the interpolation point in the reference (Bookstein 1992; Dryden and Mardia 1998). Unknown coefficients in Eqn. 7 are estimated using the set of linear equations

$$ \left[ {\begin{array}{*{20}c} {\begin{array}{*{20}c} {\mathbf{R}} \\ {{\mathbf{{1}}_{k}^{T}} } \\ {{\mathbf{Q}}^{T} } \\ \end{array} } & {\begin{array}{*{20}c} {{\mathbf{1}_{k}} } \\ 0 \\ 0 \\ \end{array} } & {\begin{array}{*{20}c} {\mathbf{Q}} \\ 0 \\ 0 \\ \end{array} } \\ \end{array} } \right]\left[ {\begin{array}{*{20}c} {\mathbf{W}} \\ {{\mathbf{b}}^{T} } \\ {{\mathbf{A}}^{T} } \\ \end{array} } \right] = \left[ {\begin{array}{*{20}c} {\mathbf{P}} \\ 0 \\ 0 \\ \end{array} } \right] $$
(8)

where \( R_{ij} \) elements from R (k × k) are computed using the interpolation function between all possible pairs of landmarks in the reference (using \( R_{ij} = 0 \) for i = j), 1 k (k × 1) is a vector of ones, and Q and P (k × m) are the reference and target configurations being compared, respectively (Dryden and Mardia 1998).

Smoothing Splines

One generalization of the spline methodology treats the choice and adjustment of interpolant functions as an estimation problem, where landmarks are assumed to be measured with error that is minimized prior to computation of the splines (Hutchinson and Gessler 1994). In this approach, sampled landmarks q are modeled as instances of an intrinsic function \( g\left( {\mathbf{q}} \right) \), so that \( q_{i} = g\left( {q_{i} } \right) + \varepsilon_{i} \left( {q_{i} } \right) \), where \( \varepsilon_{i} \) denotes an error function (Hutchinson and Gessler 1994; Laslett 1994). The idea is to choose the function g that best predicts the values at sampled landmarks (Laslett 1994). The optimal function is the one that minimizes the quantity

$$ \mathop \sum \limits_{i = 1}^{n} \left[ {q_{i} - g\left( {q_{i} } \right)} \right]^{2} + {{\uplambda}}\rho \left( {g\left( {\mathbf{q}} \right)} \right) $$

where λ > 0 is a smoothing parameter, estimable through cross-validation (Wahba 1990; Hutchinson and Gessler 1994), and ρ is as defined in Eqns. 3 and 4, so that λρ can be treated as a roughness penalty (Dryden and Mardia 1998). When TPS are used as the g function, the system in Eqn. 8 becomes

$$ \left[ {\begin{array}{*{20}c} {\begin{array}{*{20}c} {{\mathbf{R}} + {{\uplambda}}{\mathbf{I}}_{k} } \\ {{\mathbf{{1}}_{k}^{T}} } \\ {{\mathbf{Q}}^{T} } \\ \end{array} } & {\begin{array}{*{20}c} {{\mathbf{1}}_{k} } \\ 0 \\ 0 \\ \end{array} } & {\begin{array}{*{20}c} {\mathbf{Q}} \\ 0 \\ 0 \\ \end{array} } \\ \end{array} } \right]\left[ {\begin{array}{*{20}c} {\mathbf{W}} \\ {{\mathbf{b}}^{T} } \\ {{\mathbf{A}}^{T} } \\ \end{array} } \right] = \left[ {\begin{array}{*{20}c} {\mathbf{P}} \\ 0 \\ 0 \\ \end{array} } \right] $$
(9)

which also can be used for interpolation. Smoothing splines could be used to test among alternative spatial patterns of roughness penalties (\( \lambda \)) given an interpolation function, as well as for choosing among alternative g functions. Simulations have shown, however, that the use of cross-validation to optimally fit splines for spatial prediction often leads to over-smoothing and a consequent loss of valuable spatial information, an issue that seems related to fluctuations in the spatial density of the samples used for interpolation (Laslett 1994).

Kriging

Kriging is a method for linear prediction of the value of a variable using the information contained in a set of neighboring samples (Laslett 1994). Kriging presupposes the existence of a random field \( \left\{ {Z( {\mathbf{p}} ) :{\mathbf{p}} \in D \subset \mathbb{R}^{m} } \right\} \) spanning a continuous domain D and observed at sampled points q, which determines the value of the variable of interest at each location (Matheron 1973; Schabenberger and Gotway 2005). The value at any arbitrary site p is given by the linear predictor \( \hat{Z}( {\mathbf{p}} ) \), defined by

$$ \hat{Z}( {\mathbf{p}} ) = \mathop \sum \limits_{i = 1}^{k} {{\uplambda}}_{i} Z\left( {{\mathbf{q}}_{i} } \right) = {{\Uplambda}}Z\left( {\mathbf{q}} \right) $$

where \( {{\Uplambda}} = \left[ {{{\uplambda}}_{1} , \ldots ,{{\uplambda}}_{k} } \right] \) for k landmarks, and λ i are weights for the q landmarks, which are computed based on the information content at each landmark about the true value of the random field at the estimation site \( Z( {\mathbf{p}} ) \) (Goovaerts 1997). The goal of kriging is to find the weights λ i that minimize the mean square prediction error \( {\text{MSPE}}( {\mathbf{p}} ) = E\left[ {\left( {Z( {\mathbf{p}} ) - \hat{Z}( {\mathbf{p}} )} \right)^{2} } \right] \), under the unbiasedness constraint \( E\left[ {\hat{Z}( {\mathbf{p}} ) - Z( {\mathbf{p}} )} \right] = 0 \) (Goovaerts 1997).

The central element of kriging prediction is the covariance function \( \sigma \left( {t - s} \right) \), which describes the relationship between the difference between points t and s, and their values in the random field, i.e., \( Z\left( t \right) - Z\left( s \right) \) (Cressie 1993). A common approach in spatial analysis consists of fitting an arbitrary continuous function to an empirical (discrete) variogram and using this function to derive a covariance function (Goovaerts 1997; Cressie 1993). More generally, kriging estimates the covariance function underlying the residual portion \( \varepsilon ( {\mathbf{p}} ) \) of the random field Z given the linear model

$$ Z( {\mathbf{p}} ) = \mathop \sum \limits_{j = 1}^{h} \beta_{j} g_{j} ( {\mathbf{p}} ) + \mathop \sum \limits_{i = 1}^{k} \alpha_{i} K\left( {\left\| {{\mathbf{p}} - {\mathbf{q}}_{i} } \right\|} \right) $$
(10)

where \( \sum\nolimits_{i = 1}^{k} {\alpha_{i} K\left( {{\mathbf{p}}_{i} } \right)} = \varepsilon ( {\mathbf{p}} ) \) defines the residual and \( \sum\nolimits_{i = 1}^{h} {\beta_{i} g_{i} ( {\mathbf{p}} )} = E\left[ {Z( {\mathbf{p}} )} \right] \) the trend of the field, with \( g( {\mathbf{p}} ) = \left[ {g_{1} ( {\mathbf{p}} ), \ldots ,g_{h} ( {\mathbf{p}} )} \right] \) a linear combination of known functions (Matheron 1973; Hutchinson and Gessler 1994). A comparison between Eqns. 5 and 10 suggests similarities between the trend of the random field in kriging and the uniform component of a deformation in terms of splines, and between the unique residuals at each point estimated using kriging with the non-affine component of the interpolating splines. In fact, when the rank of the function monomials \( g( {\mathbf{p}} ) \) equals the degree of the derivative used to estimate the roughness parameters in splines (see Eqns. 3 and 4) minus one, kriging and interpolating splines are identical methods (Hutchinson and Gessler 1994).

Alternative kriging strategies differ in their treatment of the trend as a universal constant, as a local constant, or as a function, such as an interpolant function, upon which locally predicted mean values are modeled (Goovaerts 1997). The latter, termed universal kriging has been developed in the context of shape deformations by Mardia et al. (1996), whose work has demonstrated that 2-D TPS are in fact universal kriging predictors with covariance function given by \( \sigma \left( r \right) = r_{i}^{2} \log r_{i} \).

Finite Elements

Finite element methods (FEM) extract local deformation information by generalization or interpolation of the displacement at landmarks forming the vertices of rigid polygons or polyhedrons (Lewis et al. 1980). Two types of FEM have been applied in morphometric studies, namely homogeneous FE, in which shape changes within an element are assumed to be uniform throughout (Bookstein 1986; Moss et al. 1987), and non-homogeneous FE, whereby interpolation is used to model the deformation as a non-linear function of the changes observed at landmarks (Lewis et al. 1980; Cheverud et al. 1983; McAlarney 1995; McAlarney and Chiu 1997).

In homogeneous FEM, a set of normalized landmark displacements of an individual with respect to a reference configuration, A, are used to estimate tensors and principal strains via eigendecomposition of the sum of squares and cross-products matrix A T A (Bookstein 1986; Moss et al. 1987). The resulting eigenvectors can be envisaged as the principal axes of the ellipse that results from deforming the circumference that passes through all of the vertices of an element in the reference configuration to match the target configuration (Dryden and Mardia 1998). Non-homogeneous FEM, on the other hand, use normalized landmark displacements between reference and target configuration to parameterize a system of continuous functions whose purpose is to find a common set of coefficients that explain both these displacements and all the deformations inside the element boundaries (Lewis et al. 1980). If we denote a shape transformation at the ith vertex of a triangle as \( T_{i} = Q_{i} + R_{i} ,\;\;\left( {i = { 1},{ 2},{ 3}} \right) \), where T and Q represent the target and reference configurations, respectively, and R represents a deformation, then for any arbitrary point p within Q, we can write the interpolated value of the deformation at this point as

$$ r_{p} = \mathop \sum \limits_{i = 1}^{3} {{\uplambda}}_{i} R_{i} $$
(11)

(Lewis et al. 1980) where λ denotes vertex-specific weights derived from an interpolation function. In practice, Eqn. 11 can be parameterized using polynomials (Pepper and Heinrich 1992), or an interpolator, such as TPS (Bookstein 1986).

Both types of FEM require a priori choices regarding the shape and location of finite elements, and the absence of unambiguous criteria to make this choice (Cheverud and Richtsmeier 1986) is generally perceived a weakness of the method (McAlarney and Chiu 1997; Dryden and Mardia 1998). In the case of homogeneous FEM, the assumption of spatial uniformity of interpolated values suggests a preference for elements of small size, the optimal choice being to use triangles (2-D) and tetrahedrons (3-D), compiled together as a mesh (Pepper and Heinrich 1992). Even though this choice should lead to relatively precise estimates, it also imposes undesirable restrictions, namely the fact that triangles can only undergo affine deformations (Dryden and Mardia 1998), limiting their usefulness as shape descriptors. Non-homogeneous FEM, on the other hand, can be applied to more complex volumes (e.g., Cheverud et al. 1983), which in turn requires making ad hoc choices regarding which landmarks to use as element vertices, once again incorporating arbitrary elements in the measurement of shape (Zienkiewicz 1971; McAlarney and Chiu 1997; Dryden and Mardia 1998). Additional issues with FEM are the lack of a standard approach for computation of a mean and registration (Cheverud et al. 1983), and the absence of a clear-cut separation of global and local components of a deformation, due to the fact that both components are defined only within elements.

Comparison Among Alternative Methods

The common purpose of shape analysis by interpolation, smoothing, or kriging methods is the estimation or prediction of an unknown local deformation value Z(p) as a function of its spatial location, based on observed landmark deformations, Z(q). Measurements Z(q) are used to infer or parameterize an underlying function g[Z(p)], which is then applied throughout the whole structure under analysis. An analogous function is also derived in non-homogeneous FEM to estimate values within FE.

The function g[Z(p)] comprises two parts: an affine component that captures the portion of the total shape deformation that is shared throughout the whole structure under analysis, and a non-affine component that captures local deviations from the global trend, modeled using a covariance function tracking the influence of sampled points as a function of the distances amongst them. Splining methods select the function g among the universe of possible functions that minimizes the deformations required to explain the differences between two shapes (Bookstein 1986), according to an a priori deformation model. In kriging, on the other hand, g defines a random field whereby local deformations, whether measured or predicted, are treated as stochastic realizations of an intrinsic process (Matheron 1973). In practical applications, however, the two methods largely overlap (Hutchinson and Gessler 1994).

Thus, interpolation-based shape analyses by smoothing, kriging or finite elements methods are all closely related, and become indistinguishable from interpolating splines under the circumstances we have outlined.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Márquez, E.J., Cabeen, R., Woods, R.P. et al. The Measurement of Local Variation in Shape. Evol Biol 39, 419–439 (2012). https://doi.org/10.1007/s11692-012-9159-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11692-012-9159-6

Keywords

Navigation