Skip to main content
Log in

Divided we stand: splitting synthetic cells for their proliferation

  • Review
  • Published:
Systems and Synthetic Biology

“Omnis cellula e cellula”, François-Vincent Raspail (1825).

Abstract

With the recent dawn of synthetic biology, the old idea of man-made artificial life has gained renewed interest. In the context of a bottom-up approach, this entails the de novo construction of synthetic cells that can autonomously sustain themselves and proliferate. Reproduction of a synthetic cell involves the synthesis of its inner content, replication of its information module, and growth and division of its shell. Theoretical and experimental analysis of natural cells shows that, whereas the core synthesis machinery of the information module is highly conserved, a wide range of solutions have been realized in order to accomplish division. It is therefore to be expected that there are multiple ways to engineer division of synthetic cells. Here we survey the field and review potential routes that can be explored to accomplish the division of bottom-up designed synthetic cells. We cover a range of complexities from simple abiotic mechanisms involving splitting of lipid-membrane-encapsulated vesicles due to physical or chemical principles, to potential division mechanisms of synthetic cells that are based on prokaryotic division machineries.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Aarsman MEG, Piette A, Fraipont C, Vinkenvleugel TMF, Nguyen-Distèche M, den Blaauwen T (2005) Maturation of the Escherichia coli divisome occurs in two steps. Mol Microbiol 55:1631–1645

    CAS  PubMed  Google Scholar 

  • Adams DW, Errington J (2009) Bacterial cell division: assembly, maintenance and disassembly of the Z ring. Nat Rev Microbiol 7:642–653

    CAS  PubMed  Google Scholar 

  • Akerlund T, Gullbrand B, Nordström K (2002) Effects of the Min system on nucleoid segregation in Escherichia coli. Microbiology 148:3213–3222

    CAS  PubMed  Google Scholar 

  • Albers SV, Meyer BH (2011) The archaeal cell envelope. Nat Rev Microbiol 9:414–426

    CAS  PubMed  Google Scholar 

  • Anderson DE, Gueiros-Filho FJ, Erickson HP (2004) Assembly dynamics of FtsZ rings in Bacillus subtilis and Escherichia coli and effects of FtsZ-regulating proteins. J Bacteriol 186:5775–5781

    CAS  PubMed Central  PubMed  Google Scholar 

  • Andes-Koback M, Keating CD (2011) Complete budding and asymmetric division of primitive model cells to produce daughter vesicles with different interior and membrane compositions. J Am Chem Soc 133:9545–9555

    CAS  PubMed Central  PubMed  Google Scholar 

  • Angert ER (2005) Alternatives to binary fission in bacteria. Nat Rev Microbiol 3:214–224

    CAS  PubMed  Google Scholar 

  • Arumugam S, Chwastek G, Schwille P (2011) Protein-membrane interactions: the virtue of minimal systems in systems biology. Wiley Interdiscip Rev Syst Biol Med 3:269–280

    CAS  PubMed  Google Scholar 

  • Balasubramanian MK, Srinivasan R, Huang Y, Ng KH (2012) Comparing contractile apparatus-driven cytokinesis mechanisms across kingdoms. Cytoskeleton 69:942–956

    CAS  PubMed  Google Scholar 

  • Bar-Ziv R, Moses E (1994) Instability and pearling states produced in tubular membranes by competition of curvature and tension. Phys Rev Lett 73:1392

    PubMed  Google Scholar 

  • Bar-Ziv R, Frisch T, Moses E et al (1995) Entropic expulsion in vesicles. Phys Rev Lett 75:3481–3484

    CAS  PubMed  Google Scholar 

  • Baumgart T, Hess ST, Webb WW (2003) Imaging coexisting fluid domains in biomembrane models coupling curvature and line tension. Nature 425:821–824

    CAS  PubMed  Google Scholar 

  • Bausch AR, Kroy K (2006) A bottom-up approach to cell mechanics. Nat Phys 2:231–238

    CAS  Google Scholar 

  • Berclaz N, Müler M, Walde P, Luisi PL (2001) Growth and transformation of vesicles studied by Ferritin labeling and cryotransmission electron microscopy. J Phys Chem B 105:1056–1064

    CAS  Google Scholar 

  • Bernander R, Ettema TJ (2010) FtsZ-less cell division in archaea and bacteria. Curr Opin Microbiol 13:747–752

    CAS  PubMed  Google Scholar 

  • Bernhardt TG, De Boer PA (2005) SlmA, a nucleoid-associated, FtsZ binding protein required for blocking septal ring assembly over chromosomes in E. coli. Mol Cell 18:555–564

    CAS  PubMed  Google Scholar 

  • Beuria TK, Mullapudi S, Mileykovskaya E, Sadasivam M, Dowhan W, Margolin W (2009) Adenine nucleotide-dependent regulation of assembly of bacterial tubulin-like FtsZ by a hypermorph of bacterial actin-like FtsA. J Biol Chem 284:14079–14086

  • Bi EF, Lutkenhaus J (1991) FtsZ ring structure associated with division in Escherichia coli. Nature 354:161–164

    CAS  PubMed  Google Scholar 

  • Blöchliger E, Blocher M, Walde P, Luisi PL (1998) Matrix effect in the size distribution of fatty acid vesicles. J Phys Chem B 102:10383–10390

    Google Scholar 

  • Boźić B, Svetina S (2004) A relationship between membrane properties forms the basis of a selectivity mechanism for vesicle self-reproduction. Eur Biophys J 33:565–571

    PubMed  Google Scholar 

  • Božič B, Svetina S (2007) Vesicle self-reproduction: the involvement of membrane hydraulic and solute permeabilities. Eur Phys J E 24:79–90

    PubMed  Google Scholar 

  • Bramkamp M, Emmins R, Weston L, Donovan C, Daniel RA, Errington J (2008) A novel component of the division-site selection system of Bacillus subtilis and a new mode of action for the division inhibitor minCD. Mol Microbiol 70:1556–1569

    CAS  PubMed  Google Scholar 

  • Briers Y, Staubli T, Schmid MC, Wagner M, Schuppler M, Loessner MJ (2012a) Intracellular vesicles as reproduction elements in cell wall-deficient L-form bacteria. PLoS One 7:e38514

    CAS  PubMed Central  PubMed  Google Scholar 

  • Briers Y, Walde P, Schuppler M, Loessner MJ (2012b) How did bacterial ancestors reproduce? lessons from L-form cells and giant lipid vesicles: multiplication similarities between lipid vesicles and L-form bacteria. Bioessays 34:1078–1084

    CAS  PubMed  Google Scholar 

  • Budin I, Debnath A, Szostak JW (2012) Concentration-driven growth of model protocell membranes. J Am Chem Soc 134:20812–20819

    CAS  PubMed Central  PubMed  Google Scholar 

  • Cabré EJ, Sánchez-Gorostiaga A, Carrara P, Ropero N, Casanova M, Palacios P, Stano P, Jiménez M, Rivas G, Vicente M (2013) Bacterial division proteins FtsZ and ZipA induce vesicle shrinkage and cell membrane invagination. J Biol Chem 288:26625–26634

    PubMed  Google Scholar 

  • Canham PB (1970) The minimum energy of bending as a possible explanation of the biconcave shape of the human red blood cell. J Theor Biol 26:61–81

    CAS  PubMed  Google Scholar 

  • Chen CM, Higgs P, MacKintosh F (1997) Theory of fission for two-component lipid vesicles. Phys Rev Lett 79:1579

    CAS  Google Scholar 

  • Chen IA (2009) Cell division: breaking up is easy to do. Curr Biol 19:R327–R328

    CAS  PubMed  Google Scholar 

  • Cho H, McManus HR, Dove SL, Bernhardt TG (2011) Nucleoid occlusion factor SlmA is a DNA-activated FtsZ polymerization antagonist. Proc Natl Acad Sci USA 108:3773–3778

    CAS  PubMed Central  PubMed  Google Scholar 

  • Cordell SC, Anderson RE, Löwe J (2001) Crystal structure of the bacterial cell division inhibitor MinC. EMBO J 20:2454–2461

    CAS  PubMed Central  PubMed  Google Scholar 

  • Dajkovic A, Lan G, Sun SX, Wirtz D, Lutkenhaus J (2008) MinC spatially controls bacterial cytokinesis by antagonizing the scaffolding function of FtsZ. Curr Biol 18:235–244

    CAS  PubMed  Google Scholar 

  • Daumke O, Roux A, Haucke V (2014) Bar domain scaffolds in dynamin-mediated membrane fission. Cell 156:882–892

    CAS  PubMed  Google Scholar 

  • de Boer P, Crossley R, Rothfield L (1992) The essential bacterial cell-division protein FtsZ is a GTPase. Nature 359:254–256

    PubMed  Google Scholar 

  • de Boer PAJ (2010) Advances in understanding E. coli cell fission. Curr Opin Microbiol 13:730–737

    PubMed Central  PubMed  Google Scholar 

  • Dell’Era S, Buchrieser C, Couvé E, Schnell B, Briers Y, Schuppler M, Loessner MJ (2009) Listeria monocytogenes L-forms respond to cell wall deficiency by modifying gene expression and the mode of division. Mol Microbiol 73:306–322

    PubMed  Google Scholar 

  • Division-Proteins; E. coli divisome proteins–(i) FtsZ, (ii) FtsA, (iii) ZipA, (iv) FtsN, (v) FtsW, (vi) FtsX, (vii) FtsE, (viii) FtsK, (ix) FtsQ, (x) FtsL, (xi) FtsB, (xii) FtsP, (xiii) PBP1B, (xiv) PBP3, (xv) Tol-Pal, (xvi) MltA, (xvii) MipA, (xviii) LpoB, (xix) NlpD, (xx) AmiA/B, (xi) AmiC, (xii) EnvC; E. coli FtsZ regulators- (i) MinC, (ii) MinD, (iii) MinE, (iv) SlmA, (v) SulA, (vi) ClipX, (viii) ZapA, (viii) ZapB, (ix) ZapC, (x) ZapD, (xi) OpgH

  • Di Ventura B, Knecht B, Andreas H, Godinez WJ, Fritsche M, Rohr K, Nickel W, Heermann DW, Sourjik V (2013) Chromosome segregation by the Escherichia coli Min system. Mol Syst Biol 9:686

    PubMed Central  PubMed  Google Scholar 

  • Döbereiner HG, Käs J, Noppl D, Sprenger I, Sackmann E (1993) Budding and fission of vesicles. Biophys J 65:1396–1403

    PubMed Central  PubMed  Google Scholar 

  • Dobro MJ, Samson RY, Yu Z, McCullough J, Ding HJ, Chong PLG, Bell SD, Jensen GJ (2013) Electron cryotomography of ESCRT assemblies and dividing Sulfolobus cells suggests that spiraling filaments are involved in membrane scission. Mol Biol Cell 24:2319–2327

    CAS  PubMed Central  PubMed  Google Scholar 

  • Drubin DA, Way JC, Silver PA (2007) Designing biological systems. Genes Dev 21:242–254

    CAS  PubMed  Google Scholar 

  • Dzieciol AJ, Mann S (2012) Designs for life: protocell models in the laboratory. Chem Soc Rev 41:79–85

    CAS  PubMed  Google Scholar 

  • Egan AJ, Vollmer W (2013) The physiology of bacterial cell division. Ann N Y Acad Sci 1277:8–28

    CAS  PubMed  Google Scholar 

  • Erickson HP (1997) FtsZ, a tubulin homologue in prokaryote cell division. Trends Cell Biol 7:362–367

    CAS  PubMed  Google Scholar 

  • Erickson HP (2009) Modeling the physics of FtsZ assembly and force generation. Proc Natl Acad Sci USA 106:9238–9243

    CAS  PubMed Central  PubMed  Google Scholar 

  • Erickson HP, Anderson DE, Osawa M (2010) FtsZ in bacterial cytokinesis: cytoskeleton and force generator all in one. Microbiol Mol Biol Rev 74:504–528

    CAS  PubMed Central  PubMed  Google Scholar 

  • Errington J (2013) L-form bacteria, cell walls and the origins of life. Open Biol 3(120):143

    Google Scholar 

  • Eswaramoorthy P, Erb ML, Gregory JA, Silverman J, Pogliano K, Pogliano J, Ramamurthi KS (2011) Cellular architecture mediates DivIVA ultrastructure and regulates Min activity in Bacillus subtilis. MBio 2:e0025711

    Google Scholar 

  • Evans EA (1974) Bending resistance and chemically induced moments in membrane bilayers. Biophys J 14:923–931

    CAS  PubMed Central  PubMed  Google Scholar 

  • Fisunov GY, Alexeev DG, Bazaleev NA, Ladygina VG, Galyamina MA, Kondratov IG, Zhukova NA, Serebryakova MV, Demina IA, Govorun VM (2011) Core proteome of the minimal cell: comparative proteomics of three mollicute species. PLoS One 6:e21964

    CAS  PubMed Central  PubMed  Google Scholar 

  • Forster AC, Church GM (2006) Towards synthesis of a minimal cell. Mol Syst Biol 2:45

    PubMed Central  PubMed  Google Scholar 

  • Fu G, Huang T, Buss J, Coltharp C, Hensel Z, Xiao J (2010) In vivo structure of the E. coli FtsZ-ring revealed by photoactivated localization microscopy (PALM). PLoS One 5:e12682

    PubMed  Google Scholar 

  • Fygenson DK, Marko JF, Libchaber A (1997) Mechanics of microtubule-based membrane extension. Phys Rev Lett 79:4497–4500

    CAS  Google Scholar 

  • Geissler B, Elraheb D, Margolin W (2003) A gain-of-function mutation in FtsA bypasses the requirement for the essential cell division gene ZipA in Escherichia coli. Proc Natl Acad Sci USA 100:4197–4202

    CAS  PubMed Central  PubMed  Google Scholar 

  • Gilpin RW, Nagy SS (1976) Time-lapse photography of Bacillus subtilis L-forms replicating in liquid medium. J Bacteriol 127:1018

    CAS  PubMed Central  PubMed  Google Scholar 

  • Glass JI, Assad-Garcia N, Alperovich N, Yooseph S, Lewis MR, Maruf M, Hutchison CA III, Smith HO, Venter JC (2006) Essential genes of a minimal bacterium. Proc Natl Acad Sci USA 103:425–430

    CAS  PubMed Central  PubMed  Google Scholar 

  • González JM, Jiménez M, Vélez M, Mingorance J, Andreu JM, Vicente M, Rivas G (2003) Essential cell division protein FtsZ assembles into one monomer-thick ribbons under conditions resembling the crowded intracellular environment. J Biol Chem 278:37664–37671

    PubMed  Google Scholar 

  • Hale CA, Meinhardt H, de Boer PA (2001) Dynamic localization cycle of the cell division regulator MinE in Escherichia coli. EMBO J 20:1563–1572

    CAS  PubMed Central  PubMed  Google Scholar 

  • Helfrich W (1973) Elastic properties of lipid bilayers: theory and possible experiments. Z Naturforsch C 28:693–703

    CAS  PubMed  Google Scholar 

  • Henry C, Overbeek R, Stevens RL (2010) Building the blueprint of life. Biotechnol J 5:695–704

    CAS  PubMed  Google Scholar 

  • Hörger I, Velasco E, Mingorance J, Rivas G, Tarazona P, Vélez M (2008) Langevin computer simulations of bacterial protein filaments and the force-generating mechanism during cell division. Phys Rev E Stat Nonlin Soft Matter Phys 77:011902

    PubMed  Google Scholar 

  • Hsieh CW, Lin TY, Lai HM, Lin CC, Hsieh TS, Shih YL (2010) Direct MinE–membrane interaction contributes to the proper localization of MinDE in E. coli. Mol Microbiol 75:499–512

    CAS  PubMed Central  PubMed  Google Scholar 

  • Hsin J, Gopinathan A, Huang KC (2012) Nucleotide-dependent conformations of FtsZ dimers and force generation observed through molecular dynamics simulations. Proc Natl Acad Sci USA 109:9432–9437

    CAS  PubMed Central  PubMed  Google Scholar 

  • Hu Z, Lutkenhaus J (1999) Topological regulation of cell division in Escherichia coli involves rapid pole to pole oscillation of the division inhibitor MinC under the control of MinD and MinE. Mol Microbiol 34:82–90

    CAS  PubMed  Google Scholar 

  • Hu Z, Lutkenhaus J (2001) Topological regulation of cell division in E. coli. spatiotemporal oscillation of MinD requires stimulation of its ATPase by MinE and phospholipid. Mol Cell 7:1337–1343

    CAS  PubMed  Google Scholar 

  • Hu Z, Mukherjee A, Pichoff S, Lutkenhaus J (1999) The MinC component of the division site selection system in Escherichia coli interacts with FtsZ to prevent polymerization. Proc Natl Acad Sci USA 96:14819–14824

    CAS  PubMed Central  PubMed  Google Scholar 

  • Huang KH, Durand-Heredia J, Janakiraman A (2013) FtsZ ring stability: of bundles, tubules, crosslinks, and curves. J Bacteriol 195:1859–1868

    CAS  PubMed Central  PubMed  Google Scholar 

  • Hutchison CA, Peterson SN, Gill SR, Cline RT, White O, Fraser CM, Smith HO, Venter JC (1999) Global transposon mutagenesis and a minimal Mycoplasma genome. Science 286:2165–2169

    CAS  PubMed  Google Scholar 

  • Inaoka Y, Yamazaki M (2007) Vesicle fission of giant unilamellar vesicles of liquid-ordered-phase membranes induced by amphiphiles with a single long hydrocarbon chain. Langmuir 23:720–728

    CAS  PubMed  Google Scholar 

  • Ivanov V, Mizuuchi K (2010) Multiple modes of interconverting dynamic pattern formation by bacterial cell division proteins. Proc Natl Acad Sci USA 107:8071–8078

    CAS  PubMed Central  PubMed  Google Scholar 

  • Jewett MC, Forster AC (2010) Update on designing and building minimal cells. Curr Opin Biotechnol 21:697–703

    CAS  PubMed Central  PubMed  Google Scholar 

  • Jiménez M, Martos A, Vicente M, Rivas G (2011) Reconstitution and organization of Escherichia coli proto-ring elements (FtsZ and FtsA) inside giant unilamellar vesicles obtained from bacterial inner membranes. J Biol Chem 286:11236–11241

    PubMed Central  PubMed  Google Scholar 

  • Kanthang P, Ngamsaad W, Nuttavut N, Triampo W, Triampo D, Krittanai C (2011) Biophysical approach for studying the MinD protein dynamics and energy landscape: a novel use of the spot tracking technique. The Eur Phys J Appl Phys 55:11201

    Google Scholar 

  • Käs J, Sackmann E (1991) Shape transitions and shape stability of giant phospholipid vesicles in pure water induced by area-to-volume changes. Biophys J 60:825–844

    PubMed Central  PubMed  Google Scholar 

  • Kiekebusch D, Michie KA, Essen LO, Löwe J, Thanbichler M (2012) Localized dimerization and nucleoid binding drive gradient formation by the bacterial cell division inhibitor MipZ. Mol Cell 46:245–259

    CAS  PubMed Central  PubMed  Google Scholar 

  • Kirkpatrick CL, Viollier PH (2011) New(s) to the (Z-)ring. Curr Opin Microbiol 14:691–697

    CAS  PubMed  Google Scholar 

  • Koonin EV (2000) How many genes can make a cell: the minimal-gene-set concept. Annu Rev Genomics Hum Genet 1:99–116

    CAS  PubMed  Google Scholar 

  • Koonin EV, Mulkidjanian AY (2013) Evolution of cell division: from shear mechanics to complex molecular machineries. Cell 152:942–944

    CAS  PubMed  Google Scholar 

  • Kurihara K, Tamura M, Shohda KI, Toyota T, Suzuki K, Sugawara T (2011) Self-reproduction of supramolecular giant vesicles combined with the amplification of encapsulated DNA. Nat Chem 3:775–781

    CAS  PubMed  Google Scholar 

  • Kuruma Y, Stano P, Ueda T, Luisi PL (2009) A synthetic biology approach to the construction of membrane proteins in semi-synthetic minimal cells. Biochim Biophys Acta Biomembr 1788:567–574

    CAS  Google Scholar 

  • Lackner LL, Raskin DM, de Boer PAJ (2003) ATP-dependent interactions between Escherichia coli Min proteins and the phospholipid membrane in vitro. J Bacteriol 185:735–749

    CAS  PubMed Central  PubMed  Google Scholar 

  • Lan G, Daniels BR, Dobrowsky TM, Wirtz D, Sun SX (2009) Condensation of FtsZ filaments can drive bacterial cell division. Proc Natl Acad Sci USA 106:121–126

    CAS  PubMed Central  PubMed  Google Scholar 

  • Leaver M, Domínguez-Cuevas P, Coxhead JM, Daniel RA, Errington J (2009) Life without a wall or division machine in Bacillus subtilis. Nature 457:849–853

    CAS  PubMed  Google Scholar 

  • Leirer C, Wunderlich B, Myles VM, Schneider MF (2009) Phase transition induced fission in lipid vesicles. Biophys Chem 143:106–109

    CAS  PubMed  Google Scholar 

  • Lenarcic R, Halbedel S, Visser L, Shaw M, Wu LJ, Errington J, Marenduzzo D, Hamoen LW (2009) Localisation of DivIVA by targeting to negatively curved membranes. EMBO J 28:2272–2282

    CAS  PubMed Central  PubMed  Google Scholar 

  • Li Z, Trimble MJ, Brun YV, Jensen GJ (2007) The structure of FtsZ filaments in vivo suggests a force-generating role in cell division. EMBO J 26:4694–4708

    CAS  PubMed Central  PubMed  Google Scholar 

  • Lindås AC, Karlsson EA, Lindgren MT, Ettema TJG, Bernander R (2008), A unique cell division machinery in the Archaea. Proc Natl Acad Sci USA 105:18942–18946.

  • Liu AP, Fletcher DA (2006) Actin polymerization serves as a membrane domain switch in model lipid bilayers. Biophys J 91:4064–4070

    CAS  PubMed Central  PubMed  Google Scholar 

  • Liu AP, Fletcher DA (2009) Biology under construction: in vitro reconstitution of cellular function. Nat Rev Mol Cell Biol 10:644–650

    CAS  PubMed Central  PubMed  Google Scholar 

  • Lluch-Senar M, Querol E, Piñol J (2010) Cell division in a minimal bacterium in the absence of FtsZ. Mol Microbiol 78:278–289

    CAS  PubMed  Google Scholar 

  • Lonchin S, Luisi PL, Walde P, Robinson BH (1999) A matrix effect in mixed phospholipid/fatty acid vesicle formation. J Phys Chem B 103:10910–10916

    CAS  Google Scholar 

  • Loose M, Fischer-Friedrich E, Ries J, Kruse K, Schwille P (2008) Spatial regulators for bacterial cell division self-organize into surface waves in vitro. Science 320:789–792

    CAS  PubMed  Google Scholar 

  • Loose M, Fischer-Friedrich E, Herold C, Kruse K, Schwille P (2011) Min protein patterns emerge from rapid rebinding and membrane interaction of MinE. Nat Struct Mol Biol 18:577–583

    CAS  PubMed  Google Scholar 

  • López-Montero I, Rodríguez-García R, Monroy F (2012) Artificial spectrin shells reconstituted on giant vesicles. J Phys Chem Lett 3:1583–1588

    Google Scholar 

  • Löwe J, Amos LA (1998) Crystal structure of the bacterial cell-division protein FtsZ. Nature 391:203–206

    PubMed  Google Scholar 

  • Lu C, Reedy M, Erickson HP (2000) Straight and curved conformations of FtsZ are regulated by GTP hydrolysis. J Bacteriol 182:164–170

    CAS  PubMed Central  PubMed  Google Scholar 

  • Luisi PL, Ferri F, Stano P (2006) Approaches to semi-synthetic minimal cells: a review. Naturwissenschaften 93:1–13

    CAS  PubMed  Google Scholar 

  • Männik J, Wu F, Hol FJ, Bisicchia P, Sherratt DJ, Keymer JE, Dekker C (2012) Robustness and accuracy of cell division in Escherichia coli in diverse cell shapes. Proc Natl Acad Sci USA 109:6957–6962

    PubMed Central  PubMed  Google Scholar 

  • Martin HH (2010) L-forms and the unusual formation of progeny in cell wall-less bacteria: recognizing the old roots of new science. Arch Microbiol 192:235–236

    CAS  PubMed  Google Scholar 

  • Mateos-Gil P, Paez A, Hörger I, Rivas G, Vicente M, Tarazona P, Mlez Vélez M (2012) Depolymerization dynamics of individual filaments of bacterial cytoskeletal protein FtsZ. Proc Natl Acad Sci USA 109:8133–8138

    CAS  PubMed Central  PubMed  Google Scholar 

  • Matsumoto K, Kusaka J, Nishibori A, Hara H (2006) Lipid domains in bacterial membranes. Mol Microbiol 61:1110–1117

    CAS  PubMed  Google Scholar 

  • Mazzarello P (1999) A unifying concept: the history of cell theory. Nat Cell Biol 1:E13–E15

    CAS  PubMed  Google Scholar 

  • Mercier R, Dominguez-Cuevas P, Errington J (2012) Crucial role for membrane fluidity in proliferation of primitive cells. Cell Rep 1:417–423

    CAS  PubMed  Google Scholar 

  • Mercier R, Kawai Y, Errington J (2013) Excess membrane synthesis drives a primitive mode of cell proliferation. Cell 152:997–1007

    CAS  PubMed  Google Scholar 

  • Merkle D, Kahya N, Schwille P (2008) Reconstitution and anchoring of cytoskeleton inside giant unilamellar vesicles. Chembiochem 9:2673–2681

    CAS  PubMed  Google Scholar 

  • Mileykovskaya E, Dowhan W (2009) Cardiolipin membrane domains in prokaryotes and eukaryotes. Biochim Biophys Acta 1788:2084–2091

    CAS  PubMed Central  PubMed  Google Scholar 

  • Miyata H, Nishiyama S, Akashi K, Kinosita K Jr (1999) Protrusive growth from giant liposomes driven by actin polymerization. Proc Natl Acad Sci USA 96:2048–2053

    CAS  PubMed Central  PubMed  Google Scholar 

  • Moriscot C, Gribaldo S, Jault JM, Krupovic M, Arnaud J, Jamin M, Schoehn G, Forterre P, Weissenhorn W, Renesto P (2011) Crenarchaeal CdvA forms double-helical filaments containing DNA and interacts with ESCRT-III-like CdvB. PLoS One 6(e21):921

    Google Scholar 

  • Morita E, Sandrin V, Chung HY, Morham SG, Gygi SP, Rodesch CK, Sundquist WI (2007) Human ESCRT and ALIX proteins interact with proteins of the midbody and function in cytokinesis. EMBO J 26:4215–4227

    CAS  PubMed Central  PubMed  Google Scholar 

  • Morris RG, McKane AJ (2011) Stability of growing vesicles. Phys Rev E Stat Nonlin Soft Matter Phys 83:061151

    PubMed  Google Scholar 

  • Morris RG, Fanelli D, McKane AJ (2010) Dynamical description of vesicle growth and shape change. Phys Rev E Stat Nonlin Soft Matter Phys 82:031125

    PubMed  Google Scholar 

  • Moya A, Gil R, Latorre A, Peretó J, Pilar Garcillán-Barcia M (2009) Toward minimal bacterial cells: evolution vs. design. FEMS Microbiol Rev 33:225–235

    CAS  PubMed  Google Scholar 

  • Mui B, Döbereiner H, Madden T, Cullis P (1995) Influence of transbilayer area asymmetry on the morphology of large unilamellar vesicles. Biophys J 69:930–941

    CAS  PubMed Central  PubMed  Google Scholar 

  • Mukherjee A, Lutkenhaus J (1994) Guanine nucleotide-dependent assembly of FtsZ into filaments. J Bacteriol 176:2754–2758

    CAS  PubMed Central  PubMed  Google Scholar 

  • Mulder E, Woldringh CL (1989) Actively replicating nucleoids influence positioning of division sites in Escherichia coli filaments forming cells lacking DNA. J Bacteriol 171:4303–4314

    CAS  PubMed Central  PubMed  Google Scholar 

  • Murtas G (2010) Internal lipid synthesis and vesicle growth as a step toward self-reproduction of the minimal cell. Syst Synth Biol 4:85–93

    PubMed Central  PubMed  Google Scholar 

  • Murtas G (2013) Early self-reproduction, the emergence of division mechanisms in protocells. Mol BioSyst 9:195–204

    CAS  PubMed  Google Scholar 

  • Nogales E, Downing KH, Amos LA, Löwe J (1998) Tubulin and FtsZ form a distinct family of GTPases. Nat Struct Biol 5:451–458

    CAS  PubMed  Google Scholar 

  • Noireaux V, Maeda YT, Libchaber A (2011) Development of an artificial cell, from self-organization to computation and self-reproduction. Proc Natl Acad Sci USA 108:3473–3480

    CAS  PubMed Central  PubMed  Google Scholar 

  • Nomura F, Inaba T, Ishikawa S, Nagata M, Takahashi S, Hotani H, Takiguchi K (2004) Microscopic observations reveal that fusogenic peptides induce liposome shrinkage prior to membrane fusion. Proc Natl Acad Sci USA 101:3420–3425

    CAS  PubMed Central  PubMed  Google Scholar 

  • Oliva MA, Trambaiolo D, Löwe J (2007) Structural insights into the conformational variability of FtsZ. J Mol Biol 373:1229–1242

    CAS  PubMed  Google Scholar 

  • Osawa M, Erickson HP (2011) Inside-out Z rings-constriction with and without GTP hydrolysis. Mol Microbiol 81:571–579

    CAS  PubMed Central  PubMed  Google Scholar 

  • Osawa M, Erickson HP (2013), Liposome division by a simple bacterial division machinery. Proc Natl Acad Sci USA 110:11000–11004.

  • Osawa M, Anderson DE, Erickson HP (2008) Reconstitution of contractile FtsZ rings in liposomes. Science 320:792–794

    CAS  PubMed Central  PubMed  Google Scholar 

  • Osawa M, Anderson DE, Erickson HP (2009) Curved FtsZ protofilaments generate bending forces on liposome membranes. EMBO J 28:3476–3484

    CAS  PubMed Central  PubMed  Google Scholar 

  • Park KT, Wu W, Battaile KP, Lovell S, Holyoak T, Lutkenhaus J (2011) The Min oscillator uses MinD-dependent conformational changes in MinE to spatially regulate cytokinesis. Cell 146:396–407

    CAS  PubMed Central  PubMed  Google Scholar 

  • Patrick JE, Kearns DB (2008) MinJ (YvjD) is a topological determinant of cell division in Bacillus subtilis. Mol Microbiol 70:1166–1179

    CAS  PubMed  Google Scholar 

  • Pelve EA, Lindås AC, Martens-Habbena W, de la Torre JR, Stahl DA, Bernander R (2011) Cdv-based cell division and cell cycle organization in the thaumarchaeon Nitrosopumilus maritimus. Mol Microbiol 82:555–566

    CAS  PubMed  Google Scholar 

  • Peterlin P, Arrigler V, Kogej K, Svetina S, Walde P (2009) Growth and shape transformations of giant phospholipid vesicles upon interaction with an aqueous oleic acid suspension. Chem Phys Lipids 159:67–76

    CAS  PubMed  Google Scholar 

  • Pollard TD (2010) Mechanics of cytokinesis in eukaryotes. Curr Opin Cell Biol 22:50–56

    CAS  PubMed Central  PubMed  Google Scholar 

  • Pontani LL, van der Gucht J, Salbreux G, Heuvingh J, Joanny JF, Sykes C (2009) Reconstitution of an actin cortex inside a liposome. Biophys J 96:192–198

    CAS  PubMed Central  PubMed  Google Scholar 

  • Popp D, Iwasa M, Narita A, Erickson HP, Maéda Y (2009) FtsZ condensates: an in vitro electron microscopy study. Biopolymers 91:340–350

    CAS  PubMed Central  PubMed  Google Scholar 

  • Porcar M, Danchin A, de Lorenzo V, dos Santos VA, Krasnogor N, Rasmussen S, Moya A (2011) The ten grand challenges of synthetic life. Syst Synth Biol 5:1–9

    PubMed Central  PubMed  Google Scholar 

  • Pucadyil TJ, Schmid SL (2008) Real-time visualization of dynamin-catalyzed membrane fission and vesicle release. Cell 135:1263–1275

    CAS  PubMed Central  PubMed  Google Scholar 

  • Purnick PE, Weiss R (2009) The second wave of synthetic biology: from modules to systems. Nat Rev Mol Cell Biol 10:410–422

    CAS  PubMed  Google Scholar 

  • Raskin DM, de Boer PA (1999) Rapid pole-to-pole oscillation of a protein required for directing division to the middle of Escherichia coli. Proc Natl Acad Sci USA 96:4971–4976

    CAS  PubMed Central  PubMed  Google Scholar 

  • Rasmussen S, Chen L, Deamer D, Krakauer DC, Packard NH, Stadler PF, Bedau MA (2004) Transitions from nonliving to living matter. Science 303:963–965

    CAS  PubMed  Google Scholar 

  • Raspail FV (1825) Développement de la fécule dans les orgabes de la fructification des céréales et analyse microscopique de la fécule suivie d’exprériences propres à en expliquer la conversion en gomme. Annals des Sciences Naturelles 224–39:384–427. Cited from: Weiner DB (1968) Raspail: scientist and reformer. Columbia University Press, Columbia

  • Rosengarten R, Kirchhoff H (1989) Growth morphology of Mycoplasma mobile 163K on solid surfaces: reproduction, aggregation, and microcolony formation. Curr Microbiol 18:15–22

    Google Scholar 

  • Roux A, Cuvelier D, Nassoy P, Prost J, Bassereau P, Goud B (2005) Role of curvature and phase transition in lipid sorting and fission of membrane tubules. EMBO J 24:1537–1545

    CAS  PubMed Central  PubMed  Google Scholar 

  • Sakuma Y, Imai M (2011) Model system of self-reproducing vesicles. Phys Rev Lett 107(198):101

    Google Scholar 

  • Samson RY, Bell SD (2009) Ancient ESCRTs and the evolution of binary fission. Trends Microbiol 17:507–513

    CAS  PubMed  Google Scholar 

  • Samson RY, Obita T, Freund SM, Williams RL, Bell SD (2008) A role for the ESCRT system in cell division in Archaea. Science 322:1710–1713

    CAS  PubMed Central  PubMed  Google Scholar 

  • Samson RY, Obita T, Hodgson B, Shaw MK, Chong PLG, Williams RL, Bell SD (2011) Molecular and structural basis of ESCRT-III recruitment to membranes during archaeal cell division. Mol Cell 41:186–196

    CAS  PubMed Central  PubMed  Google Scholar 

  • Schmidli PK, Schurtenberger P, Luisi PL (1991) Liposome-mediated enzymatic synthesis of phosphatidylcholine as an approach to self-replicating liposomes. J Am Chem Soc 113:8127–8130

    CAS  Google Scholar 

  • Schrum JP, Zhu TF, Szostak JW (2010) The origins of cellular life. Cold Spring Harb Perspect Biol 2:a002212

    PubMed Central  PubMed  Google Scholar 

  • Schweizer J, Loose M, Bonny M, Kruse K, Mönch I, Schwille P (2012) Geometry sensing by self-organized protein patterns. Proc Natl Acad Sci USA 109:15283–15288

    CAS  PubMed Central  PubMed  Google Scholar 

  • Schwille P (2011) Bottom-up synthetic biology: engineering in a tinkerer’s world. Science 333:1252–1254

    CAS  PubMed  Google Scholar 

  • Seifert U, Berndl K, Lipowsky R (1991) Shape transformations of vesicles: Phase diagram for spontaneous-curvature and bilayer-coupling models. Phys Rev A 44:1182–1202

    CAS  PubMed  Google Scholar 

  • Si F, Busiek K, Margolin W, Sun SX (2013) Organization of FtsZ filaments in the bacterial division ring measured from polarized fluorescence microscopy. Biophys J 105:1976–1986

    CAS  PubMed  Google Scholar 

  • Sonobe S, Aoyama K, Suzuki C, Saito Kh, Nagata K, Shimmen T, Nagata Y (2010) Proliferation of the hyperthermophilic archaeon Pyrobaculum islandicum by cell fission. Extremophiles 14:403–407

    PubMed  Google Scholar 

  • Staneva G, Angelova MI, Koumanov K (2004) Phospholipase A2 promotes raft budding and fission from giant liposomes. Chem Phys Lipids 129:53–62

    CAS  PubMed  Google Scholar 

  • Staneva G, Seigneuret M, Koumanov K, Trugnan G, Angelova MI (2005) Detergents induce raft-like domains budding and fission from giant unilamellar heterogeneous vesicles: a direct microscopy observation. Chem Phys Lipids 136:55–66

    CAS  PubMed  Google Scholar 

  • Stano P, Luisi PL (2010) Achievements and open questions in the self-reproduction of vesicles and synthetic minimal cells. Chem Commun 46:3639–3653

    CAS  Google Scholar 

  • Stano P, Luisi PL (2013) Semi-synthetic minimal cells: origin and recent developments. Curr Opin Biotechnol 24:633–638

    CAS  PubMed  Google Scholar 

  • Stano P, Wehrli E, Luisi P (2006) Insights into the self-reproduction of oleate vesicles. J Phys Condens Matter 18:S2231

    CAS  Google Scholar 

  • Strauss MP, Liew ATF, Turnbull L, Whitchurch CB, Monahan LG, Harry EJ (2012) 3D-SIM super resolution microscopy reveals a bead-like arrangement for FtsZ and the division machinery: implications for triggering cytokinesis. PLoS Biol 10:e1001389

    CAS  PubMed Central  PubMed  Google Scholar 

  • Sun Q, Margolin W (1998) FtsZ dynamics during the division cycle of live Escherichia coli cells. J Bacteriol 180:2050–2056

    CAS  PubMed Central  PubMed  Google Scholar 

  • Sun SX, Jiang H (2011) Physics of bacterial morphogenesis. Microbiol Mol Biol Rev 75:543–565

    CAS  PubMed Central  PubMed  Google Scholar 

  • Svetina S (2009) Vesicle budding and the origin of cellular life. ChemPhysChem 10:2769–2776

    CAS  PubMed  Google Scholar 

  • Szostak JW, Bartel DP, Luisi PL (2001) Synthesizing life. Nature 409:387–390

    CAS  PubMed  Google Scholar 

  • Takakura K, Toyota T, Sugawara T (2003) A novel system of self-reproducing giant vesicles. J Am Chem Soc 125:8134–8140

    CAS  PubMed  Google Scholar 

  • Tanaka T, Yamazaki M (2004) Membrane fusion of giant unilamellar vesicles of neutral phospholipid membranes induced by La3+. Langmuir 20:5160–5164

    CAS  PubMed  Google Scholar 

  • Tanaka T, Sano R, Yamashita Y, Yamazaki M (2004) Shape changes and vesicle fission of giant unilamellar vesicles of liquid-ordered phase membrane induced by lysophosphatidylcholine. Langmuir 20:9526–9534

    CAS  PubMed  Google Scholar 

  • Terasawa H, Nishimura K, Suzuki H, Matsuura T, Yomo T (2012) Coupling of the fusion and budding of giant phospholipid vesicles containing macromolecules. Proc Natl Acad Sci USA 109:5942–5947

    CAS  PubMed Central  PubMed  Google Scholar 

  • Thanbichler M, Shapiro L (2006) MipZ, a spatial regulator coordinating chromosome segregation with cell division in Caulobacter. Cell 126:147–162

    CAS  PubMed  Google Scholar 

  • Tonthat NK, Arold ST, Pickering BF, Van Dyke MW, Liang S, Lu Y, Beuria TK, Margolin W, Schumacher MA (2011) Molecular mechanism by which the nucleoid occlusion factor, SlmA, keeps cytokinesis in check. EMBO J 30:154–164

    CAS  PubMed Central  PubMed  Google Scholar 

  • Tonthat NK, Milam SL, Chinnam N, Whitfill T, Margolin W, Schumacher MA (2013) SlmA forms a higher-order structure on DNA that inhibits cytokinetic Z-ring formation over the nucleoid. Proc Natl Acad Sci USA 110:10586–10591

    CAS  PubMed Central  PubMed  Google Scholar 

  • Tsafrir I, Caspi Y, Guedeau-Boudeville MA, Arzi T, Stavans J (2003) Budding and tubulation in highly oblate vesicles by anchored amphiphilic molecules. Phys Rev Lett 91(138):102

    Google Scholar 

  • Tsai FC, Stuhrmann B, Koenderink GH (2011) Encapsulation of active cytoskeletal protein networks in cell-sized liposomes. Langmuir 27:10061–10071

    CAS  PubMed  Google Scholar 

  • Turner W (1890) The cell theory, past and present. J Anat Physiol 24:253–287

    CAS  PubMed Central  PubMed  Google Scholar 

  • Typas A, Banzhaf M, Gross CA, Vollmer W (2012) From the regulation of peptidoglycan synthesis to bacterial growth and morphology. Nat Rev Microbiol 10:123–136

    CAS  Google Scholar 

  • van Meer G, Voelker DR, Feigenson GW (2008) Membrane lipids: where they are and how they behave. Nat Rev Mol Cell Biol 9:112–124

    PubMed Central  PubMed  Google Scholar 

  • Walser PJ, Ariotti N, Howes M, Ferguson C, Webb R, Schwudke D, Leneva N, Cho KJ, Cooper L, Rae J, Floetenmeyer M, Oorschot VMJ, Skoglund U, Simons K, Hancock JF, Parton RG (2012) Constitutive formation of Caveolae in a bacterium. Cell 150:752–763

    CAS  PubMed  Google Scholar 

  • Wick R, Walde P, Luisi PL (1995) Light microscopic investigations of the autocatalytic self-reproduction of giant vesicles. J Am Chem Soc 117:1435–1436

    CAS  Google Scholar 

  • Wollert T, Wunder C, Lippincott-Schwartz J, Hurley JH (2009) Membrane scission by the ESCRT-III complex. Nature 458:172–177

    CAS  PubMed Central  PubMed  Google Scholar 

  • Wright NA, Poulsom R (2012) Omnis cellula e cellula revisited: cell biology as the foundation of pathology. J Pathol 226:145–147

    PubMed  Google Scholar 

  • Wu LJ, Errington J (2004) Coordination of cell division and chromosome segregation by a nucleoid occlusion protein in Bacillus subtilis. Cell 117:915–925

    CAS  PubMed  Google Scholar 

  • Wu LJ, Ishikawa S, Kawai Y, Oshima T, Ogasawara N, Errington J (2009) Noc protein binds to specific DNA sequences to coordinate cell division with chromosome segregation. EMBO J 28:1940–1952

    CAS  PubMed Central  PubMed  Google Scholar 

  • Wu W, Park KT, Holyoak T, Lutkenhaus J (2011) Determination of the structure of the MinD-ATP complex reveals the orientation of MinD on the membrane and the relative location of the binding sites for MinE and MinC. Mol Microbiol 79:1515–1528

    CAS  PubMed Central  PubMed  Google Scholar 

  • Zhu TF, Szostak JW (2009) Coupled growth and division of model protocell membranes. J Am Chem Soc 131:5705–5713

    CAS  PubMed Central  PubMed  Google Scholar 

  • Zhu TF, Adamala K, Zhang N, Szostak JW (2012) Photochemically driven redox chemistry induces protocell membrane pearling and division. Proc Natl Acad Sci USA 109:9828–9832

    CAS  PubMed Central  PubMed  Google Scholar 

  • Zieske K, Schwille P (2013) Reconstitution of pole-to-pole oscillations of min proteins in microengineered polydimethylsiloxane compartments. Angew Chem Int Ed Engl 52:459–462

    CAS  PubMed  Google Scholar 

  • Zimmerberg J, Kozlov MM (2006) How proteins produce cellular membrane curvature. Nat Rev Mol Cell Biol 7:9–19

    CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This work was supported by European Research Council research grant NanoforBio (No. 247072) and the EuroSYNBIO grant SynDiv. We acknowledge Fabai Wu and Siddharth Deshpande for a critical reading of the manuscript.

Conflict of interest

The authors declare that they have no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Cees Dekker.

Additional information

Traditionally, this quote is attributed to Rudolph Virchow (1821–1902), one of the founders of the cell theory that made his seminal contribution mainly during the fourth decade of 19th centenary. However, in fact Virshow adopted this epigram from Raspail (1825) and only popularized it (Wright and Poulsom 2012).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Caspi, Y., Dekker, C. Divided we stand: splitting synthetic cells for their proliferation. Syst Synth Biol 8, 249–269 (2014). https://doi.org/10.1007/s11693-014-9145-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11693-014-9145-7

Keywords

Navigation