Skip to main content
Log in

Hydrogen sulfide protects soybean seedlings against drought-induced oxidative stress

  • Original Paper
  • Published:
Acta Physiologiae Plantarum Aims and scope Submit manuscript

Abstract

Increasing evidence indicates that hydrogen sulfide (H2S) is the third “gas signal molecule” after NO and CO in animal. In the present study, we found that soybean (Glycine max L.) seedlings sprayed with exogenous H2S donor NaHS prolonged the longer survival time of life, and enlarged higher biomass of both leaf and root than in non-sprayed controls under continuous drought stress. With the continuous drought stress, the content of chlorophyll in the leaves of both Xu-1 and Xu-6 cultivar of soybean decreased dramatically. The drought-induced decrease in chlorophyll could be alleviated by spraying H2S donor. It was also shown that spraying with H2S donor dramatically retained higher activities of superoxide dismutase (SOD, EC 1.1.5.1.1), catalase (CAT, EC1.11.1.6) and lower activity of lipoxygenases (LOX, EC 1.13.11.12), delayed excessive accumulation of malondialdehyde, hydrogen peroxide, and superoxide anion (O ·−2 ) compared with the control. These results suggest that H2S can increase drought tolerance in soybean seedlings by acting as an antioxidant signal molecule for the response.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Abbreviations

CAT:

Catalase

CO:

Carbon monoxide

H2S:

Hydrogen sulfide

LOX:

Lipoxygenase

MDA:

Malondialdehyde

NaHS:

Sodium hydrosulfide

NO:

Nitric oxide

ROS:

Reactive oxygen species

SOD:

Superoxide dismutase

References

  • Bartosz G (1997) Oxidative stress in plants. Acta Physiol Plant 19:47–64

    Article  CAS  Google Scholar 

  • Bloem E, Riemenschneider A, Volker J, Papenbrock J, Schmidt A, Salac I, Haneklaus S, Schnug E (2004) Sulphur supply and infection with Pyrenopeziza brassica influence l-cysteine desulfhydrase activity in Brassica napus L. J Exp Bot 55:2305–2312

    Article  CAS  PubMed  Google Scholar 

  • Blokhina O, Virolainen E, Fagerstedt KV (2003) Antioxidants, oxidative damage and oxygen deprivation stress: a review. Ann Bot 91:179–194

    Article  CAS  PubMed  Google Scholar 

  • Boyer JS (1982) Plant productivity and environment. Science 218:443–448

    Article  CAS  PubMed  Google Scholar 

  • Cao ZY, Xuan W, Liu ZY, Li XN, Zhao N, Xu P, Wang Z, Guan RZ, Shen WB (2007) Carbon monoxide promotes lateral root formation in rapeseed. J Integr Plant Biol 49:1070–1079

    Article  CAS  Google Scholar 

  • Delledonne M (2005) NO news is good news for plants. Curr Opin Plant Biol 8:390–396

    Article  CAS  PubMed  Google Scholar 

  • Hällgren JE, Fredriksson SÅ (1982) Emission of hydrogen sulfide from sulfate dioxide-fumigated pine trees. Plant Physiol 70:456–459

    Article  PubMed  Google Scholar 

  • Han Y, Xuan W, Yu T, Fang WB, Lou TL, Gao Y, Chen XY, Xiao X, Shen WB (2007) Exogenous hematin alleviates mercury-induced oxidative damage in the roots of Medicago sativa. J Integr Plant Biol 49:1703–1713

    Article  CAS  Google Scholar 

  • Hosoki R, Matsuki N, Kimura H (1997) The possible role of hydrogen sulfide as an endogenous smooth muscle relaxant in synergy with nitric oxide. Biochem Biophys Res Commun 237:527–531

    Article  CAS  PubMed  Google Scholar 

  • Huang BK, Xu S, Xuan W, Li M, Cao ZY, Liu KL, Ling TF, Shen WB (2006) Carbon monoxide alleviates salt-induced oxidative damage in wheat seedling leaves. J Integr Plant Biol 48:249–254

    Article  CAS  Google Scholar 

  • Jiang MY, Yang WY, Xu J (1994) Active oxygen damage effect of chlorophyll degradation in rice seedlings under osmotic stress. Acta Bot Sin 36:289–295

    CAS  Google Scholar 

  • Kubo A, Aono M, Nakajima N, Saji H, Tanaka K, Kondo N (1999) Differential responses in activity of antioxidant enzymes to different environmental stresses in, Arabidopsis thaliana. J Plant Res 112:279–290

    Article  CAS  Google Scholar 

  • Leon S, Touraine B, Briat JF, Lobreaux S (2002) The AtNFS2 gene from Arabidopsis thaliana encodes a NifS-like plastidial cysteine desulphurase. Biochem J 366:557–564

    Article  CAS  PubMed  Google Scholar 

  • Li L, Bhatia M, Moore PK (2006) Hydrogen sulphide—a novel mediator of inflammation? Curr Opin Pharmacol 6:125–129

    Article  CAS  PubMed  Google Scholar 

  • Mehta RA, Fawcett TW, Porath D, Mattoo AK (1992) Oxidative stress causes rapid membrane translocation and in vivo degradation of ribulose-1,5-biphosphate carboxylase/oxygenase. J Biol Chem 267:2810–2816

    CAS  PubMed  Google Scholar 

  • Mittler R (2002) Oxidative stress, antioxidants and stress tolerance. Trends Plant Sci 7:405–410

    Article  CAS  PubMed  Google Scholar 

  • Mittler R (2006) Abiotic stress, the field environment and stress combination. Trends Plant Sci 11:15–19

    Article  CAS  PubMed  Google Scholar 

  • Nield J, Redding K, Hippler M (2004) Remodeling of light-harvesting protein complexes in chlamydomonas in response to environmental changes. Eukaryot Cell 3:1370–1380

    Article  CAS  PubMed  Google Scholar 

  • Rausch T, Wachter A (2005) Sulfur metabolism: a versatile platform for launching defence operations. Trends Plant Sci 10:503–509

    Article  CAS  PubMed  Google Scholar 

  • Rennenberg H (1983) Role of O-acetylserine in hydrogen sulfide emission from pumpkin leaves in response to sulfate. Plant Physiol 73:560–565

    Article  CAS  PubMed  Google Scholar 

  • Rennenberg H (1984) The fate excess of sulfur in higher plants. Annu Rev Plant Physiol 35:121–153

    Article  CAS  Google Scholar 

  • Rennenberg H, Huber B, Schröder P, Stahl K, Haunold W, Georgii HW, Slovik S, Pfanz H (1990) Emission of volatile sulfur compounds from spruce trees. Plant Physiol 92:560–564

    Article  CAS  PubMed  Google Scholar 

  • Riemenschneider A, Wegele R, Schmidt A, Papenbrock J (2005) Isolation and characterization of a d-cysteine desulfhydrase protein from Arabidopsis thaliana. FEBS J 272:1291–1304

    Article  CAS  PubMed  Google Scholar 

  • Sekiya J, Schmidt A, Wilson LG, Filner P (1982a) Emission of hydrogen sulfide by leaf tissue in response to l-cysteine. Plant Physiol 70:430–436

    Article  CAS  PubMed  Google Scholar 

  • Sekiya J, Wilson LG, Filner P (1982b) Resistance to injury by sulfur dioxide: correlation with its reduction to, and emission of, hydrogen sulfide in cucurbitaceae. Plant Physiol 70:437–441

    Article  CAS  PubMed  Google Scholar 

  • Smirnoff N (1993) The role of active oxygen in the response of plants to water deficit and desiccation. New Phytol 125:27–58

    Article  CAS  Google Scholar 

  • Song YG, Liu B, Wang LF, Li MH, Liu Y (2006) Damage to the oxygen-evolving complex by superoxide anion, hydrogen peroxide, and hydroxyl radical in photoinhibition of photosystem II. Photosynth Res 90:67–78

    Article  CAS  PubMed  Google Scholar 

  • Stuiver CEE, De Kok LJ, Kuiper PJC (1992) Freezing tolerance and biochemical changes in wheat shoots as affected by H2S fumigation. Plant Physiol Biochem 30:47–55

    CAS  Google Scholar 

  • Tanaka K, Masuda R, Sugimoto T, Omasa K, Sakaki T (1990) Water deficiency-induced changes in the contents of defensive substances against active oxygen in spinach leaves. Agric Biol Chem 54:2629–2634

    CAS  Google Scholar 

  • Van Breusegem F, Vranová E, Dat JF, Inzé D (2001) The role of active oxygen species in plant signal transduction. Plant Sci 161:405–414

    Article  Google Scholar 

  • Wang R (2002) Two’s company, there’s a crowd: can H2S be the third endogenous gaseous transmitter? FASEB J 16:1792–1798

    Article  CAS  PubMed  Google Scholar 

  • Wang YS, Yang ZM (2005) Nitric oxide reduces aluminum toxicity by preventing oxidative stress in the roots of Cassia tora L. Plant Cell Physiol 46:1915–1923

    Article  CAS  PubMed  Google Scholar 

  • Wilson LG, Bressan RA, Filner P (1978) Light-dependent emission of hydrogen sulfide from plants. Plant Physiol 61:184–189

    Article  CAS  PubMed  Google Scholar 

  • Winner WE, Smith CL, Koch GW, Mooney HA, Bewley JE, Krouse HR (1981) Rates of emission of H2S from plants and patterns of stable sulfur isotope fractionation. Nature 289:672–674

    Article  CAS  Google Scholar 

  • Xu S, Sa ZS, Cao ZY, Xuan W, Huang BK, Ling TF, Hu QY, Shen WB (2006) Carbon monoxide alleviates wheat seed germination inhibition and counteracts lipid peroxidation mediated by salinity. J Integr Plant Biol 48:1168–1176

    Article  CAS  Google Scholar 

  • Xuan W, Zhu FY, Xu S, Huang BK, Ling TF, Qi JY, Ye MB, Shen WB (2008) The heme oxygenase/carbon monoxide system is involved in the auxin-induced cucumber adventitious rooting process. Plant Physiol 148:881–893

    Article  CAS  PubMed  Google Scholar 

  • Yang G, Wu L, Jiang B, Yang W, Qi J, Cao K, Meng Q, Mustafa AK, Mu W, Zhang S, Snyder SH, Wang R (2008) H2S as a physiologic vasorelaxant: hypertension in mice with deletion of cystathionine γ-lyase. Science 322:587–590

    Article  CAS  PubMed  Google Scholar 

  • Zhang H, Hu LY, Hu KD, He YD, Wang SH, Luo JP (2008) Hydrogen sulfide promotes wheat seed germination and alleviates the oxidative damage against copper stress. J Integr Plant Biol 50:1518–1529

    Article  CAS  PubMed  Google Scholar 

  • Zhang H, Tang J, Liu XP, Wang Y, Yu W, Peng WY, Fang F, Ma DF, Wei ZJ, Hu LY (2009a) Hydrogen sulfide promotes root organogenesis in Ipomoea batatas, Salix matsudana and Glycine max. J Integr Plant Biol 51:1084–1092

    Google Scholar 

  • Zhang H, Ye YK, Wang SH, Luo JP, Tang J, Ma DF (2009b) Hydrogen sulfide counteracts chlorophyll loss in sweetpotato seedling leaves and alleviates oxidative damage against osmotic stress. Plant Growth Regul 58:243–250

    Article  CAS  Google Scholar 

  • Zhu JK (2002) Salt and drought stress signal transduction in plants. Annu Rev Plant Boil 53:247–273

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by the Great Project of Natural Science Foundation at Anhui Provincial Education Department (ZD200910), the Natural Science Foundation of Anhui Province (070411009), and the innovation fund to undergraduate students at Hefei University of Technology (XS0637, 08072)

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hua Zhang.

Additional information

Communicated by G. Bartosz.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zhang, H., Jiao, H., Jiang, CX. et al. Hydrogen sulfide protects soybean seedlings against drought-induced oxidative stress. Acta Physiol Plant 32, 849–857 (2010). https://doi.org/10.1007/s11738-010-0469-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11738-010-0469-y

Keywords

Navigation