Skip to main content

Advertisement

Log in

Sphingosine-1-Phosphate Signaling in Endothelial Disorders

  • Vascular Biology (J. Hamilton, Section Editor)
  • Published:
Current Atherosclerosis Reports Aims and scope Submit manuscript

Abstract

Numerous preclinical studies indicate that sustained endothelial activation significantly contributes to tissue edema, perpetuates the inflammatory response, and exacerbates tissue injury ultimately resulting in organ failure. However, no specific therapies aimed at restoring endothelial function are available as yet. Sphingosine-1-phosphate (S1P) is emerging as a potent modulator of endothelial function and endothelial responses to injury. Recent studies indicate that S1PR are attractive targets to treat not only disorders of the arterial endothelium but also microvascular dysfunction caused by ischemic or inflammatory injury. In this article, we will review the current knowledge of the role of S1P and its receptors in endothelial function in health and disease, and we will discuss the therapeutic potential of targeting S1PR not only for disorders of the arterial endothelium but also the microvasculature. The therapeutic targeting of S1PR in the endothelium could help to bridge the gap between biomedical research in vascular biology and clinical practice.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

Papers of particular interest, published recently, have been highlighted as: • Of importance •• Of major importance

  1. Cines DB, Pollak ES, Buck CA, Loscalzo J, Zimmerman GA, McEver RP, et al. Endothelial cells in physiology and in the pathophysiology of vascular disorders. Blood. 1998;91:3527–61.

    CAS  PubMed  Google Scholar 

  2. Ye X, Ding J, Zhou X, Chen G, Liu SF. Divergent roles of endothelial nf-kappab in multiple organ injury and bacterial clearance in mouse models of sepsis. J Exp Med. 2008;205:1303–15.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Aird WC. The role of the endothelium in severe sepsis and multiple organ dysfunction syndrome. Blood. 2003;101:3765–77.

    Article  CAS  PubMed  Google Scholar 

  4. Aird WC. Spatial and temporal dynamics of the endothelium. J Thromb Haemost. 2005;3:1392–406.

    Article  CAS  PubMed  Google Scholar 

  5. Bardutzky J, Schwab S. Antiedema therapy in ischemic stroke. Stroke. 2007;38:3084–94.

    Article  CAS  PubMed  Google Scholar 

  6. Schwab S, Spranger M, Schwarz S, Hacke W. Barbiturate coma in severe hemispheric stroke: useful or obsolete? Neurology. 1997;48:1608–13.

    Article  CAS  PubMed  Google Scholar 

  7. Yatomi Y, Igarashi Y, Yang L, Hisano N, Qi R, Asazuma N, et al. Sphingosine 1-phosphate, a bioactive sphingolipid abundantly stored in platelets, is a normal constituent of human plasma and serum. J Biochem (Tokyo). 1997;121:969–73.

    Article  CAS  Google Scholar 

  8. Pappu R, Schwab SR, Cornelissen I, Pereira JP, Regard JB, Xu Y, et al. Promotion of lymphocyte egress into blood and lymph by distinct sources of sphingosine-1-phosphate. Science. 2007;316:295–8.

    Article  CAS  PubMed  Google Scholar 

  9. Murata N, Sato K, Kon J, Tomura H, Yanagita M, Kuwabara A, et al. Interaction of sphingosine 1-phosphate with plasma components, including lipoproteins, regulates the lipid receptor-mediated actions. Biochem J. 2000;352(Pt 3):809–15.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Christoffersen C, Obinata H, Kumaraswamy SB, Galvani S, Ahnstrom J, Sevvana M, et al. Endothelium-protective sphingosine-1-phosphate provided by hdl-associated apolipoprotein m. Proc Natl Acad Sci U S A. 2011;108:9613–8. This study shows that Apo M is the carrier of S1P in HDL and contributes to their vasoprotective effects.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Yatomi Y, Ruan F, Hakomori S, Igarashi Y. Sphingosine-1-phosphate: a platelet-activating sphingolipid released from agonist-stimulated human platelets. Blood. 1995;86:193–202.

    CAS  PubMed  Google Scholar 

  12. Venkataraman K, Lee YM, Michaud J, Thangada S, Ai Y, Bonkovsky HL, et al. Vascular endothelium as a contributor of plasma sphingosine 1-phosphate. Circ Res. 2008;102:669–76.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Lee MJ, Van Brocklyn JR, Thangada S, Liu CH, Hand AR, Menzeleev R, et al. Sphingosine-1-phosphate as a ligand for the g protein-coupled receptor edg-1. Science. 1998;279:1552–5.

    Article  CAS  PubMed  Google Scholar 

  14. Sato K, Ui M, Okajima F. Differential roles of edg-1 and edg-5, sphingosine 1-phosphate receptors, in the signaling pathways in c6 glioma cells. Brain Res Mol Brain Res. 2000;85:151–60.

    Article  CAS  PubMed  Google Scholar 

  15. Kon J, Sato K, Watanabe T, Tomura H, Kuwabara A, Kimura T, et al. Comparison of intrinsic activities of the putative sphingosine 1-phosphate receptor subtypes to regulate several signaling pathways in their cdna-transfected Chinese hamster ovary cells. J Biol Chem. 1999;274:23940–7.

    Article  CAS  PubMed  Google Scholar 

  16. Mizugishi K, Yamashita T, Olivera A, Miller GF, Spiegel S, Proia RL. Essential role for sphingosine kinases in neural and vascular development. Mol Cell Biol. 2005;25:11113–21.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Liu Y, Wada R, Yamashita T, Mi Y, Deng CX, Hobson JP, et al. Edg-1, the g protein-coupled receptor for sphingosine-1-phosphate, is essential for vascular maturation. J Clin Invest. 2000;106:951–61.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Kono M, Mi Y, Liu Y, Sasaki T, Allende ML, Wu YP, et al. The sphingosine-1-phosphate receptors s1p1, s1p2, and s1p3 function coordinately during embryonic angiogenesis. J Biol Chem. 2004;279:29367–73.

    Article  CAS  PubMed  Google Scholar 

  19. Brinkmann V, Davis MD, Heise CE, Albert R, Cottens S, Hof R, et al. The immune modulator fty720 targets sphingosine 1-phosphate receptors. J Biol Chem. 2002;277:21453–7.

    Article  CAS  PubMed  Google Scholar 

  20. Mandala S, Hajdu R, Bergstrom J, Quackenbush E, Xie J, Milligan J, et al. Alteration of lymphocyte trafficking by sphingosine-1-phosphate receptor agonists. Science. 2002;296:346–9.

    Article  CAS  PubMed  Google Scholar 

  21. Matloubian M, Lo CG, Cinamon G, Lesneski MJ, Xu Y, Brinkmann V, et al. Lymphocyte egress from thymus and peripheral lymphoid organs is dependent on s1p receptor 1. Nature. 2004;427:355–60.

    Article  CAS  PubMed  Google Scholar 

  22. Schwab SR, Pereira JP, Matloubian M, Xu Y, Huang Y, Cyster JG. Lymphocyte sequestration through s1p lyase inhibition and disruption of s1p gradients. Science. 2005;309:1735–9.

    Article  CAS  PubMed  Google Scholar 

  23. LaMontagne K, Littlewood-Evans A, Schnell C, O’Reilly T, Wyder L, Sanchez T, et al. Antagonism of sphingosine-1-phosphate receptors by fty720 inhibits angiogenesis and tumor vascularization. Cancer Res. 2006;66:221–31.

    Article  CAS  PubMed  Google Scholar 

  24. Oo ML, Thangada S, Wu MT, Liu CH, Macdonald TL, Lynch KR, et al. Immunosuppressive and anti-angiogenic sphingosine 1-phosphate receptor-1 agonists induce ubiquitinylation and proteasomal degradation of the receptor. J Biol Chem. 2007;282:9082–9.

    Article  CAS  PubMed  Google Scholar 

  25. Windh RT, Lee MJ, Hla T, An S, Barr AJ, Manning DR. Differential coupling of the sphingosine 1-phosphate receptors edg-1, edg-3, and h218/edg-5 to the g(i), g(q), and g(12) families of heterotrimeric g proteins. J Biol Chem. 1999;274:27351–8.

    Article  CAS  PubMed  Google Scholar 

  26. Lee MJ, Thangada S, Claffey KP, Ancellin N, Liu CH, Kluk M, et al. Vascular endothelial cell adherens junction assembly and morphogenesis induced by sphingosine-1-phosphate. Cell. 1999;99:301–12.

    Article  CAS  PubMed  Google Scholar 

  27. Skoura A, Sanchez T, Claffey K, Mandala SM, Proia RL, Hla T. Essential role of sphingosine 1-phosphate receptor 2 in pathological angiogenesis of the mouse retina. J Clin Invest. 2007;117:2506–16.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Kim GS, Yang L, Zhang G, Zhao H, Selim M, McCullough LD, et al. Critical role of sphingosine-1-phosphate receptor-2 in the disruption of cerebrovascular integrity in experimental stroke. Nat Commun. 2015;6:7893. This study showed the critical role of S1PR2 in the disruption of cerebrovascular integrity, the development of hemorrhagic transformation and the activation of matrix metalloproteinase-9 in the brain endothelium upon ischemia-reperfusion injury.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Morales-Ruiz M, Lee MJ, Zollner S, Gratton JP, Scotland R, Shiojima I, et al. Sphingosine 1-phosphate activates akt, nitric oxide production, and chemotaxis through a gi protein/phosphoinositide 3-kinase pathway in endothelial cells. J Biol Chem. 2001;276:19672–7.

    Article  CAS  PubMed  Google Scholar 

  30. Paik JH, Chae S, Lee MJ, Thangada S, Hla T. Sphingosine 1-phosphate-induced endothelial cell migration requires the expression of edg-1 and edg-3 receptors and rho-dependent activation of alpha vbeta3- and beta1-containing integrins. J Biol Chem. 2001;276:11830–7.

    Article  CAS  PubMed  Google Scholar 

  31. Shikata Y, Birukov KG, Birukova AA, Verin A, Garcia JG. Involvement of site-specific fak phosphorylation in sphingosine-1 phosphate- and thrombin-induced focal adhesion remodeling: role of src and git. FASEB J. 2003;17:2240–9.

    Article  CAS  PubMed  Google Scholar 

  32. Garcia JG, Liu F, Verin AD, Birukova A, Dechert MA, Gerthoffer WT, et al. Sphingosine 1-phosphate promotes endothelial cell barrier integrity by edg-dependent cytoskeletal rearrangement. J Clin Invest. 2001;108:689–701.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Dudek SM, Jacobson JR, Chiang ET, Birukov KG, Wang P, Zhan X, et al. Pulmonary endothelial cell barrier enhancement by sphingosine 1-phosphate: roles for cortactin and myosin light chain kinase. J Biol Chem. 2004;279:24692–700.

    Article  CAS  PubMed  Google Scholar 

  34. Sugimoto N, Takuwa N, Okamoto H, Sakurada S, Takuwa Y. Inhibitory and stimulatory regulation of rac and cell motility by the g12/13-rho and gi pathways integrated downstream of a single g protein-coupled sphingosine-1-phosphate receptor isoform. Mol Cell Biol. 2003;23:1534–45.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Ishii I, Ye X, Friedman B, Kawamura S, Contos JJ, Kingsbury MA, et al. Marked perinatal lethality and cellular signaling deficits in mice null for the two sphingosine 1-phosphate (s1p) receptors, s1p(2)/lp(b2)/edg-5 and s1p(3)/lp(b3)/edg-3. J Biol Chem. 2002;277:25152–9.

    Article  CAS  PubMed  Google Scholar 

  36. Sanchez T, Thangada S, Wu MT, Kontos CD, Wu D, Wu H, et al. Pten as an effector in the signaling of antimigratory g protein-coupled receptor. Proc Natl Acad Sci U S A. 2005;102:4312–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Sanchez T, Skoura A, Wu MT, Casserly B, Harrington EO, Hla T. Induction of vascular permeability by the sphingosine-1-phosphate receptor-2 (s1p2r) and its downstream effectors rock and pten. Arterioscler Thromb Vasc Biol. 2007;27:1312–8.

    Article  CAS  PubMed  Google Scholar 

  38. Kimura T, Tomura H, Mogi C, Kuwabara A, Damirin A, Ishizuka T, et al. Role of scavenger receptor class b type i and sphingosine 1-phosphate receptors in high density lipoprotein-induced inhibition of adhesion molecule expression in endothelial cells. J Biol Chem. 2006;281:37457–67.

    Article  CAS  PubMed  Google Scholar 

  39. Bolick DT, Srinivasan S, Kim KW, Hatley ME, Clemens JJ, Whetzel A, et al. Sphingosine-1-phosphate prevents tumor necrosis factor-{alpha}-mediated monocyte adhesion to aortic endothelium in mice. Arterioscler Thromb Vasc Biol. 2005;25:976–81.

    Article  CAS  PubMed  Google Scholar 

  40. Matsushita K, Morrell CN, Lowenstein CJ. Sphingosine 1-phosphate activates weibel-palade body exocytosis. Proc Natl Acad Sci U S A. 2004;101:11483–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Nussbaum C, Bannenberg S, Keul P, Graler MH, Goncalves-de-Albuquerque CF, Korhonen H, et al. Sphingosine-1-phosphate receptor 3 promotes leukocyte rolling by mobilizing endothelial p-selectin. Nat Commun. 2015;6:6416.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Zhang G, Yang L, Kim GS, Ryan K, Lu S, O’Donnell RK, et al. Critical role of sphingosine-1-phosphate receptor 2 (s1pr2) in acute vascular inflammation. Blood. 2013;122:443–55. This study demonstrated the role of S1PR2 in the induction of endothelial permeability and inflammation via activation of the NF-κB and the stress activated protein kinase p38 pathways.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Kimura T, Sato K, Kuwabara A, Tomura H, Ishiwara M, Kobayashi I, et al. Sphingosine 1-phosphate may be a major component of plasma lipoproteins responsible for the cytoprotective actions in human umbilical vein endothelial cells. J Biol Chem. 2001;276:31780–5.

    Article  CAS  PubMed  Google Scholar 

  44. Kimura T, Sato K, Malchinkhuu E, Tomura H, Tamama K, Kuwabara A, et al. High-density lipoprotein stimulates endothelial cell migration and survival through sphingosine 1-phosphate and its receptors. Arterioscler Thromb Vasc Biol. 2003;23:1283–8.

    Article  CAS  PubMed  Google Scholar 

  45. Yuhanna IS, Zhu Y, Cox BE, Hahner LD, Osborne-Lawrence S, Lu P, et al. High-density lipoprotein binding to scavenger receptor-bi activates endothelial nitric oxide synthase. Nat Med. 2001;7:853–7.

    Article  CAS  PubMed  Google Scholar 

  46. Argraves KM, Gazzolo PJ, Groh EM, Wilkerson BA, Matsuura BS, Twal WO, et al. High density lipoprotein-associated sphingosine 1-phosphate promotes endothelial barrier function. J Biol Chem. 2008;283:25074–81.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Wilkerson BA, Grass GD, Wing SB, Argraves WS, Argraves KM. Sphingosine 1-phosphate (s1p) carrier-dependent regulation of endothelial barrier: High density lipoprotein (hdl)-s1p prolongs endothelial barrier enhancement as compared with albumin-s1p via effects on levels, trafficking, and signaling of s1p1. J Biol Chem. 2012;287:44645–53.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Galvani S, Sanson M, Blaho VA, Swendeman SL, Conger H, Dahlback B, et al. Hdl-bound sphingosine 1-phosphate acts as a biased agonist for the endothelial cell receptor s1p1 to limit vascular inflammation. Sci Signal. 2015;8:ra79. This paper showed that HDL-bound S1P acts as a β-arrestin biased ligand leading to inhibition of endothelial inflammation. It was also shown that endothelial S1PR1 is anti-inflammatory in vivo and prevents the development of atherosclerosis in areas of laminar flow.

    Article  PubMed  PubMed Central  Google Scholar 

  49. Whetzel AM, Bolick DT, Srinivasan S, Macdonald TL, Morris MA, Ley K, et al. Sphingosine-1 phosphate prevents monocyte/endothelial interactions in type 1 diabetic nod mice through activation of the s1p1 receptor. Circ Res. 2006;99:731–9.

    Article  CAS  PubMed  Google Scholar 

  50. Tauseef M, Kini V, Knezevic N, Brannan M, Ramchandaran R, Fyrst H, et al. Activation of sphingosine kinase-1 reverses the increase in lung vascular permeability through sphingosine-1-phosphate receptor signaling in endothelial cells. Circ Res. 2008.

  51. Zhao Y, Gorshkova IA, Berdyshev E, He D, Fu P, Ma W, et al. Protection of lps-induced murine acute lung injury by sphingosine-1-phosphate lyase suppression. Am J Respir Cell Mol Biol. 2011.

  52. Feistritzer C, Riewald M. Endothelial barrier protection by activated protein c through par1-dependent sphingosine 1-phosphate receptor-1 crossactivation. Blood. 2005;105:3178–84.

    Article  CAS  PubMed  Google Scholar 

  53. Finigan JH, Dudek SM, Singleton PA, Chiang ET, Jacobson JR, Camp SM, et al. Activated protein c mediates novel lung endothelial barrier enhancement: role of sphingosine 1-phosphate receptor transactivation. J Biol Chem. 2005;280:17286–93.

    Article  CAS  PubMed  Google Scholar 

  54. Singleton PA, Moreno-Vinasco L, Sammani S, Wanderling SL, Moss J, Garcia JG. Attenuation of vascular permeability by methylnaltrexone: role of mop-r and s1p3 transactivation. Am J Respir Cell Mol Biol. 2007;37:222–31.

    Article  CAS  PubMed  Google Scholar 

  55. Cruz-Orengo L, Daniels BP, Dorsey D, Basak SA, Grajales-Reyes JG, McCandless EE, et al. Enhanced sphingosine-1-phosphate receptor 2 expression underlies female cns autoimmunity susceptibility. J Clin Invest. 2014;124:2571–84.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Xia P, Gamble JR, Rye KA, Wang L, Hii CS, Cockerill P, et al. Tumor necrosis factor-alpha induces adhesion molecule expression through the sphingosine kinase pathway. Proc Natl Acad Sci U S A. 1998;95:14196–201.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Takeya H, Gabazza EC, Aoki S, Ueno H, Suzuki K. Synergistic effect of sphingosine 1-phosphate on thrombin-induced tissue factor expression in endothelial cells. Blood. 2003;102:1693–700.

    Article  CAS  PubMed  Google Scholar 

  58. Barter PJ, Nicholls S, Rye KA, Anantharamaiah GM, Navab M, Fogelman AM. Antiinflammatory properties of hdl. Circ Res. 2004;95:764–72.

    Article  CAS  PubMed  Google Scholar 

  59. Sattler K, Levkau B. Sphingosine-1-phosphate as a mediator of high-density lipoprotein effects in cardiovascular protection. Cardiovasc Res. 2009;82:201–11.

    Article  CAS  PubMed  Google Scholar 

  60. Nofer JR, Bot M, Brodde M, Taylor PJ, Salm P, Brinkmann V, et al. Fty720, a synthetic sphingosine 1 phosphate analogue, inhibits development of atherosclerosis in low-density lipoprotein receptor-deficient mice. Circulation. 2007;115:501–8.

    Article  CAS  PubMed  Google Scholar 

  61. Keul P, Tolle M, Lucke S, von Wnuck LK, Heusch G, Schuchardt M, et al. The sphingosine-1-phosphate analogue fty720 reduces atherosclerosis in apolipoprotein e-deficient mice. Arterioscler Thromb Vasc Biol. 2007;27:607–13.

    Article  CAS  PubMed  Google Scholar 

  62. Klingenberg R, Nofer JR, Rudling M, Bea F, Blessing E, Preusch M, et al. Sphingosine-1-phosphate analogue fty720 causes lymphocyte redistribution and hypercholesterolemia in apoe-deficient mice. Arterioscler Thromb Vasc Biol. 2007;27:2392–9.

    Article  CAS  PubMed  Google Scholar 

  63. Poti F, Gualtieri F, Sacchi S, Weissen-Plenz G, Varga G, Brodde M, et al. Krp-203, sphingosine 1-phosphate receptor type 1 agonist, ameliorates atherosclerosis in ldl-r−/− mice. Arterioscler Thromb Vasc Biol. 2013;33:1505–12.

    Article  CAS  PubMed  Google Scholar 

  64. Skoura A, Michaud J, Im DS, Thangada S, Xiong Y, Smith JD, et al. Sphingosine-1-phosphate receptor-2 function in myeloid cells regulates vascular inflammation and atherosclerosis. Arterioscler Thromb Vasc Biol. 2011;31:81–5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Keul P, Lucke S, von Wnuck LK, Bode C, Graler M, Heusch G, et al. Sphingosine-1-phosphate receptor 3 promotes recruitment of monocyte/macrophages in inflammation and atherosclerosis. Circ Res. 2011;108:314–23.

    Article  CAS  PubMed  Google Scholar 

  66. Poti F, Ceglarek U, Burkhardt R, Simoni M, Nofer JR. Ski-ii - a sphingosine kinase 1 inhibitor—exacerbates atherosclerosis in low-density lipoprotein receptor-deficient (ldl-r(−/−)) mice on high cholesterol diet. Atherosclerosis. 2015;240:212–5.

    Article  CAS  PubMed  Google Scholar 

  67. Poti F, Bot M, Costa S, Bergonzini V, Maines L, Varga G, et al. Sphingosine kinase inhibition exerts both pro- and anti-atherogenic effects in low-density lipoprotein receptor-deficient (ldl-r(−/−)) mice. Thromb Haemost. 2012;107:552–61.

    Article  CAS  PubMed  Google Scholar 

  68. Bot M, Van Veldhoven PP, de Jager SC, Johnson J, Nijstad N, Van Santbrink PJ, et al. Hematopoietic sphingosine 1-phosphate lyase deficiency decreases atherosclerotic lesion development in ldl-receptor deficient mice. PLoS One. 2013;8, e63360.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Sanchez T, Estrada-Hernandez T, Paik JH, Wu MT, Venkataraman K, Brinkmann V, et al. Phosphorylation and action of the immunomodulator fty720 inhibits vascular endothelial cell growth factor-induced vascular permeability. J Biol Chem. 2003;278:47281–90.

    Article  CAS  PubMed  Google Scholar 

  70. Jung B, Obinata H, Galvani S, Mendelson K, Ding BS, Skoura A, et al. Flow-regulated endothelial s1p receptor-1 signaling sustains vascular development. Dev Cell. 2012;23:600–10.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Michaud J, Im DS, Hla T. Inhibitory role of sphingosine 1-phosphate receptor 2 in macrophage recruitment during inflammation. J Immunol. 2010;184:1475–83.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Sanna MG, Wang SK, Gonzalez-Cabrera PJ, Don A, Marsolais D, Matheu MP, et al. Enhancement of capillary leakage and restoration of lymphocyte egress by a chiral s1p1 antagonist in vivo. Nat Chem Biol. 2006;2:434–41.

    Article  CAS  PubMed  Google Scholar 

  73. Theilmeier G, Schmidt C, Herrmann J, Keul P, Schafers M, Herrgott I, et al. High-density lipoproteins and their constituent, sphingosine-1-phosphate, directly protect the heart against ischemia/reperfusion injury in vivo via the s1p3 lysophospholipid receptor. Circulation. 2006;114:1403–9.

    Article  CAS  PubMed  Google Scholar 

  74. Nofer JR, van der Giet M, Tolle M, Wolinska I, von Wnuck LK, Baba HA, et al. Hdl induces no-dependent vasorelaxation via the lysophospholipid receptor s1p3. J Clin Invest. 2004;113:569–81.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Deutschman DH, Carstens JS, Klepper RL, Smith WS, Page MT, Young TR, et al. Predicting obstructive coronary artery disease with serum sphingosine-1-phosphate. Am Heart J. 2003;146:62–8.

    Article  CAS  PubMed  Google Scholar 

  76. Sattler KJ, Elbasan S, Keul P, Elter-Schulz M, Bode C, Graler MH, et al. Sphingosine 1-phosphate levels in plasma and hdl are altered in coronary artery disease. Basic Res Cardiol. 2010;105:821–32.

    Article  CAS  PubMed  Google Scholar 

  77. Argraves KM, Sethi AA, Gazzolo PJ, Wilkerson BA, Remaley AT, Tybjaerg-Hansen A, et al. S1p, dihydro-s1p and c24:1-ceramide levels in the hdl-containing fraction of serum inversely correlate with occurrence of ischemic heart disease. Lipids Health Dis. 2011;10:70.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Knapp M, Baranowski M, Czarnowski D, Lisowska A, Zabielski P, Gorski J, et al. Plasma sphingosine-1-phosphate concentration is reduced in patients with myocardial infarction. Med Sci Monit. 2009;15:CR490–3.

    CAS  PubMed  Google Scholar 

  79. Sugiura T, Dohi Y, Yamashita S, Ohte N, Ito S, Iwaki S, et al. Analytical evaluation of plasma serotonin and sphingosine 1-phosphate and their clinical assessment in early atherosclerosis. Coron Artery Dis. 2012;23:234–8.

    Article  PubMed  Google Scholar 

  80. Sattler K, Lehmann I, Graler M, Brocker-Preuss M, Erbel R, Heusch G, et al. Hdl-bound sphingosine 1-phosphate (s1p) predicts the severity of coronary artery atherosclerosis. Cell Physiol Biochem. 2014;34:172–84. This paper showed that the content of S1P in HDL from CAD patients negatively correlated with the severity of the disease and low HDL-bound S1P predicted the severity of CAD.

    Article  CAS  PubMed  Google Scholar 

  81. Sattler K, Graler M, Keul P, Weske S, Reimann CM, Jindrova H, et al. Defects of high-density lipoproteins in coronary artery disease caused by low sphingosine-1-phosphate content: correction by sphingosine-1-phosphate-loading. J Am Coll Cardiol. 2015;66:1470–85. This study showed that, in patients with CAD, the reduced S1P content in HDL contributes to HDL dysfunction which could be corrected by S1P loading.

    Article  CAS  PubMed  Google Scholar 

  82. Saver JL. Improving reperfusion therapy for acute ischaemic stroke. J Thromb Haemost. 2011;9 Suppl 1:333–43.

    Article  PubMed  Google Scholar 

  83. Molina CA, Alvarez-Sabin J. Recanalization and reperfusion therapies for acute ischemic stroke. Cerebrovasc Dis. 2009;27 Suppl 1:162–7.

    Article  PubMed  Google Scholar 

  84. Hamann GF, Okada Y, del Zoppo GJ. Hemorrhagic transformation and microvascular integrity during focal cerebral ischemia/reperfusion. J Cereb Blood Flow Metab. 1996;16:1373–8.

    Article  CAS  PubMed  Google Scholar 

  85. Ames 3rd A, Wright RL, Kowada M, Thurston JM, Majno G. Cerebral ischemia. Ii. The no-reflow phenomenon. Am J Pathol. 1968;52:437–53.

    PubMed  PubMed Central  Google Scholar 

  86. del Zoppo GJ, Mabuchi T. Cerebral microvessel responses to focal ischemia. J Cereb Blood Flow Metab. 2003;23:879–94.

    Article  PubMed  Google Scholar 

  87. Czech B, Pfeilschifter W, Mazaheri-Omrani N, Strobel MA, Kahles T, Neumann-Haefelin T, et al. The immunomodulatory sphingosine 1-phosphate analog fty720 reduces lesion size and improves neurological outcome in a mouse model of cerebral ischemia. Biochem Biophys Res Commun. 2009;389:251–6.

    Article  CAS  PubMed  Google Scholar 

  88. Hasegawa Y, Suzuki H, Sozen T, Rolland W, Zhang JH. Activation of sphingosine 1-phosphate receptor-1 by fty720 is neuroprotective after ischemic stroke in rats. Stroke. 2010;41:368–74.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  89. Wei Y, Yemisci M, Kim HH, Yung LM, Shin HK, Hwang SK, et al. Fingolimod provides long-term protection in rodent models of cerebral ischemia. Ann Neurol. 2011.

  90. Liesz A, Sun L, Zhou W, Schwarting S, Mracsko E, Zorn M, et al. Fty720 reduces post-ischemic brain lymphocyte influx but does not improve outcome in permanent murine cerebral ischemia. PLoS One. 2011;6, e21312.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  91. Campos F, Qin T, Castillo J, Seo JH, Arai K, Lo EH, et al. Fingolimod reduces hemorrhagic transformation associated with delayed tissue plasminogen activator treatment in a mouse thromboembolic model. Stroke. 2013;44:505–11.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  92. Kraft P, Gob E, Schuhmann MK, Gobel K, Deppermann C, Thielmann I, et al. Fty720 ameliorates acute ischemic stroke in mice by reducing thrombo-inflammation but not by direct neuroprotection. Stroke. 2013;44:3202–10.

    Article  CAS  PubMed  Google Scholar 

  93. Cai A, Schlunk F, Bohmann F, Kashefiolasl S, Brunkhorst R, Foerch C, et al. Coadministration of fty720 and rt-pa in an experimental model of large hemispheric stroke-no influence on functional outcome and blood–brain barrier disruption. Exp Transl Stroke Med. 2013;5:11.

    Article  PubMed  PubMed Central  Google Scholar 

  94. Fu Y, Zhang N, Ren L, Yan Y, Sun N, Li YJ, et al. Impact of an immune modulator fingolimod on acute ischemic stroke. Proc Natl Acad Sci U S A. 2014;111:18315–20.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  95. Zhu Z, Fu Y, Tian D, Sun N, Han W, Chang G, et al. Combination of an immune modulator fingolimod with alteplase in acute ischemic stroke: a pilot trial. Circulation. 2015.

  96. Choi JW, Gardell SE, Herr DR, Rivera R, Lee CW, Noguchi K, et al. Fty720 (fingolimod) efficacy in an animal model of multiple sclerosis requires astrocyte sphingosine 1-phosphate receptor 1 (s1p1) modulation. Proc Natl Acad Sci U S A. 2011;108:751–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  97. Kappos L, Antel J, Comi G, Montalban X, O’Connor P, Polman CH, et al. Oral fingolimod (fty720) for relapsing multiple sclerosis. N Engl J Med. 2006;355:1124–40.

    Article  CAS  PubMed  Google Scholar 

  98. Vogelgesang A, Grunwald U, Langner S, Jack R, Broker BM, Kessler C, et al. Analysis of lymphocyte subsets in patients with stroke and their influence on infection after stroke. Stroke. 2008;39:237–41.

    Article  PubMed  Google Scholar 

  99. Dirnagl U, Klehmet J, Braun JS, Harms H, Meisel C, Ziemssen T, et al. Stroke-induced immunodepression: experimental evidence and clinical relevance. Stroke. 2007;38:770–3.

    Article  PubMed  Google Scholar 

Download references

Acknowledgments

This work was supported by NIH grant HL094465 and American Heart Association grant 12GRNT12050110 (to TS), the Departments of Surgery and Emergency Medicine, Beth Israel Deaconess Medical Center, and the Department of Pathology and Laboratory Medicine, Weill Cornell Medical College.

The author would like to thank Dr. Bill Aird (Beth Israel Deaconess Medical Center) and Drs. Timothy Hla, Michael Kluk, Victoria Blaho, and Sylvain Galvani (Weill Cornell Medical College) for very helpful discussions during the preparation of the manuscript. We also thank Dr. Li Yang (Beth Israel Deaconess Medical Center) for her help with the cerebrovascular permeability studies in mice.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Teresa Sanchez.

Ethics declarations

Conflict of Interest

Teresa Sanchez declares no conflict of interest.

Human and Animal Rights and Informed Consent

All animal studies were approved by the Beth Israel Deaconess Medical Center Institutional Animal Care and Use Committee.

Additional information

This article is part of the Topical Collection on Vascular Biology

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sanchez, T. Sphingosine-1-Phosphate Signaling in Endothelial Disorders. Curr Atheroscler Rep 18, 31 (2016). https://doi.org/10.1007/s11883-016-0586-1

Download citation

  • Published:

  • DOI: https://doi.org/10.1007/s11883-016-0586-1

Keywords

Navigation