Skip to main content
Log in

The Neurobiological Grounding of Persistent Stuttering: from Structure to Function

  • Neuroimaging (DJ Brooks, Section Editor)
  • Published:
Current Neurology and Neuroscience Reports Aims and scope Submit manuscript

Abstract

Neuroimaging and transcranial magnetic stimulation provide insights into the neuronal mechanisms underlying speech disfluencies in chronic persistent stuttering. In the present paper, the goal is not to provide an exhaustive review of existing literature, but rather to highlight robust findings. We, therefore, conducted a meta-analysis of diffusion tensor imaging studies which have recently implicated disrupted white matter connectivity in stuttering. A reduction of fractional anisotropy in persistent stuttering has been reported at several different loci. Our meta-analysis revealed consistent deficits in the left dorsal stream and in the interhemispheric connections between the sensorimotor cortices. In addition, recent fMRI meta-analyses link stuttering to reduced left fronto-parieto-temporal activation while greater fluency is associated with boosted co-activations of right fronto-parieto-temporal areas. However, the physiological foundation of these irregularities is not accessible with MRI. Complementary, transcranial magnetic stimulation (TMS) reveals local excitatory and inhibitory regulation of cortical dynamics. Applied to a speech motor area, TMS revealed reduced speech-planning-related neuronal dynamics at the level of the primary motor cortex in stuttering. Together, this review provides a focused view of the neurobiology of stuttering to date and may guide the rational design of future research. This future needs to account for the perpetual dynamic interactions between auditory, somatosensory, and speech motor circuits that shape fluent speech.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1

Similar content being viewed by others

Abbreviations

AF:

Arcuate fasciculus

ALE:

Activation likelihood estimation

DTI:

Diffusion tensor imaging

FA:

Fractional anisotropy

FDR:

False discovery rate

IFG:

Inferior frontal gyrus

IPL:

Inferior parietal lobe

M1:

Primary motor cortex

MEP:

Motor evoked potential

MFG:

Middle frontal gyrus

MTG:

Middle temporal gyrus

SLF:

Superior longitudinal fasciculus

SMA:

Supplementary motor area

SMG:

Supramarginal gyrus

SPL:

Superior parietal lobe

STG:

Superior temporal gyrus

TBSS:

Tract-based spatial statistics

TMS:

Transcranial magnetic stimulation

VBS:

Voxel-based statistics

References

Papers of particular interest, published recently, have been highlighted as: • Of importance •• Of major importance

  1. Yairi E, Ambrose NG. Early childhood stuttering. Austin: Pro-Ed; 2005.

    Google Scholar 

  2. Howell P, Davis S. Predicting persistence of and recovery from stuttering by the teenage years based on information gathered at age 8 years. J Dev Behav Pediatr. 2011;32:196–205.

    Article  PubMed  Google Scholar 

  3. Dworzynski K, Remington A, Rijsdijk F, Howell P, Plomin R. Genetic etiology in cases of recovered and persistent stuttering in an unselected longitudinal sample of young twins. Am J Speech-Lang Pathol. 2007;16:169.

    Article  PubMed Central  PubMed  Google Scholar 

  4. Craig A. Epidemiology of stuttering in the community across the entire life span. J Speech Lang Hear Res. 2002;45:1097–105.

    Article  PubMed  Google Scholar 

  5. Bloodstein O, Ratner NB. A handbook on stuttering. 6th ed. Clifton Park: Delmar Learning; 2008.

    Google Scholar 

  6. Wingate ME. A standard definition of stuttering. J Speech Hear Disord. 1964;29:484.

    Article  CAS  PubMed  Google Scholar 

  7. Yaruss JS. Assessing quality of life in stuttering treatment outcomes research. J Fluen Disord. 2010;35:190–202.

    Article  Google Scholar 

  8. Kraft SJ, Yairi E. Genetic bases of stuttering: the state of the art, 2011. Folia Phoniatr Logop. 2012;64:33–46.

    Article  Google Scholar 

  9. Suresh R, Ambrose N, Roe C, Pluzhnikov A, Wittke-Thompson JK, Ng MC-Y, et al. New complexities in the genetics of stuttering: significant sex-specific linkage signals. Am J Hum Genet. 2006;78:554–63.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  10. Riaz N, Steinberg S, Ahmad J, Pluzhnikov A, Riazuddin S, Cox NJ, et al. Genomewide significant linkage to stuttering on chromosome 12. Am J Hum Genet. 2005;76:647–51.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  11. Yairi E, Ambrose N. Epidemiology of stuttering: 21st century advances. J Fluen Disord. 2013;38:66–87. This article is a comprehensive review on epidemiological factors in stuttering also critically evaluating the current biological research of gene identification.

    Article  Google Scholar 

  12. Kraft SJ. Genome-wide association study of persistent developmental stuttering. University of Illinois at Urbana- Champaign; 2010

  13. Damsté PH, Zwaan EJ, Schoenaker TJ. Learning principles applied to the stuttering problem. Folia Phoniatr Logop. 1968;20:327–41.

    Article  Google Scholar 

  14. Riper CV. The nature of stuttering. Prentice-Hall; 1971

  15. Smith A, Kelly E. Stuttering: a dynamic multifactorial model. In: Curlee R, Siegel G, editors. Nature and treatment of stuttering: new directions. 2nd ed. Needham Heights, MA: Allyn & Bacon; 1997. p. 204–17.

    Google Scholar 

  16. Starkweather CW, Gottwald SR. The demands and capacities model II: clinical applications. J Fluen Disord. 1990;15:143–57.

    Article  Google Scholar 

  17. Coulter CE, Anderson JD, Conture EG. Childhood stuttering and dissociations across linguistic domains: a replication and extension. J Fluen Disord. 2009;34:257–78.

    Article  Google Scholar 

  18. Howell P. Assessment of some contemporary theories of stuttering that apply to spontaneous speech. Contemp Issues Commun Sci Disord. 2004;31:122–39.

    PubMed Central  PubMed  Google Scholar 

  19. Postma A, Kolk H. The covert repair hypothesis: prearticulatory repair processes in normal and stuttered disfluencies. J Speech Hear Res. 1993;36:472–87.

    Article  CAS  PubMed  Google Scholar 

  20. Civier O, Tasko SM, Guenther FH. Overreliance on auditory feedback may lead to sound/syllable repetitions: simulations of stuttering and fluency-inducing conditions with a neural model of speech production. J Fluen Disord. 2010;35:246–79.

    Article  Google Scholar 

  21. Namasivayam AK, van Lieshout P, McIlroy WE, De Nil L. Sensory feedback dependence hypothesis in persons who stutter. Hum Mov Sci. 2009;28:688–707.

    Article  PubMed  Google Scholar 

  22. Van Lieshout P, Hulstijn W, Peters H. Searching for the weak link in the speech production chain of people who stutter: a motor skill approach. In: Maassen B, Kent R, Peters HFM, van Lieshout P, Hulstijn W, editors. Speech motor control in normal and disordered speech. New York: Oxford University Press; 2004.

    Google Scholar 

  23. Alm PA. Stuttering and the basal ganglia circuits: a critical review of possible relations. J Commun Disord. 2004;37:325–69.

    Article  PubMed  Google Scholar 

  24. Büchel C, Sommer M. What causes stuttering? PLoS Biol. 2004;2:e46.

    Article  PubMed Central  PubMed  Google Scholar 

  25. Etchell AC, Johnson BW, Sowman PF. Beta oscillations, timing, and stuttering. Front Hum Neurosci. 2015;8:1036.

    Article  PubMed Central  PubMed  Google Scholar 

  26. Kent RD. Research on speech motor control and its disorders: a review and prospective. J Commun Disord. 2000;33:391–428.

    Article  CAS  PubMed  Google Scholar 

  27. Ludlow CL. Stuttering: dysfunction in a complex and dynamic system. Brain. 2000;123:1983–4.

    Article  PubMed  Google Scholar 

  28. Travis LE. The cerebral dominance theory of stuttering: 1931–1978. J Speech Hear Disord. 1978;43:278–81.

    Article  CAS  PubMed  Google Scholar 

  29. Orton ST, Travis L. Studies in stuttering: IV. Studies of action currents in stutterers. Arch NeurPsych. 1929;21:61–8.

    Article  Google Scholar 

  30. Foundas AL, Bollich AM, Corey DM, Hurley M, Heilman KM. Anomalous anatomy of speech-language areas in adults with persistent developmental stuttering. Neurology. 2001;57:207–15.

    Article  CAS  PubMed  Google Scholar 

  31. Sommer M, Koch MA, Paulus W, Weiller C, Büchel C. Disconnection of speech-relevant brain areas in persistent developmental stuttering. Lancet. 2002;360:380–3.

    Article  PubMed  Google Scholar 

  32. Ludlow CL, Loucks T. Stuttering: a dynamic motor control disorder. J Fluen Disord. 2003;28:273–95.

    Article  Google Scholar 

  33. Salmelin R, Schnitzler A, Schmitz F, Freund H-J. Single word reading in developmental stutterers and fluent speakers. Brain. 2000;123:1184–202.

    Article  PubMed  Google Scholar 

  34. Hickok G, Houde J, Rong F. Sensorimotor integration in speech processing: computational basis and neural organization. Neuron. 2011;69:407–22.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  35. Foundas AL, Bollich AM, Feldman J, Corey DM, Hurley M, Lemen LC, et al. Aberrant auditory processing and atypical planum temporale in developmental stuttering. Neurology. 2004;63:1640–6.

    Article  CAS  PubMed  Google Scholar 

  36. Ackermann H. Cerebellar contributions to speech production and speech perception: psycholinguistic and neurobiological perspectives. Trends Neurosci. 2008;31:265–72.

    Article  CAS  PubMed  Google Scholar 

  37. Goldstein L, Pouplier M. The temporal organization of speech. In: Goldrick M, Ferreira VS, Miozzo M, editors. The Oxford Handbook of Language Production. Oxford University Press; 2014.

    Google Scholar 

  38. Batliner A, Möbius B, Möhler G, Schweitzer A, Nöth E. Prosodic models, automatic speech understanding, and speech synthesis: towards the common ground. In: Proc. 7th Europ. Conf. on Speech Communication and Technology, 2001;2285-8.

  39. Vry M-S, Saur D, Rijntjes M, Umarova R, Kellmeyer P, Schnell S, et al. Ventral and dorsal fiber systems for imagined and executed movement. Exp Brain Res. 2012;219:203–16.

    Article  PubMed  Google Scholar 

  40. Magrassi L, Aromataris G, Cabrini A, Annovazzi-Lodi V, Moro A. Sound representation in higher language areas during language generation. PNAS. 2015;112:1868–73.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  41. Wymbs NF, Ingham RJ, Ingham JC, Paolini KE, Grafton ST. Individual differences in neural regions functionally related to real and imagined stuttering. Brain Lang. 2013;124:153–64.

    Article  PubMed Central  PubMed  Google Scholar 

  42. Rosenfield DB. Neural anomaly and reorganization in speakers who stutter: a short-term intervention study. Neurology. 2013;80:1538–8.

  43. Budde KS, Barron DS, Fox PT. Stuttering, induced fluency, and natural fluency: a hierarchical series of activation likelihood estimation meta-analyses. Brain Lang. 2014;139:99–107. Together with the ALE meta-analysis by Belyk and colleagues this article concentrates the most robust findings of functional neuroimaging in stuttering of the last 30 years.

    Article  PubMed  PubMed Central  Google Scholar 

  44. Belyk M, Kraft SJ, Brown S. Stuttering as a trait or state—an ALE meta-analysis of neuroimaging studies. Eur J Neurosci. 2015;41:275–84. Together with the ALE meta-analysis by Budde and colleagues this article concentrates the most robust findings of functional neuroimaging in stuttering of the last 30 years.

    Article  PubMed  Google Scholar 

  45. Assaf Y, Pasternak O. Diffusion tensor imaging (DTI)-based white matter mapping in brain research: a review. J Mol Neurosci. 2007;34:51–61.

    Article  CAS  Google Scholar 

  46. Smith SM, Jenkinson M, Johansen-Berg H, Rueckert D, Nichols TE, Mackay CE, et al. Tract-based spatial statistics: voxelwise analysis of multi-subject diffusion data. NeuroImage. 2006;31:1487–505.

    Article  PubMed  Google Scholar 

  47. Eickhoff SB, Laird AR, Grefkes C, Wang LE, Zilles K, Fox PT. Coordinate-based activation likelihood estimation meta-analysis of neuroimaging data: a random-effects approach based on empirical estimates of spatial uncertainty. Hum Brain Mapp. 2009;30:2907–26.

    Article  PubMed Central  PubMed  Google Scholar 

  48. Heidemann RM, Anwander A, Feiweier T, Knösche TR, Turner R. k-space and q-space: combining ultra-high spatial and angular resolution in diffusion imaging using ZOOPPA at 7 T. NeuroImage. 2012;60:967–78.

    Article  PubMed  Google Scholar 

  49. Jeon H-A, Anwander A, Friederici AD. Functional network mirrored in the prefrontal cortex, caudate nucleus, and thalamus: high-resolution functional imaging and structural connectivity. J Neurosci. 2014;34:9202–12.

    Article  CAS  PubMed  Google Scholar 

  50. Connally EL, Ward D, Howell P, Watkins KE. Disrupted white matter in language and motor tracts in developmental stuttering. Brain Lang. 2014;131:25–35.

    Article  PubMed  Google Scholar 

  51. Cieslak M, Ingham RJ, Ingham JC, Grafton ST. Anomalous white matter morphology in adults who stutter. J Speech Lang Hear Res. 2015;58:268–77.

    Article  PubMed  PubMed Central  Google Scholar 

  52. Chang S-E, Horwitz B, Ostuni J, Reynolds R, Ludlow CL. Evidence of left inferior frontal–premotor structural and functional connectivity deficits in adults who stutter. Cereb Cortex. 2011;21:2507–18.

    Article  PubMed Central  PubMed  Google Scholar 

  53. Friederici AD, Gierhan SM. The language network. Curr Opin Neurobiol. 2013;23:250–4.

    Article  CAS  PubMed  Google Scholar 

  54. Makris N, Kennedy DN, McInerney S, Sorensen AG, Wang R, Caviness VS, et al. Segmentation of subcomponents within the superior longitudinal fascicle in humans: a quantitative, in vivo DT-MRI study. Cereb Cortex. 2005;15:854–69.

    Article  PubMed  Google Scholar 

  55. Martino J, Hamer PCDW, Berger MS, Lawton MT, Arnold CM, de Lucas EM, et al. Analysis of the subcomponents and cortical terminations of the perisylvian superior longitudinal fasciculus: a fiber dissection and DTI tractography study. Brain Struct Funct. 2012;218:105–21.

    Article  PubMed  Google Scholar 

  56. Schreiber J, Riffert T, Anwander A, Knösche TR. Plausibility tracking: a method to evaluate anatomical connectivity and microstructural properties along fiber pathways. NeuroImage. 2014;90:163–78.

    Article  PubMed  Google Scholar 

  57. Aboitiz F, Scheibel AB, Fisher RS, Zaidel E. Fiber composition of the human corpus callosum. Brain Res. 1992;598:143–53.

    Article  CAS  PubMed  Google Scholar 

  58. Hipp JF, Hawellek DJ, Corbetta M, Siegel M, Engel AK. Large-scale cortical correlation structure of spontaneous oscillatory activity. Nat Neurosci. 2012;15:884–90.

    Article  CAS  PubMed  Google Scholar 

  59. Stark DE, Margulies DS, Shehzad ZE, Reiss P, Kelly AMC, Uddin LQ, et al. Regional variation in interhemispheric coordination of intrinsic hemodynamic fluctuations. J Neurosci. 2008;28:13754–64.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  60. Barazany D, Basser PJ, Assaf Y. In vivo measurement of axon diameter distribution in the corpus callosum of rat brain. Brain. 2009;132:1210–20.

    Article  PubMed Central  PubMed  Google Scholar 

  61. Assaf Y, Blumenfeld-Katzir T, Yovel Y, Basser PJ. Axcaliber: a method for measuring axon diameter distribution from diffusion MRI. Magn Reson Med. 2008;59:1347–54.

    Article  PubMed  PubMed Central  Google Scholar 

  62. Alexander DC, Hubbard PL, Hall MG, Moore EA, Ptito M, Parker GJM, et al. Orientationally invariant indices of axon diameter and density from diffusion MRI. NeuroImage. 2010;52:1374–89.

    Article  PubMed  Google Scholar 

  63. Chang S-E, Zhu DC, Choo AL, Angstadt M. White matter neuroanatomical differences in young children who stutter. Brain. 2015;138:694–711. This article reports the neuroanatomical connectivity changes in developmental stuttering measured with diffusion MRI in the youngest and largest cohort published to date.

    Article  PubMed  Google Scholar 

  64. Chang S-E, Erickson KI, Ambrose NG, Hasegawa-Johnson MA, Ludlow CL. Brain anatomy differences in childhood stuttering. NeuroImage. 2008;39:1333–44.

    Article  PubMed Central  PubMed  Google Scholar 

  65. Watkins KE, Smith SM, Davis S, Howell P. Structural and functional abnormalities of the motor system in developmental stuttering. Brain. 2008;131:50–9.

    Article  PubMed Central  PubMed  Google Scholar 

  66. Cai S, Tourville JA, Beal DS, Perkell JS, Guenther FH, Ghosh SS. Diffusion imaging of cerebral white matter in persons who stutter: evidence for network-level anomalies. Front Hum Neurosci. 2014;8:54.

    Article  PubMed Central  PubMed  Google Scholar 

  67. Civier O, Kronfeld-Duenias V, Amir O, Ezrati-Vinacour R, Ben-Shachar M. Reduced fractional anisotropy in the anterior corpus callosum is associated with reduced speech fluency in persistent developmental stuttering. Brain Lang. 2015;143:20–31.

    Article  PubMed  Google Scholar 

  68. Kronfeld-Duenias V, Amir O, Ezrati-Vinacour R, Civier O, Ben-Shachar M. The frontal aslant tract underlies speech fluency in persistent developmental stuttering. Brain Struct Funct. 2014;1–17.

  69. Friederici AD, Singer W. Grounding language processing on basic neurophysiological principles. Trends Cogn Sci. 2015. doi:10.1016/j.tics.2015.03.012. This review is in line with a current paradigm shift in cognitive neuroscience emphasizing the view that cognitive functions depend on distributed computations in specialized cortical areas forming large-scale dynamic recurrent networks.

    Google Scholar 

  70. Wilson SM, Galantucci S, Tartaglia MC, Rising K, Patterson DK, Henry ML, et al. Syntactic processing depends on dorsal language tracts. Neuron. 2011;72:397–403.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  71. Friederici AD. The cortical language circuit: from auditory perception to sentence comprehension. Trends Cogn Sci. 2012;16:262–8.

    Article  PubMed  Google Scholar 

  72. Sarubbo S, De Benedictis A, Merler S, Mandonnet E, Balbi S, Granieri E, et al. Towards a functional atlas of human white matter. Hum Brain Mapp. 2015. doi:10.1002/hbm.22832. This original paper reports results from cortical and subcortical electrostimulations in 130 patients under awake surgery for glioma, providing comprehensive subcortical functional maps of left and right hemisphere connections.

    PubMed  Google Scholar 

  73. Bizzi A, Nava S, Ferrè F, Castelli G, Aquino D, Ciaraffa F, et al. Aphasia induced by gliomas growing in the ventrolateral frontal region: assessment with diffusion MR tractography, functional MR imaging and neuropsychology. Cortex. 2012;48:255–72.

    Article  PubMed  Google Scholar 

  74. Duffau H, Gatignol P, Denvil D, Lopes M, Capelle L. The articulatory loop: study of the subcortical connectivity by electrostimulation. Neuroreport. 2003;14:2005–8.

    Article  PubMed  Google Scholar 

  75. Guenther FH, Hickok G. Chapter 9 - Role of the auditory system in speech production. In: Aminoff MJ, Boller F, Swaab DF, editors. Handbook of clinical neurology. Elsevier; 2015. p. 161–75. Guenther and Hickok set out to advance mechanistic models of speech production summarizing and comparing their approaches for the first time in this most recent article.

  76. Rauschecker JP, Scott SK. Maps and streams in the auditory cortex: nonhuman primates illuminate human speech processing. Nat Neurosci. 2009;12:718–24.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  77. Fox PT, Ingham RJ, Ingham JC, Hirsch TB, Downs JH, Martin C, et al. A PET study of the neural systems of stuttering. Nature. 1996;382:158–62.

    Article  CAS  PubMed  Google Scholar 

  78. Braun AR, Varga M, Stager S, Schulz G, Selbie S, Maisog JM, et al. Altered patterns of cerebral activity during speech and language production in developmental stuttering. An H2(15)O positron emission tomography study. Brain. 1997;120:761–84.

    Article  PubMed  Google Scholar 

  79. Ingham RJ, Fox PT, Costello Ingham J, Zamarripa F. Is overt stuttered speech a prerequisite for the neural activations associated with chronic developmental stuttering? Brain Lang. 2000;75:163–94.

    Article  CAS  PubMed  Google Scholar 

  80. Ingham RJ, Grafton ST, Bothe AK, Ingham JC. Brain activity in adults who stutter: similarities across speaking tasks and correlations with stuttering frequency and speaking rate. Brain Lang. 2012;122:11–24.

    Article  PubMed Central  PubMed  Google Scholar 

  81. De Nil LF, Kroll RM, Kapur S, Houle S. A positron emission tomography study of silent and oral single word reading in stuttering and nonstuttering adults. J Speech Lang Hear Res. 2000;43:1038–53.

    Article  PubMed  Google Scholar 

  82. De Nil LF, Kroll RM, Lafaille SJ, Houle S. A positron emission tomography study of short- and long-term treatment effects on functional brain activation in adults who stutter. J Fluen Disord. 2003;28:357–80.

    Article  Google Scholar 

  83. Neumann K, Preibisch C, Euler HA, von Gudenberg AW, Lanfermann H, Gall V, et al. Cortical plasticity associated with stuttering therapy. J Fluen Disord. 2005;30:23–39.

    Article  Google Scholar 

  84. Preibisch C, Neumann K, Raab P, Euler HA, von Gudenberg AW, Lanfermann H, et al. Evidence for compensation for stuttering by the right frontal operculum. NeuroImage. 2003;20:1356–64.

    Article  PubMed  Google Scholar 

  85. Nil LFD, Beal DS, Lafaille SJ, Kroll RM, Crawley AP, Gracco VL. The effects of simulated stuttering and prolonged speech on the neural activation patterns of stuttering and nonstuttering adults. Brain Lang. 2008;107:114–23.

    Article  PubMed  Google Scholar 

  86. Giraud A-L, Neumann K, Bachoud-Levi A-C, von Gudenberg AW, Euler HA, Lanfermann H, et al. Severity of dysfluency correlates with basal ganglia activity in persistent developmental stuttering. Brain Lang. 2008;104:190–9.

    Article  PubMed  Google Scholar 

  87. Chang S-E, Kenney MK, Loucks TMJ, Ludlow CL. Brain activation abnormalities during speech and non-speech in stuttering speakers. NeuroImage. 2009;46:201–12.

    Article  PubMed Central  PubMed  Google Scholar 

  88. Neef NE, Jung K, Rothkegel H, Pollok B, von Gudenberg AW, Paulus W, et al. Right-shift for non-speech motor processing in adults who stutter. Cortex. 2011;47:945–54.

    Article  PubMed  Google Scholar 

  89. Kikuchi Y, Ogata K, Umesaki T, Yoshiura T, Kenjo M, Hirano Y, et al. Spatiotemporal signatures of an abnormal auditory system in stuttering. NeuroImage. 2011;55:891–9.

    Article  PubMed  Google Scholar 

  90. Krishnan G, Nair RP, Tiwari S. Clinical evidence for the compensatory role of the right frontal lobe and a novel neural substrate in developmental stuttering: a single case study. J Neurolinguistics. 2010;23:501–10.

    Article  Google Scholar 

  91. Kell CA, Morillon B, Kouneiher F, Giraud A-L. Lateralization of speech production starts in sensory cortices—a possible sensory origin of cerebral left dominance for speech. Cereb Cortex. 2011;21:932–7.

    Article  PubMed  Google Scholar 

  92. Hallett M. Transcranial magnetic stimulation: a primer. Neuron. 2007;55:187–99.

    Article  CAS  PubMed  Google Scholar 

  93. Weiler N, Wood L, Yu J, Solla SA, Shepherd GMG. Top-down laminar organization of the excitatory network in motor cortex. Nat Neurosci. 2008;11:360–6.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  94. Busan P, D’Ausilio A, Borelli M, Monti F, Pelamatti G, Pizzolato G, et al. Motor excitability evaluation in developmental stuttering: a transcranial magnetic stimulation study. Cortex. 2013;49:781–92.

    Article  PubMed  Google Scholar 

  95. Alm PA, Karlsson R, Sundberg M, Axelson HW. Hemispheric lateralization of motor thresholds in relation to stuttering. PLoS ONE. 2013;8:e76824.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  96. Sommer M, Knappmeyer K, Hunter EJ, Gudenberg AW, Neef N, Paulus W. Normal interhemispheric inhibition in persistent developmental stuttering. Mov Disord. 2009;24:769–73.

    Article  PubMed  Google Scholar 

  97. Kujirai T, Caramia MD, Rothwell JC, Day BL, Thompson PD, Ferbert A, et al. Corticocortical inhibition in human motor cortex. J Physiol. 1993;471:501–19.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  98. Fisher RJ, Nakamura Y, Bestmann S, Rothwell JC, Bostock H. Two phases of intracortical inhibition revealed by transcranial magnetic threshold tracking. Exp Brain Res. 2002;143:240–8.

    Article  CAS  PubMed  Google Scholar 

  99. Hanajima R, Furubayashi T, Iwata NK, Shiio Y, Okabe S, Kanazawa I, et al. Further evidence to support different mechanisms underlying intracortical inhibition of the motor cortex. Exp Brain Res. 2003;151:427–34.

    Article  PubMed  Google Scholar 

  100. Neef NE, Paulus W, Neef A, von Gudenberg AW, Sommer M. Reduced intracortical inhibition and facilitation in the primary motor tongue representation of adults who stutter. Clin Neurophysiol. 2011;122:1802–11.

    Article  CAS  PubMed  Google Scholar 

  101. Cash RFH, Isayama R, Gunraj CA, Ni Z, Chen R. The influence of sensory afferent input on local motor cortical excitatory circuitry in humans. J Physiol. 2015;593:1667–84. This work suggests that the sensory input on excitatory motor cortical circuitry plays an important role in sensorimotor integration and motor control.

    Article  CAS  PubMed  Google Scholar 

  102. Neef NE, Hoang TNL, Neef A, Paulus W, Sommer M. Speech dynamics are coded in the left motor cortex in fluent speakers but not in adults who stutter. Brain. 2015;138:712–25. Neef et al. verify the proposed uncoupling of motor output cells from motor plan cells in left primary motor cortex in fluent speech, and reveal its disruption in stuttering.

    Article  PubMed  Google Scholar 

  103. Civier O, Bullock D, Max L, Guenther FH. Computational modeling of stuttering caused by impairments in a basal ganglia thalamo-cortical circuit involved in syllable selection and initiation. Brain Lang. 2013;126:263–78. Civier et al. employ the most sophisticated mechanistic model of speech production to simulate stuttering and at the same time accounting for brain imaging findings.

    Article  PubMed Central  PubMed  Google Scholar 

  104. Sakai N, Masuda S, Shimotomai T, Mori K. Brain activation in adults who stutter under delayed auditory feedback: an fMRI study. Int J Speech Lang Pathol. 2009;11:2–11.

    Article  Google Scholar 

  105. den Ouden D-B, Montgomery A, Adams C. Simulating the neural correlates of stuttering. Neurocase. 2014;20:434–45.

    Article  Google Scholar 

  106. Kell CA, Neumann K, von Kriegstein K, Posenenske C, von Gudenberg AW, Euler H, et al. How the brain repairs stuttering. Brain. 2009;132:2747–60.

    Article  PubMed  Google Scholar 

  107. Weintraub S, Mesulam M, Kramer L. Disturbances in prosody—a right-hemisphere contribution to language. Arch Neurol. 1981;38:742–4.

    Article  CAS  PubMed  Google Scholar 

  108. Wildgruber D, Ackermann H, Klose U, Kardatzki B, Grodd W. Functional lateralization of speech production at primary motor cortex: a fMRI study. Neuroreport. 1996;7:2791–5.

    Article  CAS  PubMed  Google Scholar 

  109. Friederici AD, Alter K. Lateralization of auditory language functions: a dynamic dual pathway model. Brain Lang. 2004;89:267–76.

    Article  PubMed  Google Scholar 

  110. Meyer M, Alter K, Friederici AD, Lohmann G, von Cramon DY. FMRI reveals brain regions mediating slow prosodic modulations in spoken sentences. Hum Brain Mapp. 2002;17:73–88.

    Article  PubMed  Google Scholar 

  111. Karniol R. Stuttering, language, and cognition: a review and a model of stuttering as suprasegmental sentence plan alignment (SPA). Psychol Bull. 1995;117:104–24.

    Article  CAS  PubMed  Google Scholar 

  112. Giraud A-L, Poeppel D. Cortical oscillations and speech processing: emerging computational principles and operations. Nat Neurosci. 2012;15:511–7.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  113. Giraud A-L, Kleinschmidt A, Poeppel D, Lund TE, Frackowiak RSJ, Laufs H. Endogenous cortical rhythms determine cerebral specialization for speech perception and production. Neuron. 2007;56:1127–34.

    Article  CAS  PubMed  Google Scholar 

  114. Duffau H. Stimulation mapping of white matter tracts to study brain functional connectivity. Nat Rev Neurol. 2015;11:255–65.

    Article  PubMed  Google Scholar 

  115. Wu JC, Maguire G, Riley G, Lee A, Keator D, Tang C, et al. Increased dopamine activity associated with stuttering. Neuroreport. 1997;8:767–70.

    Article  CAS  PubMed  Google Scholar 

  116. Toyomura A, Fujii T, Kuriki S. Effect of external auditory pacing on the neural activity of stuttering speakers. NeuroImage. 2011;57:1507–16.

    Article  PubMed  Google Scholar 

  117. Toyomura A, Fujii T, Kuriki S. Effect of an 8-week practice of externally triggered speech on basal ganglia activity of stuttering and fluent speakers. NeuroImage. 2015;109:458–68.

    Article  PubMed  Google Scholar 

  118. Bhatnagar S, Buckingham H. Neurogenic stuttering: its reticular modulation. Curr Neurol Neurosci Rep. 2010;10:491–8.

    Article  PubMed  Google Scholar 

  119. Wald LL. The future of acquisition speed, coverage, sensitivity, and resolution. NeuroImage. 2012;62:1221–9.

    Article  PubMed Central  PubMed  Google Scholar 

  120. Huber L, Goense J, Kennerley AJ, Trampel R, Guidi M, Reimer E, et al. Cortical lamina-dependent blood volume changes in human brain at 7 T. NeuroImage. 2015;107:23–33.

    Article  PubMed  Google Scholar 

  121. Kubikova L, Bosikova E, Cvikova M, Lukacova K, Scharff C, Jarvis ED. Basal ganglia function, stuttering, sequencing, and repair in adult songbirds. Sci Rep. 2014;4:6590. doi:10.1038/srep06590.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  122. Fukushima M, Margoliash D. The effects of delayed auditory feedback revealed by bone conduction microphone in adult zebra finches. Sci Rep. 2015;5:8800. doi:10.1038/srep08800. This work demonstrates that a transient stuttering period can be induced by delayed auditory feedback (DAF) and that neither DAF-induced stuttering nor its recovery occurs instantaneously but depends on long-term tuning of involved circuits.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  123. Palmer LM, Schulz JM, Murphy SC, Ledergerber D, Murayama M, Larkum ME. The cellular basis of GABAB-mediated interhemispheric inhibition. Science. 2012;335:989–93. Palmer et al. discovered a mechanistic principle of how interhemispheric inhibition could be implemented in the brain.

    Article  CAS  PubMed  Google Scholar 

  124. Manita S, Suzuki T, Homma C, Matsumoto T, Odagawa M, Yamada K, et al. A top-down cortical circuit for accurate sensory perception. Neuron. 2015;86:1–13. doi:10.1016/j.neuron.2015.05.006. Manita et al. demonstrate the impact of recurrent interaction between primary and secondary motor and somatosensory circuits on perception.

    Article  CAS  Google Scholar 

  125. Fillard P, Pennec X, Arsigny V, Ayache N. Clinical DT-MRI estimation, smoothing, and fiber tracking with log-Euclidean metrics. IEEE Trans Med Imaging. 2007;26:1472–82.

    Article  PubMed  Google Scholar 

  126. Cykowski MD, Fox PT, Ingham RJ, Ingham JC, Robin DA. A study of the reproducibility and etiology of diffusion anisotropy differences in developmental stuttering: a potential role for impaired myelination. NeuroImage. 2010;52:1495–504.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

Deutsche Forschungsgemeinschaft (NE1841/1-1) supported Nicole E. Neef.

Compliance with Ethics Guidelines

Conflict of Interest

Nicole E. Neef, Alfred Anwander, and Angela D. Friederici declare that they have no conflict of interest.

Human and Animal Rights and Informed Consent

This article does not contain any studies with human or animal subjects performed by any of the authors.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nicole E. Neef.

Additional information

This article is part of the Topical Collection on Neuroimaging

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Neef, N.E., Anwander, A. & Friederici, A.D. The Neurobiological Grounding of Persistent Stuttering: from Structure to Function. Curr Neurol Neurosci Rep 15, 63 (2015). https://doi.org/10.1007/s11910-015-0579-4

Download citation

  • Published:

  • DOI: https://doi.org/10.1007/s11910-015-0579-4

Keywords

Navigation