Skip to main content

Advertisement

Log in

Hematopoietic Cell Regulation of Osteoblast Proliferation and Differentiation

  • Published:
Current Osteoporosis Reports Aims and scope Submit manuscript

Abstract

The last several decades have revealed numerous interactions between cells of the hematopoietic lineage and osteoblasts (OBs) of the mesenchymal lineage. For example, OBs are important players in the hematopoietic stem cell (HSC) niche and OBs are known to impact osteoclast (OC) development. Thus, although much is known regarding the impact OBs have on hematopoietic cells, less is known about the impact of hematopoietic cells on OBs. Here we will review this reciprocal relationship: the effects of hematopoietic cells on OBs. Specifically, we will examine the impact of hematopoietic cells such as HSCs, lymphocytes, and megakaryocytes, as well as the hematopoietic cell–derived OCs on OB proliferation, differentiation, and function.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

Papers of particular interest, published recently, have been highlighted as: • Of importance •• Of major importance

  1. Marie PJ. Transcription factors controlling osteoblastogenesis. Arch Biochem Biophys. 2008;473:98–105.

    Article  PubMed  CAS  Google Scholar 

  2. Giuliani N, Colla S, Morandi F, et al. Myeloma cells block RUNX2/CBFA1 activity in human bone marrow osteoblast progenitors and inhibit osteoblast formation and differentiation. Blood. 2005;106:2472–83.

    Article  PubMed  CAS  Google Scholar 

  3. Ehrlich LA, Chung HY, Ghobrial I, et al. IL-3 is a potential inhibitor of osteoblast differentiation in multiple myeloma. Blood. 2005;106:1407–14.

    Article  PubMed  CAS  Google Scholar 

  4. • Lymperi S, Ferraro F, Scadden DT. The HSC niche concept has turned 31. Has our knowledge matured? Ann N Y Acad Sci. 2010;1192:12–8. This review article discusses the role of OBs as well as other cells in supporting HSCs.

    Article  PubMed  CAS  Google Scholar 

  5. Schofield R. The relationship between the spleen colony-forming cell and the haemopoietic stem cell. Blood Cells. 1978;4:7–25.

    PubMed  CAS  Google Scholar 

  6. Calvi LM, Adams GB, Weibrecht KW, et al. Osteoblastic cells regulate the haematopoietic stem cell niche. Nature. 2003;425:841–6.

    Article  PubMed  CAS  Google Scholar 

  7. Zhang J, Niu C, Ye L, et al. Identification of the haematopoietic stem cell niche and control of the niche size. Nature. 2003;425:836–41.

    Article  PubMed  CAS  Google Scholar 

  8. • Kiel MJ, Morrison SJ. Uncertainty in the niches that maintain haematopoietic stem cells. Nat Rev Immunol. 2008;8:290–301. This review nicely clarifies the confusing use of the word “osteoblast” when referring to cells on the surface of bone within the HSC niche. This review nicely clarifies the confusing use of the word “osteoblast” when referring to cells on the surface of bone within the HSC niche.

    Article  PubMed  CAS  Google Scholar 

  9. • Porter RL, Calvi LM. Communications between bone cells and hematopoietic stem cells. Arch Biochem Biophys. 2008;473:193–200. This review article discusses the role of OBs as well as other cells in supporting HSCs.

    Article  PubMed  CAS  Google Scholar 

  10. Purton LE, Scadden DT. The hematopoietic stem cell niche (November 15, 2008). In: Silberstein L, editors. StemBook. The Stem Cell Research Community, StemBook, 2008, doi:10.3824/stembook.1.28.1, http://www.stembook.org

  11. Chitteti BR, Cheng YH, Streicher DA, et al. Osteoblast lineage cells expressing high levels of Runx2 enhance hematopoietic progenitor cell proliferation and function. J Cell Biochem. 2010;111:284–94.

    Article  PubMed  CAS  Google Scholar 

  12. Cheng YH, Chitteti BR, Streicher DA, et al. Impact of osteoblast maturational status on their ability to enhance the hematopoietic function of stem and progenitor cells. J Bone Miner Res. 2010 [Epub ahead of print].

  13. Chitteti BR, Cheng YH, Poteat B, et al. Impact of interactions of cellular components of the bone marrow microenvironment on hematopoietic stem and progenitor cell function. Blood. 2010;115:3239–48.

    Article  PubMed  CAS  Google Scholar 

  14. Weber JM, Forsythe SR, Christianson CA, et al. Parathyroid hormone stimulates expression of the notch ligand Jagged1 in osteoblastic cells. Bone. 2006;39:485–93.

    Article  PubMed  CAS  Google Scholar 

  15. Silverman GJ, Carson DA. Roles of B cells in rheumatoid arthritis. Arthritis Res Ther. 2003;5 Suppl 4:S1–6.

    Article  PubMed  Google Scholar 

  16. Shu ST, Martin CK, Thudi NK, et al. Osteolytic bone resorption in adult T-cell leukemia/lymphoma. Leuk Lymphoma. 2010;51:702–14.

    Article  PubMed  CAS  Google Scholar 

  17. Silvestris F, Cafforio P, Tucci M, et al. Upregulation of osteoblast apoptosis by malignant plasma cells: a role in myeloma bone disease. Br J Haematol. 2003;122:39–52.

    Article  PubMed  CAS  Google Scholar 

  18. •• Hayer S, Polzer K, Brandl A, et al. B-cell infiltrates induce endosteal bone formation in inflammatory arthritis. J Bone Miner Res. 2008;23:1650–60. This article shows that reduced numbers of B cells in mice having inflammatory arthritis are associated with reduced OB number and bone formation.

    Article  PubMed  CAS  Google Scholar 

  19. Mohanty ST, Kottam L, Gambardella A, et al. Alterations in the self-renewal and differentiation ability of bone marrow mesenchymal stem cells in a mouse model of rheumatoid arthritis. Arthritis Res Ther. 2010;12:R149.

    Article  PubMed  Google Scholar 

  20. Udagawa N, Kotake S, Kamatani N, et al. The molecular mechanism of osteoclastogenesis in rheumatoid arthritis. Arthritis Res. 2002;4:281–9.

    Article  PubMed  CAS  Google Scholar 

  21. Edwards CM, Mundy GR. Eph receptors and ephrin signaling pathways: a role in bone homeostasis. Int J Med Sci. 2008;5:263–72.

    PubMed  CAS  Google Scholar 

  22. Sanchez-Fernandez MA, Gallois A, Riedl T, et al. Osteoclasts control osteoblast chemotaxis via PDGF-BB/PDGF receptor beta signaling. PLoS ONE. 2008;3:e3537.

    Article  PubMed  Google Scholar 

  23. Luiz de Freitas PH, Li M, Ninomiya T, et al. Intermittent PTH administration stimulates pre-osteoblastic proliferation without leading to enhanced bone formation in osteoclast-less c-fos(−/−) mice. J Bone Miner Res. 2009;24:1586–97.

    Article  PubMed  CAS  Google Scholar 

  24. Zhao C, Irie N, Takada Y, et al. Bidirectional ephrinB2-EphB4 signaling controls bone homeostasis. Cell Metab. 2006;4:111–21.

    Article  PubMed  CAS  Google Scholar 

  25. Pennisi A, Ling W, Li X, et al. The ephrinB2/EphB4 axis is dysregulated in osteoprogenitors from myeloma patients and its activation affects myeloma bone disease and tumor growth. Blood. 2009;114:1803–12.

    Article  PubMed  CAS  Google Scholar 

  26. • Chang MK, Raggatt LJ, Alexander KA, et al. Osteal tissue macrophages are intercalated throughout human and mouse bone lining tissues and regulate osteoblast function in vitro and in vivo. J Immunol. 2008;181:1232–44. This article describes the ability of macrophages to modulate OB mineralization.

    PubMed  CAS  Google Scholar 

  27. Kacena MA, Shivdasani RA, Wilson K, et al. Megakaryocyte-osteoblast interaction revealed in mice deficient in transcription factors GATA-1 and NF-E2. J Bone Miner Res. 2004;19:652–60.

    Article  PubMed  CAS  Google Scholar 

  28. Ciovacco WA, Goldberg CG, Taylor AF, et al. The role of gap junctions in megakaryocyte-mediated osteoblast proliferation and differentiation. Bone. 2009;44:80–6.

    Article  PubMed  CAS  Google Scholar 

  29. Lemieux JM, Horowitz MC, Kacena MA. Involvement of integrins alpha(3)beta(1) and alpha(5)beta(1) and glycoprotein IIb in megakaryocyte-induced osteoblast proliferation. J Cell Biochem. 2010;109:927–32.

    PubMed  CAS  Google Scholar 

  30. Ciovacco WA, Cheng YH, Horowitz MC, Kacena MA. Immature and mature megakaryocytes enhance osteoblast proliferation and inhibit osteoclast formation. J Cell Biochem. 2010;109:774–81.

    PubMed  CAS  Google Scholar 

  31. Frey BM, Rafii S, Teterson M, et al. Adenovector-mediated expression of human thrombopoietin cDNA in immune-compromised mice: Insights into the pathophysiology of osteomyelofibrosis. J Immunol. 1998;160:691–9.

    PubMed  CAS  Google Scholar 

  32. Yan XQ, Lacey D, Hill D, et al. A model of myelofibrosis and osteosclerosis in mice induced by overexpressing thrombopoietin (mpl ligand): reversal of disease by bone marrow transplantation. Blood. 1996;88:402–9.

    PubMed  CAS  Google Scholar 

  33. Villeval JL, Cohen-Solal K, Tulliez M, et al. High thrombopoietin production by hematopoietic cells induces a fatal myeloproliferative syndrome in mice. Blood. 1997;90:4369–83.

    PubMed  CAS  Google Scholar 

  34. Suva LJ, Hartman E, Dilley JD, et al. Platelet dysfunction and a high bone mass phenotype in a murine model of platelet-type von willebrand disease. Am J Pathol. 2008;172:430–9.

    Article  PubMed  CAS  Google Scholar 

  35. Kacena MA, Nelson T, Clough ME, et al. Megakaryocyte-mediated inhibition of osteoclast development. Bone. 2006;39:991–9.

    Article  PubMed  CAS  Google Scholar 

  36. Beeton CA, Bord S, Ireland D, Compston JE. Osteoclast formation and bone resorption are inhibited by megakaryocytes. Bone. 2006;39:985–90.

    Article  PubMed  CAS  Google Scholar 

  37. • Dominici M, Rasini V, Bussolari R, et al. Restoration and reversible expansion of the osteoblastic hematopoietic stem cell niche after marrow radioablation. Blood. 2009;114:2333–43. This article shows that following lethal irradiation, MKs migrate to endosteal bone surfaces and stimulate OB proliferation.

    Article  PubMed  CAS  Google Scholar 

  38. Kacena MA, Gundberg CM, Nelson T, Horowitz MC. Loss of the transcription factor p45 NF-E2 results in a developmental arrest of megakaryocyte differentiation and the onset of a high bone mass phenotype. Bone. 2005;36:215–23.

    Article  PubMed  CAS  Google Scholar 

  39. Bord S, Vedi S, Beavan SR, et al. Megakaryocyte population in human bone marrow increases with estrogen treatment: a role in bone remodeling? Bone. 2000;27:397–401.

    Article  PubMed  CAS  Google Scholar 

  40. Bord S, Frith E, Ireland DC, et al. Synthesis of osteoprotegerin and RANKL by megakaryocytes is modulated by oestrogen. Br J Haematol. 2004;126:244–51.

    Article  PubMed  CAS  Google Scholar 

  41. Heiss CJ, Sanborn CF, Nichols DL, et al. Associations of body fat distribution, circulating sex hormones, and bone density in postmenopausal women. J Clin Endocrinol Metab. 1995;80:1591–6.

    Article  PubMed  CAS  Google Scholar 

  42. Thiele J, Kvasnicka HM, Fischer R. Histochemistry and morphometry on bone marrow biopsies in chronic myeloproliferative disorders—aids to diagnosis and classification. Ann Hematol. 1999;78:495–506.

    Article  PubMed  CAS  Google Scholar 

  43. Chagraoui H, Wendling F, Vainchenker W. Pathogenesis of myelofibrosis with myeloid metaplasia: Insight from mouse models. Best Pract Res Clin Haematol. 2006;19:399–412.

    Article  PubMed  CAS  Google Scholar 

  44. Miao D, Murant S, Scutt N, et al. Megakaryocyte-bone marrow stromal cell aggregates demonstrate increased colony formation and alkaline phosphatase expression in vitro. Tissue Eng. 2004;10:807–17.

    Article  PubMed  CAS  Google Scholar 

  45. Willecke K, Eiberger J, Degen J, et al. Structural and functional diversity of connexin genes in the mouse and human genome. Biol Chem. 2002;383:725–37.

    Article  PubMed  CAS  Google Scholar 

  46. Krenacs T, Rosendaal M. Connexin43 gap junctions in normal, regenerating, and cultured mouse bone marrow and in human leukemias: Their possible involvement in blood formation. Am J Pathol. 1998;152:993–1004.

    PubMed  CAS  Google Scholar 

  47. Donahue HJ. Gap junctions and biophysical regulation of bone cell differentiation. Bone. 2000;26:417–22.

    Article  PubMed  CAS  Google Scholar 

  48. Schmitz B, Thiele J, Otto F, et al. Evidence for integrin receptor involvement in megakaryocyte-fibroblast interaction: a possible pathomechanism for the evolution of myelofibrosis. J Cell Physiol. 1998;176:445–55.

    Article  PubMed  CAS  Google Scholar 

  49. Wickenhauser C, Schmitz B, Baldus SE, et al. Selectins (CD62L, CD62P) and megakaryocytic glycoproteins (CD41a, CD42b) mediate megakaryocyte-fibroblast interactions in human bone marrow. Leuk Res. 2000;24:1013–21.

    Article  PubMed  CAS  Google Scholar 

  50. Bord S, Frith E, Ireland DC, et al. Megakaryocytes modulate osteoblast synthesis of type-l collagen, osteoprotegerin, and RANKL. Bone. 2005;36:812–9.

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

We would like to thank our long-time collaborator Dr. Mark C. Horowitz for his role on our published studies that we discussed here. This work was supported by the Indiana—Clinical and Translational Sciences Institute funded, in part by National Institutes of Health (NIH) grants NCRR RR025760 and RR025761 (MAK), the Department of Orthopaedic Surgery, Indiana University School of Medicine (MAK), and by NIH grant NIAMS R03 AR055269 (MAK).

Disclosure

Conflicts of interest: M. Bethel: none; E.F. Srour: none; M. A. Kacena: none.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Melissa A. Kacena.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bethel, M., Srour, E.F. & Kacena, M.A. Hematopoietic Cell Regulation of Osteoblast Proliferation and Differentiation. Curr Osteoporos Rep 9, 96–102 (2011). https://doi.org/10.1007/s11914-011-0048-1

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11914-011-0048-1

Keywords

Navigation