Skip to main content

Advertisement

Log in

Diabetes and Its Effect on Bone and Fracture Healing

  • Bone and Diabetes (AV Schwartz and P Vestergaard, Section Editors)
  • Published:
Current Osteoporosis Reports Aims and scope Submit manuscript

Abstract

Diabetes mellitus is a metabolic disorder that increases fracture risk, interferes with bone formation, and impairs fracture healing. Type 1 diabetes mellitus (T1DM) and type 2 diabetes mellitus (T2DM) both increase fracture risk and have several common features that affect the bone including hyperglycemia and increased advanced glycation end product (AGE) formation, reactive oxygen species (ROS) generation, and inflammation. These factors affect both osteoblasts and osteoclasts leading to increased osteoclasts and reduced numbers of osteoblasts and bone formation. In addition to fracture healing, T1DM and T2DM impair bone formation under conditions of perturbation such as bacteria-induced periodontal bone loss by increasing osteoblast apoptosis and reducing expression of factors that stimulate osteoblasts such as BMPs and growth factors.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2

Similar content being viewed by others

References

Papers of particular interest, published recently, have been highlighted as: • Of importance •• Of major importance

  1. Moseley KF. Type 2 diabetes and bone fractures. Curr Opin Endocrinol Diabetes Obes. 2012;19(2):128–35.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Gong Z, Muzumdar RH. Pancreatic function, type 2 diabetes, and metabolism in aging. Int J Endocrinol. 2012;2012:320482.

    Article  PubMed Central  PubMed  Google Scholar 

  3. Yan W, Li X. Impact of diabetes and its treatments on skeletal diseases. Front Med. 2013;7(1):81–90. This paper discusses the impact of diabetes on skeletal diseases and shows that both T1DM and T2DM are associated with an increased risk of osteoporosis and fragility fractures. Bone mineral density is reduced in T1DM, whereas patients with T2DM have normal or slightly higher bone density, suggesting impaired bone quality is involved in T2DM.

    Article  PubMed  Google Scholar 

  4. Hameedaldeen A, Liu J, Batres A, Graves GS, Graves DT. FOXO1, TGF-beta regulation and wound healing. Int J Mol Sci. 2014;15(9):16257–69.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  5. Wang Y, Zhou Y, Graves DT. FOXO transcription factors: their clinical significance and regulation. Biomed Res Int. 2014;2014:925350.

    PubMed Central  PubMed  Google Scholar 

  6. Yamagishi S. Role of advanced glycation end products (AGEs) in osteoporosis in diabetes. Curr Drug Targets. 2011;12(14):2096–102.

    Article  CAS  PubMed  Google Scholar 

  7. Graves DT, Kayal RA. Diabetic complications and dysregulated innate immunity. Front Biosci. 2008;13:1227–39.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  8. Cruz NG, Sousa LP, Sousa MO, Pietrani NT, Fernandes AP, Gomes KB. The linkage between inflammation and type 2 diabetes mellitus. Diabetes Res Clin Pract. 2013;99(2):85–92.

    Article  CAS  PubMed  Google Scholar 

  9. Nikolajczyk BS, Jagannathan-Bogdan M, Shin H, Gyurko R. State of the union between metabolism and the immune system in type 2 diabetes. Genes Immun. 2011;12(4):239–50. This paper summarizes that the cytokines secreted by multiple immune and non-immune cell types are dominant regulators of the pathological inflammation that characterizes and promotes T2D. These cytokines also be thought to contribute to diabetic complications.

    Article  CAS  PubMed  Google Scholar 

  10. Andriankaja OM, Galicia J, Dong G, Xiao W, Alawi F, Graves DT. Gene expression dynamics during diabetic periodontitis. J Dent Res. 2012;91(12):1160–5.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  11. Pacios S, Kang J, Galicia J, et al. Diabetes aggravates periodontitis by limiting repair through enhanced inflammation. FASEB J. 2012;26(4):1423–30. This paper shows that diabetes prolongs inflammation and osteoclastogenesis in periodontitis and through TNF limits the normal reparative process by negatively modulating factors that stimulate bone formation.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  12. Pacios S, Andriankaja O, Kang J, et al. Bacterial infection increases periodontal bone loss in diabetic rats through enhanced apoptosis. Am J Pathol. 2013;183(6):1928–35.

    Article  CAS  PubMed  Google Scholar 

  13. Alblowi J, Tian C, Siqueira MF, et al. Chemokine expression is upregulated in chondrocytes in diabetic fracture healing. Bone. 2013;53(1):294–300. This paper points to the importance of TNF-α as a mechanism for diabetes enhanced chemokine expression by chondrocytes, which may contribute to the accelerated loss of cartilage observed in diabetic fracture healing. Moreover, in vitro results of this study point to FOXO1 as a potentially important transcription factor in mediating this effect.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  14. Alblowi J, Kayal RA, Siqueria M, et al. High levels of tumor necrosis factor-alpha contribute to accelerated loss of cartilage in diabetic fracture healing. Am J Pathol. 2009;175(4):1574–85.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  15. Silva JA, Lopes Ferrucci D, Peroni LA, et al. Periodontal disease-associated compensatory expression of osteoprotegerin is lost in type 1 diabetes mellitus and correlates with alveolar bone destruction by regulating osteoclastogenesis. Cells Tissues Organs. 2012;196(2):137–50.

    Article  CAS  PubMed  Google Scholar 

  16. Silva JA, Ferrucci DL, Peroni LA, et al. Sequential IL-23 and IL-17 and increased Mmp8 and Mmp14 expression characterize the progression of an experimental model of periodontal disease in type 1 diabetes. J Cell Physiol. 2012;227(6):2441–50.

    Article  CAS  PubMed  Google Scholar 

  17. Kang J, de Brito BB, Pacios S, et al. Aggregatibacter actinomycetemcomitans infection enhances apoptosis in vivo through a caspase-3-dependent mechanism in experimental periodontitis. Infect Immun. 2012;80(6):2247–56.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  18. Liu R, Bal HS, Desta T, et al. Diabetes enhances periodontal bone loss through enhanced resorption and diminished bone formation. J Dent Res. 2006;85(6):510–4.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  19. Bastos AS, Graves DT, Loureiro AP, et al. Lipid peroxidation is associated with the severity of periodontal disease and local inflammatory markers in patients with type 2 diabetes. J Clin Endocrinol Metab. 2012;97:1353–62.

    Article  CAS  Google Scholar 

  20. Duarte PM, de Oliveira MC, Tambeli CH, Parada CA, Casati MZ, Nociti Jr FH. Overexpression of interleukin-1beta and interleukin-6 may play an important role in periodontal breakdown in type 2 diabetic patients. J Periodontal Res. 2007;42(4):377–81.

    Article  CAS  PubMed  Google Scholar 

  21. Mahamed DA, Marleau A, Alnaeeli M, et al. G(−) anaerobes-reactive CD4 + T-cells trigger RANKL-mediated enhanced alveolar bone loss in diabetic NOD mice. Diabetes. 2005;54(5):1477–86.

    Article  CAS  PubMed  Google Scholar 

  22. Santos VR, Lima JA, Goncalves TE, et al. Receptor activator of nuclear factor-kappa B ligand/osteoprotegerin ratio in sites of chronic periodontitis of subjects with poorly and well-controlled type 2 diabetes. J Periodontol. 2010;81(10):1455–65.

    Article  CAS  PubMed  Google Scholar 

  23. Drosatos-Tampakaki Z, Drosatos K, Siegelin Y, et al. Palmitic acid and DGAT1 deficiency enhance osteoclastogenesis, while oleic acid-induced triglyceride formation prevents it. J Bone Miner Res. 2014;29(5):1183–95.

    Article  CAS  PubMed  Google Scholar 

  24. Hasturk H, Kantarci A, Goguet-Surmenian E, et al. Resolvin E1 regulates inflammation at the cellular and tissue level and restores tissue homeostasis in vivo. J Immunol. 2007;179(10):7021–9.

    Article  CAS  PubMed  Google Scholar 

  25. Sarkar PD, Choudhury AB. Relationships between serum osteocalcin levels versus blood glucose, insulin resistance and markers of systemic inflammation in central Indian type 2 diabetic patients. Eur Rev Med Pharmacol Sci. 2013;17(12):1631–5.

    CAS  PubMed  Google Scholar 

  26. Chang J, Wang Z, Tang E, et al. Inhibition of osteoblastic bone formation by nuclear factor-kappaB. Nat Med. 2009;15(6):682–9.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  27. Lu H, Kraut D, Gerstenfeld L, Graves D. Diabetes interferes with the bone formation by affecting the expression of transcription factors that regulate osteoblast differentiation. Endocrinology. 2003;144:346–52.

    Article  CAS  PubMed  Google Scholar 

  28. Coe LM, Irwin R, Lippner D, McCabe LR. The bone marrow microenvironment contributes to type I diabetes induced osteoblast death. J Cell Physiol. 2011;226(2):477–83. The findings in this paper implicate the bone marrow microenvironment and TNF-α in mediating osteoblast death and contributing to type I diabetic bone loss.

    Article  CAS  PubMed  Google Scholar 

  29. Vlassara H, Striker GE. Advanced glycation endproducts in diabetes and diabetic complications. Endocrinol Metab Clin N Am. 2013;42(4):697–719.

    Article  Google Scholar 

  30. Xie J, Mendez JD, Mendez-Valenzuela V, Aguilar-Hernandez MM. Cellular signalling of the receptor for advanced glycation end products (RAGE). Cell Signal. 2013;25(11):2185–97.

    Article  CAS  PubMed  Google Scholar 

  31. Catalfamo DL, Britten TM, Storch DL, Calderon NL, Sorenson HL, Wallet SM. Hyperglycemia induced and intrinsic alterations in type 2 diabetes-derived osteoclast function. Oral Dis. 2013;19(3):303–12.

    PubMed Central  CAS  PubMed  Google Scholar 

  32. Miyata T, Kawai R, Taketomi S, Sprague SM. Possible involvement of advanced glycation end-products in bone resorption. Nephrol Dial Transplant Off Publ Eur Dial Transplant Assoc Eur Ren Assoc. 1996;11 Suppl 5:54–7.

    CAS  Google Scholar 

  33. Ding KH, Wang ZZ, Hamrick MW, et al. Disordered osteoclast formation in RAGE-deficient mouse establishes an essential role for RAGE in diabetes related bone loss. Biochem Biophys Res Commun. 2006;340(4):1091–7.

    Article  CAS  PubMed  Google Scholar 

  34. Lalla E, Lamster IB, Feit M, et al. Blockade of RAGE suppresses periodontitis-associated bone loss in diabetic mice. J Clin Invest. 2000;105(8):1117–24.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  35. Lamster IB. Diabetes and oral health. What’s their relationship? Diabetes Self Manag. 2012;29(3):30. 32–34.

    PubMed  Google Scholar 

  36. Sanguineti R, Storace D, Monacelli F, Federici A, Odetti P. Pentosidine effects on human osteoblasts in vitro. Ann N Y Acad Sci. 2008;1126:166–72.

    Article  CAS  PubMed  Google Scholar 

  37. Alikhani M, Alikhani Z, Boyd C, et al. Advanced glycation end products stimulate osteoblast apoptosis via the MAP kinase and cytosolic apoptotic pathways. Bone. 2007;40(2):345–53.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  38. Baynes JW, Thorpe SR. Role of oxidative stress in diabetic complications: a new perspective on an old paradigm. Diabetes. 1999;48(1):1–9.

    Article  CAS  PubMed  Google Scholar 

  39. Dandona P, Thusu K, Cook S, et al. Oxidative damage to DNA in diabetes mellitus. Lancet. 1996;347(8999):444–5.

    Article  CAS  PubMed  Google Scholar 

  40. Giacco F, Brownlee M. Oxidative stress and diabetic complications. Circ Res. 2010;107(9):1058–70.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  41. Pitocco D, Zaccardi F, Di Stasio E, et al. Oxidative stress, nitric oxide, and diabetes. Rev Diabet Stud. 2010;7(1):15–25.

    Article  PubMed Central  PubMed  Google Scholar 

  42. Niedowicz DM, Daleke DL. The role of oxidative stress in diabetic complications. Cell Biochem Biophys. 2005;43(2):289–330.

    Article  CAS  PubMed  Google Scholar 

  43. Sakurai T, Tsuchiya S. Superoxide production from nonenzymatically glycated protein. FEBS Lett. 1988;236(2):406–10.

    Article  CAS  PubMed  Google Scholar 

  44. Harrison D, Griendling KK, Landmesser U, Hornig B, Drexler H. Role of oxidative stress in atherosclerosis. Am J Cardiol. 2003;91(3A):7A–11A.

    Article  CAS  PubMed  Google Scholar 

  45. Mohazzab KM, Kaminski PM, Wolin MS. NADH oxidoreductase is a major source of superoxide anion in bovine coronary artery endothelium. Am J Physiol. 1994;266(6 Pt 2):H2568–72.

    CAS  PubMed  Google Scholar 

  46. Morikawa D, Norikawa D, Nojiri H, et al. Cytoplasmic reactive oxygen species and SOD1 regulate bone mass during mechanical unloading. J Bone Miner Res. 2013;28(11):2368–80. The results of this paper indicate that mechanical unloading, in part, regulates bone mass via intracellular ROS generation and the Sod1 expression, suggesting that activating Sod1 may be a preventive strategy for ameliorating mechanical unloading-induced bone loss.

    Article  CAS  PubMed  Google Scholar 

  47. Omori K, Ohira T, Uchida Y, et al. Priming of neutrophil oxidative burst in diabetes requires preassembly of the NADPH oxidase. J Leukoc Biol. 2008;84(1):292–301.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  48. Ha H, Kwak HB, Lee SW, et al. Reactive oxygen species mediate RANK signaling in osteoclasts. Exp Cell Res. 2004;301(2):119–27.

    Article  CAS  PubMed  Google Scholar 

  49. Yao D, Brownlee M. Hyperglycemia-induced reactive oxygen species increase expression of the receptor for advanced glycation end products (RAGE) and RAGE ligands. Diabetes. 2010;59(1):249–55.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  50. Bartell SM, Kim HN, Ambrogini E, et al. FoxO proteins restrain osteoclastogenesis and bone resorption by attenuating H2O2 accumulation. Nat Commun. 2014;5:3773. This paper shows that intracellular H2O2 accumulation is a critical and purposeful adaptation for the differentiation and survival of osteoclasts and this is achieved, at least in part, by downregulating the H2O2-inactivating enzyme catalase. Catalase downregulation results from the repression of the transcriptional activity of FoxO1, 3 and 4 by RANKL, the indispensable signal for the generation of osteoclasts, via an Akt-mediated mechanism.

    Article  PubMed Central  PubMed  Google Scholar 

  51. Wang Y, Dong G, Jeon HH, et al. FOXO1 mediates RANKL-induced osteoclast formation and activity. J Immunol. 2015;194(6):2878–87.

    Article  CAS  PubMed  Google Scholar 

  52. Almeida M, O’Brien CA. Basic biology of skeletal aging: role of stress response pathways. J Gerontol A: Biol Med Sci. 2013;68(10):1197–208.

    Article  CAS  Google Scholar 

  53. Fraser JH, Helfrich MH, Wallace HM, Ralston SH. Hydrogen peroxide, but not superoxide, stimulates bone resorption in mouse calvariae. Bone. 1996;19(3):223–6.

    Article  CAS  PubMed  Google Scholar 

  54. Garcia-Hernandez A, Arzate H, Gil-Chavarria I, Rojo R, Moreno-Fierros L. High glucose concentrations alter the biomineralization process in human osteoblastic cells. Bone. 2012;50(1):276–88. This paper shows that a high concentration of extracellular glucose probably acts as an endogenous factor that alters biomineralization. It also suggests that in osteoblastic cells, high glucose regulates the expression of proinflammatory cytokines by crosstalk between signaling pathways, such as PKC-MAPK with ROS or increased AGEs and RAGEs.

    Article  CAS  PubMed  Google Scholar 

  55. Bai XC, Lu D, Bai J, et al. Oxidative stress inhibits osteoblastic differentiation of bone cells by ERK and NF-kappaB. Biochem Biophys Res Commun. 2004;314(1):197–207.

    Article  CAS  PubMed  Google Scholar 

  56. McCarthy AD, Etcheverry SB, Bruzzone L, Lettieri G, Barrio DA, Cortizo AM. Non-enzymatic glycosylation of a type I collagen matrix: effects on osteoblastic development and oxidative stress. BMC Cell Biol. 2001;2:16.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  57. Lechleitner M, Koch T, Herold M, Dzien A, Hoppichler F. Tumour necrosis factor-alpha plasma level in patients with type 1 diabetes mellitus and its association with glycaemic control and cardiovascular risk factors. J Intern Med. 2000;248(1):67–76.

    Article  CAS  PubMed  Google Scholar 

  58. Gonzalez Y, Herrera MT, Soldevila G, et al. High glucose concentrations induce TNF-alpha production through the down-regulation of CD33 in primary human monocytes. BMC Immunol. 2012;13:19.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  59. Wu YY, Yu T, Zhang XH, et al. 1,25(OH)2D3 inhibits the deleterious effects induced by high glucose on osteoblasts through undercarboxylated osteocalcin and insulin signaling. J Steroid Biochem Mol Biol. 2012;132(1–2):112–9.

    Article  CAS  PubMed  Google Scholar 

  60. Ogawa N, Yamaguchi T, Yano S, Yamauchi M, Yamamoto M, Sugimoto T. The combination of high glucose and advanced glycation end-products (AGEs) inhibits the mineralization of osteoblastic MC3T3-E1 cells through glucose-induced increase in the receptor for AGEs. Horm Metab Res. 2007;39(12):871–5.

    Article  CAS  PubMed  Google Scholar 

  61. Gopalakrishnan V, Vignesh RC, Arunakaran J, Aruldhas MM, Srinivasan N. Effects of glucose and its modulation by insulin and estradiol on BMSC differentiation into osteoblastic lineages. Biochem Cell Biol. 2006;84(1):93–101.

    Article  CAS  PubMed  Google Scholar 

  62. Lecka-Czernik B, Gubrij I, Moerman EJ, et al. Inhibition of Osf2/Cbfa1 expression and terminal osteoblast differentiation by PPARgamma2. J Cell Biochem. 1999;74(3):357–71.

    Article  CAS  PubMed  Google Scholar 

  63. Thomas DM, Hards DK, Rogers SD, Ng KW, Best JD. Insulin receptor expression in bone. J Bone Miner Res. 1996;11(9):1312–20.

    Article  CAS  PubMed  Google Scholar 

  64. Thrailkill KM, Lumpkin Jr CK, Bunn RC, Kemp SF, Fowlkes JL. Is insulin an anabolic agent in bone? Dissecting the diabetic bone for clues. Am J Physiol Endocrinol Metab. 2005;289(5):E735–45.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  65. Gandhi A, Beam HA, O’Connor JP, Parsons JR, Lin SS. The effects of local insulin delivery on diabetic fracture healing. Bone. 2005;37(4):482–90.

    Article  CAS  PubMed  Google Scholar 

  66. Nyman JS, Even JL, Jo CH, et al. Increasing duration of type 1 diabetes perturbs the strength-structure relationship and increases brittleness of bone. Bone. 2011;48(4):733–40. This paper shows that in a mouse model of T1DM, systemic insulin deficiency thus the lack of insulin signaling in osteoblasts can affect bone formation and architecture, thereby increasing risk of fracture.

    Article  PubMed Central  PubMed  Google Scholar 

  67. Valerio G, del Puente A, Esposito-del Puente A, Buono P, Mozzillo E, Franzese A. The lumbar bone mineral density is affected by long-term poor metabolic control in adolescents with type 1 diabetes mellitus. Horm Res. 2002;58(6):266–72.

    Article  CAS  PubMed  Google Scholar 

  68. Rakel A, Sheehy O, Rahme E, LeLorier J. Osteoporosis among patients with type 1 and type 2 diabetes. Diabetes Metab. 2008;34(3):193–205.

    Article  CAS  PubMed  Google Scholar 

  69. Iida-Klein A, Hahn TJ. Insulin acutely suppresses parathyroid hormone second messenger generation in UMR-106-01 osteoblast-like cells: differential effects on phospholipase C and adenylate cyclase activation. Endocrinology. 1991;129(2):1016–24.

    Article  CAS  PubMed  Google Scholar 

  70. Iida-Klein A, Varlotta V, Hahn TJ. Protein kinase C activity in UMR-106-01 cells: effects of parathyroid hormone and insulin. J Bone Miner Res. 1989;4(5):767–74.

    Article  CAS  PubMed  Google Scholar 

  71. Janghorbani M, Feskanich D, Willett WC, Hu F. Prospective study of diabetes and risk of hip fracture: the Nurses’ Health Study. Diabetes Care. 2006;29(7):1573–8.

    Article  PubMed  Google Scholar 

  72. Janghorbani M, Van Dam RM, Willett WC, Hu FB. Systematic review of type 1 and type 2 diabetes mellitus and risk of fracture. Am J Epidemiol. 2007;166(5):495–505.

    Article  PubMed  Google Scholar 

  73. Moyer-Mileur LJ, Slater H, Jordan KC, Murray MA. IGF-1 and IGF-binding proteins and bone mass, geometry, and strength: relation to metabolic control in adolescent girls with type 1 diabetes. J Bone Miner Res. 2008;23(12):1884–91.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  74. Vestergaard P. Discrepancies in bone mineral density and fracture risk in patients with type 1 and type 2 diabetes—a meta-analysis. Osteoporos Int J Established Results Cooperation Between Eur Found Osteoporos Natl Osteoporos Found USA. 2007;18(4):427–44.

    Article  CAS  Google Scholar 

  75. Ai-Aql ZS, Alagl AS, Graves DT, Gerstenfeld LC, Einhorn TA. Molecular mechanisms controlling bone formation during fracture healing and distraction osteogenesis. J Dent Res. 2008;87(2):107–18.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  76. Gerstenfeld LC, Wronski TJ, Hollinger JO, Einhorn TA. Application of histomorphometric methods to the study of bone repair. J Bone Miner Res. 2005;20(10):1715–22.

    Article  PubMed  Google Scholar 

  77. Gerstenfeld LC, Cho TJ, Kon T, et al. Impaired fracture healing in the absence of TNF-alpha signaling: the role of TNF-alpha in endochondral cartilage resorption. J Bone Miner Res. 2003;18(9):1584–92.

    Article  CAS  PubMed  Google Scholar 

  78. Follak N, Kloting I, Merk H. Influence of diabetic metabolic state on fracture healing in spontaneously diabetic rats. Diabetes Metab Res Rev. 2005;21(3):288–96.

    Article  PubMed  Google Scholar 

  79. Kawaguchi H, Kurokawa T, Hanada K, et al. Stimulation of fracture repair by recombination human basic fibroblast growth factor in normal and streptozotocin-diabetic rats. Endocrinology. 1994;135:774–81.

    CAS  PubMed  Google Scholar 

  80. Loder RT. The influence of diabetes mellitus on the healing of closed fractures. Clin Orthop Relat Res. 1988;232:210–6.

    PubMed  Google Scholar 

  81. Folk JW, Starr AJ, Early JS. Early wound complications of operative treatment of calcaneus fractures: analysis of 190 fractures. J Orthop Trauma. 1999;13(5):369–72.

    Article  CAS  PubMed  Google Scholar 

  82. Retzepi M, Donos N. The effect of diabetes mellitus on osseous healing. Clin Oral Implants Res. 2010;21(7):673–81.

    Article  CAS  PubMed  Google Scholar 

  83. Ketenjian AY, Jafri AM, Arsenis C. Studies on the mechanism of callus cartilage differentiation and calcification during fracture healing. Orthop Clin N Am. 1978;9(1):43–65.

    CAS  Google Scholar 

  84. Kayal RA, Siqueira M, Alblowi J, et al. TNF-alpha mediates diabetes-enhanced chondrocyte apoptosis during fracture healing and stimulates chondrocyte apoptosis through FOXO1. J Bone Miner Res. 2010;25(7):1604–15.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  85. Bahney CS, Hu DP, Miclau 3rd T, Marcucio RS. The multifaceted role of the vasculature in endochondral fracture repair. Front Endocrinol. 2015;6:4. This paper discusses the multifaceted role of the vasculature during fracture repair and shows that alterations in vascularization can affect the transition from cartilage to bone during fracture repair.

    Article  Google Scholar 

  86. Botushanov NP, Orbetzova MM. Bone mineral density and fracture risk in patients with type 1 and type 2 diabetes mellitus. Folia Med. 2009;51(4):12–7.

    Google Scholar 

  87. Stolzing A, Sellers D, Llewelyn O, Scutt A. Diabetes induced changes in rat mesenchymal stem cells. Cells Tissues Organs. 2010;191(6):453–65.

    Article  CAS  PubMed  Google Scholar 

  88. Sheweita SA, Khoshhal KI. Calcium metabolism and oxidative stress in bone fractures: role of antioxidants. Curr Drug Metab. 2007;8(5):519–25.

    Article  CAS  PubMed  Google Scholar 

  89. Tang SY, Zeenath U, Vashishth D. Effects of non-enzymatic glycation on cancellous bone fragility. Bone. 2007;40(4):1144–51.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  90. Vashishth D, Gibson GJ, Khoury JI, Schaffler MB, Kimura J, Fyhrie DP. Influence of nonenzymatic glycation on biomechanical properties of cortical bone. Bone. 2001;28(2):195–201.

    Article  CAS  PubMed  Google Scholar 

  91. Tang SY, Vashishth D. Non-enzymatic glycation alters microdamage formation in human cancellous bone. Bone. 2010;46(1):148–54. By using a novel microCT technique to characterize and quantify microdamage, this study shows that the accumulation of AGEs in the bone matrix significantly alters the quantity and morphology of microdamage production and results in reduced fracture resistance.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  92. Tang SY, Vashishth D. The relative contributions of non-enzymatic glycation and cortical porosity on the fracture toughness of aging bone. J Biomech. 2011;44(2):330–6. The paper investigates the contribution of AGEs on the fracture toughness of human bone and finds that they cause a 52 % reduction in propagation fracture toughness.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  93. Okazaki K, Yamaguchi T, Tanaka K, et al. Advanced glycation end products (AGEs), but not high glucose, inhibit the osteoblastic differentiation of mouse stromal ST2 cells through the suppression of osterix expression, and inhibit cell growth and increasing cell apoptosis. Calcif Tissue Int. 2012;91(4):286–96. This paper suggests that AGEs may inhibit the osteoblastic differentiation of stromal cells by decreasing osterix expression and partly by increasing RAGE expression, as well as inhibiting cell growth and increasing cell apoptosis.

    Article  CAS  PubMed  Google Scholar 

  94. Rosen DM, Luben RA. Multiple hormonal mechanisms for the control of collagen synthesis in an osteoblast-like cell line, MMB-1. Endocrinology. 1983;112(3):992–9.

    Article  CAS  PubMed  Google Scholar 

  95. Hill PA, Tumber A, Meikle MC. Multiple extracellular signals promote osteoblast survival and apoptosis. Endocrinology. 1997;138(9):3849–58.

    CAS  PubMed  Google Scholar 

  96. Shukunami C, Ishizeki K, Atsumi T, Ohta Y, Suzuki F, Hiraki Y. Cellular hypertrophy and calcification of embryonal carcinoma-derived chondrogenic cell line ATDC5 in vitro. J Bone Miner Res. 1997;12(8):1174–88.

    Article  CAS  PubMed  Google Scholar 

  97. Iwata K, Asawa Y, Fujihara Y, et al. The effects of rapid- or intermediate-acting insulin on the proliferation and differentiation of cultured chondrocytes. Curr Aging Sci. 2010;3(1):26–33.

    Article  CAS  PubMed  Google Scholar 

  98. Watford M, Mapes RE. Hormonal and acid–base regulation of phosphoenolpyruvate carboxykinase mRNA levels in rat kidney. Arch Biochem Biophys. 1990;282(2):399–403.

    Article  CAS  PubMed  Google Scholar 

  99. Fujii H, Hamada Y, Fukagawa M. Bone formation in spontaneously diabetic Torii—newly established model of non-obese type 2 diabetes rats. Bone. 2008;42(2):372–9.

    Article  CAS  PubMed  Google Scholar 

  100. Hamada Y, Kitazawa S, Kitazawa R, Fujii H, Kasuga M, Fukagawa M. Histomorphometric analysis of diabetic osteopenia in streptozotocin-induced diabetic mice: a possible role of oxidative stress. Bone. 2007;40(5):1408–14.

    Article  CAS  PubMed  Google Scholar 

  101. Kayal RA, Alblowi J, McKenzie E, et al. Diabetes causes the accelerated loss of cartilage during fracture repair which is reversed by insulin treatment. Bone. 2009;44(2):357–63.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  102. Dedania J, Borzio R, Paglia D, et al. Role of local insulin augmentation upon allograft incorporation in a rat femoral defect model. J Orthop Res Off Publ Orthop Res Soc. 2011;29(1):92–9.

    Article  Google Scholar 

  103. Paglia DN, Wey A, Breitbart EA, et al. Effects of local insulin delivery on subperiosteal angiogenesis and mineralized tissue formation during fracture healing. J Orthop Res. 2013;31(5):783–91.

    Article  CAS  PubMed  Google Scholar 

  104. Ackermann PW, Hart DA. Influence of comorbidities: neuropathy, vasculopathy, and diabetes on healing response quality. Adv Wound Care. 2013;2(8):410–21.

    Article  Google Scholar 

  105. Orasanu G, Plutzky J. The continuum of diabetic vascular disease: from macro- to micro. J Am Coll Cardiol. 2009;53(5 Suppl):S35–42.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  106. Zhang C, Ponugoti B, Tian C, Xu F, Tarapore R, Batres A, et al. FOXO1 differentially regulates both normal and diabetic wound healing. J Cell Biol. 2015;209(2):289–303. The manuscript demonstrates that the transcription factor FOXO1 switches from inducing a pro- wound response an anti-healing transcription factor when cells are exposed to high glucose. It provides an epigenetic explanation for diabetes-impaired healing.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Compliance with Ethics Guidelines

Conflict of Interest Statement

The authors must submit their disclosure forms.

Human and Animal Rights and Informed Consent

This article contains no studies with human or animal subjects performed by the author.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dana T. Graves.

Additional information

This article is part of the Topical Collection on Bone and Diabetes

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jiao, H., Xiao, E. & Graves, D.T. Diabetes and Its Effect on Bone and Fracture Healing. Curr Osteoporos Rep 13, 327–335 (2015). https://doi.org/10.1007/s11914-015-0286-8

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11914-015-0286-8

Keywords

Navigation