Skip to main content

Advertisement

Log in

Using “-omics” Data to Inform Genome-wide Association Studies (GWASs) in the Osteoporosis Field

  • Genetics (D Karasik and C Ackert-Bicknell, Section Editors)
  • Published:
Current Osteoporosis Reports Aims and scope Submit manuscript

Abstract

Purpose of Review

Osteoporosis constitutes a major societal health problem. Genome-wide association studies (GWASs) have identified over 1100 loci influencing bone mineral density (BMD); however, few of the causal genes have been identified. Here, we review approaches that use “-omics” data and genetic- and systems genetics–based analytical strategies to facilitate causal gene discovery.

Recent Findings

The bone field is beginning to adopt approaches that are commonplace in other disease disciplines. The slower progress has been due in part to the lack of large-scale “omics” data on bone and bone cells. This is however changing, and approaches such as eQTL colocalization, transcriptome-wide association studies (TWASs), network, and integrative approaches are beginning to provide significant insight into the genes responsible for BMD GWAS associations.

Summary

The use of “-omics” data to inform BMD GWASs has increased in recent years, leading to the identification of novel regulators of BMD in humans. The ultimate goal will be to use this information to develop more effective therapies to treat and ultimately prevent osteoporosis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. NIH Consensus Development Panel on Osteoporosis Prevention, Diagnosis, and Therapy. Osteoporosis prevention, diagnosis, and therapy. JAMA. 2001;285(6):785–95.

    Article  Google Scholar 

  2. Office of the Surgeon General (US) (2004) The burden of bone disease. Office of the Surgeon General (US)

  3. Burge R, Dawson-Hughes B, Solomon DH, Wong JB, King A, Tosteson A. Incidence and economic burden of osteoporosis-related fractures in the United States, 2005-2025. J Bone Miner Res. 2007;22(3):465–75.

    Article  PubMed  Google Scholar 

  4. Center JR, Nguyen TV, Schneider D, Sambrook PN, Eisman JA. Mortality after all major types of osteoporotic fracture in men and women: an observational study. Lancet. 1999;353(9156):878–82.

    Article  CAS  PubMed  Google Scholar 

  5. Johnell O, Kanis JA, Oden A, Johansson H, de Laet C, Delmas P, et al. Predictive value of BMD for hip and other fractures. J Bone Miner Res. 2005;20(7):1185–94.

    Article  PubMed  Google Scholar 

  6. Smith DM, Nance WE, Kang KW, Christian JC, Johnston CC Jr. Genetic factors in determining bone mass. J Clin Invest. 1973;52(11):2800–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Arden NK, Baker J, Hogg C, Baan K, Spector TD. The heritability of bone mineral density, ultrasound of the calcaneus and hip axis length: a study of postmenopausal twins. J Bone Miner Res. 1996;11(4):530–4.

    Article  CAS  PubMed  Google Scholar 

  8. Slemenda CW, Turner CH, Peacock M, Christian JC, Sorbel J, Hui SL, et al. The genetics of proximal femur geometry, distribution of bone mass and bone mineral density. Osteoporos Int. 1996;6(2):178–82.

    Article  CAS  PubMed  Google Scholar 

  9. Richards JB, Zheng H-F, Spector TD. Genetics of osteoporosis from genome-wide association studies: advances and challenges. Nat Rev Genet. 2012;13(8):576–88.

    Article  CAS  PubMed  Google Scholar 

  10. Ralston SH, Uitterlinden AG. Genetics of osteoporosis. Endocr Rev. 2010;31(5):629–62.

    Article  CAS  PubMed  Google Scholar 

  11. Styrkarsdottir U, Cazier J-B, Kong A, Rolfsson O, Larsen H, Bjarnadottir E, et al. Linkage of osteoporosis to chromosome 20p12 and association to BMP2. PLoS Biol. 2003;1(3):E69.

    Article  PubMed  PubMed Central  Google Scholar 

  12. Ioannidis JP, Ng MY, Sham PC, Zintzaras E, Lewis CM, Deng HW, et al. Meta-analysis of genome-wide scans provides evidence for sex- and site-specific regulation of bone mass. J Bone Miner Res. 2007;22(2):173–83.

    Article  CAS  PubMed  Google Scholar 

  13. Richards JB, Kavvoura FK, Rivadeneira F, Styrkársdóttir U, Estrada K, Halldórsson BV, et al. Collaborative meta-analysis: associations of 150 candidate genes with osteoporosis and osteoporotic fracture. Ann Intern Med. 2009;151(8):528–37.

    Article  PubMed  PubMed Central  Google Scholar 

  14. Morris JA, Kemp JP, Youlten SE, et al. An atlas of genetic influences on osteoporosis in humans and mice. Nat Genet. 2019;51(2):258–66.

    Article  CAS  PubMed  Google Scholar 

  15. Zheng H, Forgetta V, Hsu Y, et al. Whole-genome sequencing identifies EN1 as a determinant of bone density and fracture. Nature. 2015;526(7571):112–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Estrada K, Styrkarsdottir U, Evangelou E, Hsu YH, Duncan EL, Ntzani EE, et al. Genome-wide meta-analysis identifies 56 bone mineral density loci and reveals 14 loci associated with risk of fracture. Nat Genet. 2012;44(5):491–501.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Maurano MT, Humbert R, Rynes E, Thurman RE, Haugen E, Wang H, et al. Systematic localization of common disease-associated variation in regulatory DNA. Science. 2012;337(6099):1190–5. https://doi.org/10.1126/science.1222794.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Schaub MA, Boyle AP, Kundaje A, Batzoglou S, Snyder M. Linking disease associations with regulatory information in the human genome. Genome Res. 2012;22(9):1748–59.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Reich DE, Cargill M, Bolk S, Ireland J, Sabeti PC, Richter DJ, et al. Linkage disequilibrium in the human genome. Nature. 2001;411(6834):199–204.

    Article  CAS  PubMed  Google Scholar 

  20. Claussnitzer M, Cho JH, Collins R, Cox NJ, Dermitzakis ET, Hurles ME, et al. A brief history of human disease genetics. Nature. 2020;577(7789):179–89.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Zheng H-F, Tobias JH, Duncan E, Evans DM, Eriksson J, Paternoster L, et al. WNT16 influences bone mineral density, cortical bone thickness, bone strength, and osteoporotic fracture risk. PLoS Genet. 2012;8(7):e1002745.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Koller DL, Zheng H-F, Karasik D, Yerges-Armstrong L, Liu CT, McGuigan F, et al. Meta-analysis of genome-wide studies identifies WNT16 and ESR1 SNPs associated with bone mineral density in premenopausal women. J Bone Miner Res. 2013;28(3):547–58.

    Article  CAS  PubMed  Google Scholar 

  23. Visscher PM, Wray NR, Zhang Q, Sklar P, McCarthy MI, Brown MA, et al. 10 years of GWAS discovery: biology, function, and translation. Am J Hum Genet. 2017;101(1):5–22.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Visscher PM, Brown MA, McCarthy MI, Yang J. Five years of GWAS discovery. Am J Hum Genet. 2012;90(1):7–24.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. King EA, Davis JW, Degner JF. Are drug targets with genetic support twice as likely to be approved? Revised estimates of the impact of genetic support for drug mechanisms on the probability of drug approval. PLoS Genet. 2019;15(12):e1008489.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  26. Nelson MR, Tipney H, Painter JL, Shen J, Nicoletti P, Shen Y, et al. The support of human genetic evidence for approved drug indications. Nat Genet. 2015;47(8):856–60.

    Article  CAS  PubMed  Google Scholar 

  27. Dewan A, Liu M, Hartman S, et al. HTRA1 promoter polymorphism in wet age-related macular degeneration. Science. 2006;314(5801):989–92.

    Article  CAS  PubMed  Google Scholar 

  28. Cookson W, Liang L, Abecasis G, Moffatt M, Lathrop M. Mapping complex disease traits with global gene expression. Nat Rev Genet. 2009;10(3):184–94.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Sabik OL, Farber CR. RACER: a data visualization strategy for exploring multiple genetic associations. Cold Spring Harbor Laboratory. Published online December 14, 2018;495366. https://doi.org/10.1101/495366.

  30. Giambartolomei C, Vukcevic D, Schadt EE, Franke L, Hingorani AD, Wallace C, et al. Bayesian test for colocalisation between pairs of genetic association studies using summary statistics. PLoS Genet. 2014;10(5):e1004383.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  31. Wen X, Pique-Regi R, Luca F. Integrating molecular QTL data into genome-wide genetic association analysis: probabilistic assessment of enrichment and colocalization. PLoS Genet. 2017;13(3):e1006646.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  32. Kemp JP, Morris JA, Medina-Gomez C, Forgetta V, Warrington NM, Youlten SE, et al. Identification of 153 new loci associated with heel bone mineral density and functional involvement of GPC6 in osteoporosis. Nature Genetics. 2017;49(10):1468–75. https://doi.org/10.1038/ng.3949.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Gusev A, Ko A, Shi H, Bhatia G, Chung W, Penninx BWJH, et al. Integrative approaches for large-scale transcriptome-wide association studies. Nat Genet. 2016;48(3):245–52.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Pividori M, Rajagopal PS, Barbeira AN, et al. PhenomeXcan: mapping the genome to the phenome through the transcriptome. bioRxiv. Published online November 6, 2019;833210. https://doi.org/10.1101/833210.

  35. Sabik OL, Calabrese GM, Taleghani E, Ackert-Bicknell CL, Farber CR. Identification of a core module for bone mineral density through the integration of a co-expression network and GWAS data. Cell Rep. 2020;32(11):108145.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Calabrese GM, Mesner LD, Stains JP, et al. Integrating GWAS and co-expression network data identifies bone mineral density genes SPTBN1 and MARK3 and an osteoblast functional module. Cell Syst. 2017;4(1):46–59.e4.

    Article  CAS  PubMed  Google Scholar 

  37. Al-Barghouthi BM, Mesner LM, Calabrese GM. Systems genetics analyses in Diversity Outbred mice inform human bone mineral density GWAS and identify Qsox1 as a novel determinant of bone strength. bioRxiv. Published online 2020. https://www.biorxiv.org/content/10.1101/2020.06.24.169839v1.abstract.

  38. GTEx Consortium. Human genomics. The Genotype-Tissue Expression (GTEx) pilot analysis: multitissue gene regulation in humans. Science. 2015;348(6235):648–60.

    Article  PubMed Central  CAS  Google Scholar 

  39. GTEx Consortium. The GTEx consortium atlas of genetic regulatory effects across human tissues. Science. 2020;369(6509):1318–30.

    Article  CAS  Google Scholar 

  40. Mullin BH, Zhu K, Xu J, Brown SJ, Mullin S, Tickner J, et al. Expression quantitative trait locus study of bone mineral density GWAS variants in human osteoclasts. J Bone Miner Res. 2018;33(6):1044–51.

    Article  CAS  PubMed  Google Scholar 

  41. Grundberg E, Kwan T, Ge B, Lam KCL, Koka V, Kindmark A, et al. Population genomics in a disease targeted primary cell model. Genome Res. 2009;19(11):1942–52.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Styrkarsdottir U, Halldorsson BV, Gretarsdottir S, Gudbjartsson DF, Walters GB, Ingvarsson T, et al. Multiple genetic loci for bone mineral density and fractures. N Engl J Med. 2008;358(22):2355–65.

    Article  CAS  PubMed  Google Scholar 

  43. Rivadeneira F, Styrkársdottir U, Estrada K, Halldórsson BV, Hsu YH, Richards JB, et al. Twenty bone-mineral-density loci identified by large-scale meta-analysis of genome-wide association studies. Nat Genet. 2009;41(11):1199–206.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Reppe S, Refvem H, Gautvik VT, Olstad OK, Høvring PI, Reinholt FP, et al. Eight genes are highly associated with BMD variation in postmenopausal Caucasian women. Bone. 2010;46(3):604–12.

    Article  CAS  PubMed  Google Scholar 

  45. Medina-Gomez C, Kemp JP, Estrada K, Eriksson J, Liu J, Reppe S, et al. Meta-analysis of genome-wide scans for total body BMD in children and adults reveals allelic heterogeneity and age-specific effects at the WNT16 locus. PLoS Genet. 2012;8(7):e1002718.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Mullin BH, Tickner J, Zhu K, Kenny J, Mullin S, Brown SJ, et al. Characterisation of genetic regulatory effects for osteoporosis risk variants in human osteoclasts. Genome Biol. 2020;21(1):80.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. van Heyningen V. Faculty opinions recommendation of novel Crohn disease locus identified by genome-wide association maps to a gene desert on 5p13.1 and modulates expression of PTGER4. Faculty Opinions – Post-Publication Peer Review of the Biomedical Literature. Published online 2007. https://doi.org/10.3410/f.1082972.535947.

  48. Wellcome Trust Case Control Consortium. Genome-wide association study of 14,000 cases of seven common diseases and 3,000 shared controls. Nature. 2007;447(7145):661–78.

    Article  CAS  Google Scholar 

  49. Hakonarson H, Grant SFA, Bradfield JP, Marchand L, Kim CE, Glessner JT, et al. A genome-wide association study identifies KIAA0350 as a type 1 diabetes gene. Nature. 2007;448(7153):591–4.

    Article  CAS  PubMed  Google Scholar 

  50. Small KS, Todorčević M, Civelek M, el-Sayed Moustafa JS, Wang X, Simon MM, et al. Regulatory variants at KLF14 influence type 2 diabetes risk via a female-specific effect on adipocyte size and body composition. Nat Genet. 2018;50(4):572–80.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Li YI, van de Geijn B, Raj A, Knowles DA, Petti AA, Golan D, et al. RNA splicing is a primary link between genetic variation and disease. Science. 2016;352(6285):600–4.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Park E, Pan Z, Zhang Z, Lin L, Xing Y. The expanding landscape of alternative splicing variation in human populations. Am J Hum Genet. 2018;102(1):11–26.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Takata A, Matsumoto N, Kato T. Genome-wide identification of splicing QTLs in the human brain and their enrichment among schizophrenia-associated loci. Nat Commun. 2017;8:14519.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Choi JK, Kim SC. Environmental effects on gene expression phenotype have regional biases in the human genome. Genetics. 2007;175(4):1607–13.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Hunter DJ. Gene–environment interactions in human diseases. Nat Rev Genet. 2005;6(4):287–98.

    Article  CAS  PubMed  Google Scholar 

  56. Yin P, Zhu M, Hu F, et al. Integrating genome-wide association and transcriptome predicted model identify novel target genes with osteoporosis. Published online September 16, 2019;771543. https://doi.org/10.1101/771543.

  57. Liu Y, Shen H, Greenbaum J, et al. Gene expression and RNA splicing imputation identifies novel candidate genes associated with osteoporosis. J Clin Endocrinol Metab. 2020;105(12). https://doi.org/10.1210/clinem/dgaa572.

  58. Fuller TF, Ghazalpour A, Aten JE, Drake TA, Lusis AJ, Horvath S. Weighted gene coexpression network analysis strategies applied to mouse weight. Mamm Genome. 2007;18(6-7):463–72.

    Article  PubMed  PubMed Central  Google Scholar 

  59. Zhang B, Horvath S. A general framework for weighted gene co-expression network analysis. Stat Appl Genet Mol Biol. 2005;4:Article17.

  60. Zhang S, Zhao H, Ng MK. Functional module analysis for gene coexpression networks with network integration. IEEE/ACM Trans Comput Biol Bioinform. 2015;12(5):1146–60.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Gaiteri C, Ding Y, French B, Tseng GC, Sibille E. Beyond modules and hubs: the potential of gene coexpression networks for investigating molecular mechanisms of complex brain disorders. Genes Brain Behav. 2014;13(1):13–24.

    Article  CAS  PubMed  Google Scholar 

  62. Bennett BJ, Farber CR, Orozco L, Min Kang H, Ghazalpour A, Siemers N, et al. A high-resolution association mapping panel for the dissection of complex traits in mice. Genome Res. 2010;20(2):281–90.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Charniak E. Bayesian networks without tears. AI magazine. 1991;12(4):50.

    Google Scholar 

  64. Zhao Y, Chen J, Freudenberg JM, Meng Q, Rajpal DK, Yang X. Network-based identification and prioritization of key regulators of coronary artery disease loci. Arterioscler Thromb Vasc Biol. 2016;36(5):928–41.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Pereira M, Ko J-H, Logan J, Protheroe H, Kim KB, Tan ALM, et al. A trans-eQTL network regulates osteoclast multinucleation and bone mass. Elife. 2020;9. https://doi.org/10.7554/eLife.55549.

  66. Kang H, Kerloc’h A, Rotival M, Xu X, Zhang Q, D’Souza Z, et al. Kcnn4 is a regulator of macrophage multinucleation in bone homeostasis and inflammatory disease. Cell Rep. 2014;8(4):1210–24.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Tak YG, Farnham PJ. Making sense of GWAS: using epigenomics and genome engineering to understand the functional relevance of SNPs in non-coding regions of the human genome. Epigenet Chromatin. 2015;8(1). https://doi.org/10.1186/s13072-015-0050-4.

  68. Chen L, Ge B, Casale FP, et al. Genetic drivers of epigenetic and transcriptional variation in human immune cells. Cell. 2016;167(5):1398–1414.e24.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Kumasaka N, Knights AJ, Gaffney DJ. Fine-mapping cellular QTLs with RASQUAL and ATAC-seq. Nat Genet. 2016;48(2):206–13.

    Article  CAS  PubMed  Google Scholar 

  70. Buenrostro JD, Wu B, Chang HY, Greenleaf WJ. ATAC-seq: a method for assaying chromatin accessibility genome-wide. Curr Protoc Mol Biol. 2015;109:21.29.1–9.

    Article  Google Scholar 

  71. Kumasaka N, Knights AJ, Gaffney DJ. High-resolution genetic mapping of putative causal interactions between regions of open chromatin. Nat Genet. 2019;51(1):128–37.

    Article  CAS  PubMed  Google Scholar 

  72. Khetan S, Kursawe R, Youn A, Lawlor N, Jillette A, Marquez EJ, et al. Type 2 diabetes–associated genetic variants regulate chromatin accessibility in human islets. Diabetes. 2018;67(11):2466–77.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Ciuculete DM, Voisin S, Kular L, et al. meQTL and ncRNA functional analyses of 102 GWAS-SNPs associated with depression implicate HACE1 and SHANK2 genes. Clin Epigenet. 2020;12(1):99.

    Article  CAS  Google Scholar 

  74. Thompson EE, Dang Q, Mitchell-Handley B, Rajendran K, Ram-Mohan S, Solway J, et al. Cytokine-induced molecular responses in airway smooth muscle cells inform genome-wide association studies of asthma. Genome Med. 2020;12(1):64.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Xie Y, Ahn C. Statistical methods for integrating multiple types of high-throughput data. Methods Mol Biol. 2010;620:511–29.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Qiu C, Yu F, Su K, et al. Multi-omics data integration for identifying osteoporosis biomarkers and their biological interaction and causal mechanisms. iScience. 2020;23(2):100847.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Chesi A, Wagley Y, Johnson ME, Manduchi E, Su C, Lu S, et al. Genome-scale Capture C promoter interactions implicate effector genes at GWAS loci for bone mineral density. Nat Commun. 2019;10(1):1260.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  78. Mifsud B, Tavares-Cadete F, Young AN, Sugar R, Schoenfelder S, Ferreira L, et al. Mapping long-range promoter contacts in human cells with high-resolution capture Hi-C. Nat Genet. 2015;47(6):598–606.

    Article  CAS  PubMed  Google Scholar 

  79. Weeks EM, Ulirsch JC, Cheng NY, et al. Leveraging polygenic enrichments of gene features to predict genes underlying complex traits and diseases. medRxiv. Published online 2020. https://www.medrxiv.org/content/10.1101/2020.09.08.20190561v1.abstract.

  80. Forgetta V, Jiang L, Vulpescu NA, Hogan MS, Chen S. An effector index to predict causal genes at GWAS loci. bioRxiv. Published online 2021. https://www.biorxiv.org/content/10.1101/2020.06.28.171561v2.abstract.

  81. Cawley NX, Yanik T, Woronowicz A, Chang W, Marini JC, Loh YP. Obese carboxypeptidase E knockout mice exhibit multiple defects in peptide hormone processing contributing to low bone mineral density. Am J Physiol Endocrinol Metab. 2010;299(2):E189–97.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Bergen DJM, Kague E, Hammond CL. Zebrafish as an emerging model for osteoporosis: a primary testing platform for screening new osteo-active compounds. Front Endocrinol (Lausanne). 2019;10:6.

    Article  Google Scholar 

  83. Xiao S-M, Kung AWC, Gao Y, Lau KS, Ma A, Zhang ZL, et al. Post-genome wide association studies and functional analyses identify association of MPP7 gene variants with site-specific bone mineral density. Hum Mol Genet. 2012;21(7):1648–57.

    Article  CAS  PubMed  Google Scholar 

  84. Ogura Y, Kou I, Miura S, Takahashi A, Xu L, Takeda K, et al. A functional SNP in BNC2 is associated with adolescent idiopathic scoliosis. Am J Hum Genet. 2015;97(2):337–42.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. Kwon RY, Watson CJ, Karasik D. Using zebrafish to study skeletal genomics. Bone. 2019;126:37–50.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. van der Wijst M, de Vries DH, Groot HE, Trynka G, Hon CC, Bonder MJ, et al. The single-cell eQTLGen consortium. Elife. 2020;9. https://doi.org/10.7554/eLife.52155.

  87. Rai V, Quang DX, Erdos MR, Cusanovich DA, Daza RM, Narisu N, et al. Single-cell ATAC-Seq in human pancreatic islets and deep learning upscaling of rare cells reveals cell-specific type 2 diabetes regulatory signatures. Mol Metab. 2020;32:109–21.

    Article  CAS  PubMed  Google Scholar 

  88. Wang Z, Li X, Yang J, et al. Single-cell RNA sequencing deconvolutes the in vivo heterogeneity of human bone marrow-derived mesenchymal stem cells. bioRxiv. Published online 2020. https://www.biorxiv.org/content/10.1101/2020.04.06.027904v2.abstract.

  89. Yang J, Li X, Zhou C, et al. A systematic dissection of human primary osteoblasts in vivo at single-cell resolution. bioRxiv. Published online 2020. https://www.biorxiv.org/content/10.1101/2020.05.12.091975v1.abstract.

  90. Breker M, Schuldiner M. The emergence of proteome-wide technologies: systematic analysis of proteins comes of age. Nat Rev Mol Cell Biol. 2014;15(7):453–64.

    Article  CAS  PubMed  Google Scholar 

  91. Nielson CM, Jacobs JM, Orwoll ES. Proteomic studies of bone and skeletal health outcomes. Bone. 2019;126:18–26.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  92. Lee J-H, Cho J-Y. Proteomics approaches for the studies of bone metabolism. BMB Rep. 2014;47(3):141–8.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  93. Jiang X, Ye M, Jiang X, Liu G, Feng S, Cui L, et al. Method development of efficient protein extraction in bone tissue for proteome analysis. J Proteome Res. 2007;6(6):2287–94.

    Article  CAS  PubMed  Google Scholar 

  94. Hennrich ML, Romanov N, Horn P, Jaeger S, Eckstein V, Steeples V, et al. Cell-specific proteome analyses of human bone marrow reveal molecular features of age-dependent functional decline. Nat Commun. 2018;9(1):4004.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  95. Sun BB, Maranville JC, Peters JE, Stacey D, Staley JR, Blackshaw J, et al. Genomic atlas of the human plasma proteome. Nature. 2018;558(7708):73–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  96. Yao C, Chen G, Song C, et al. Genome-wide mapping of plasma protein QTLs identifies putatively causal genes and pathways for cardiovascular disease. Nat Commun. 2018;9(1):1–11.

    CAS  Google Scholar 

  97. International Mouse Knockout Consortium, Collins FS, Rossant J, Wurst W. A mouse for all reasons. Cell. 2007;128(1):9–13.

    Article  CAS  Google Scholar 

  98. Austin CP, Battey JF, Bradley A, Bucan M, Capecchi M, Collins FS, et al. The knockout mouse project. Nat Genet. 2004;36(9):921–4.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  99. Freudenthal B, Logan J. Sanger Institute Mouse Pipelines, Croucher PI, Williams GR, Bassett JHD. Rapid phenotyping of knockout mice to identify genetic determinants of bone strength. J Endocrinol. 2016;231(1):R31–46.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  100. Maynard RD, Ackert-Bicknell CL. Mouse models and online resources for functional analysis of osteoporosis genome-wide association studies. Front Endocrinol. 2019;10:277.

    Article  Google Scholar 

  101. Jinek M, Chylinski K, Fonfara I, Hauer M, Doudna JA, Charpentier E. A programmable dual-RNA–guided DNA endonuclease in adaptive bacterial immunity. Science. 2012;337(6096):816–21.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  102. Adli M. The CRISPR tool kit for genome editing and beyond. Nat Commun. 2018;9(1):1911.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Charles R. Farber.

Ethics declarations

Conflict of Interest

The authors declare that they have no conflict of interest.

Human and Animal Rights and Informed Consent

This article does not contain any studies with human or animal subjects performed by any of the authors.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

This article is part of the Topical Collection on Genetics

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Abood, A., Farber, C.R. Using “-omics” Data to Inform Genome-wide Association Studies (GWASs) in the Osteoporosis Field. Curr Osteoporos Rep 19, 369–380 (2021). https://doi.org/10.1007/s11914-021-00684-w

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11914-021-00684-w

Keywords

Navigation