Skip to main content

Advertisement

Log in

Future G protein-coupled receptor targets for treatment of heart failure

  • Published:
Current Treatment Options in Cardiovascular Medicine Aims and scope Submit manuscript

Opinion statement

Heart failure (HF) still poses an enormous clinical challenge, as its incidence, morbidity, and mortality rates are continuously rising. G protein-coupled receptors (GPCRs) constitute the most ubiquitous superfamily of plasma membrane receptors and represent the single most important type of therapeutic drug target. Because there is overstimulation of the failing heart by various endogenous ligands, such as catecholamines and angiotensin II—which by activating their cognate GPCRs in cardiac muscle induce detrimental effects—therapeutic targeting of these receptors has been pursued. This research has led to the development of successful and useful drug classes, such as angiotensin-converting enzyme inhibitors and β-adrenergic receptor blockers. However, there still is a need to develop innovative treatments that might be more effective at reversing compromised myocyte function. Over the past several years, much evidence has accumulated indicating that a single GPCR, activated by the same endogenous ligand, can elicit several different signaling pathways with quite different, and often opposite, cellular effects. Because the aforementioned ligands, currently used for HF, target these receptors on their extracellular interface, thus merely preventing the endogenous agonists from binding the receptor, they inhibit all the signaling pathways elicited by the receptor indiscriminately. Importantly, several of these pathways emanating from the same GPCR can actually be beneficial for therapy, so their enhancement rather than their blockade is desirable for HF therapy. This highlights the need for selective targeting of GPCR-induced signaling pathways on the intracellular interface of the receptor, which might produce new and innovative therapies for cardiovascular disease.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References and Recommended Reading

  1. Pierce KL, Premont RT, Lefkowitz RJ: Seven-transmembrane receptors. Nat Rev Mol Cell Biol 2002, 3:639–650.

    Article  PubMed  CAS  Google Scholar 

  2. Adorisio R, DeLuca L, Rossi J, Gheorghiade M: Pharmacological treatment of chronic heart failure. Heart Fail Rev 2006, 11:109–123.

    Article  PubMed  CAS  Google Scholar 

  3. Bylund DB, Eikenberg DC, Hieble JP, et al.: International Union of Pharmacology nomenclature of adrenoceptors. Pharmacol Rev 1994, 46:121–136.

    PubMed  CAS  Google Scholar 

  4. Rockman HA, Koch WJ, Lefkowitz RJ: Seven-transmembrane-spanning receptors and heart function. Nature 2002, 415:206–212.

    Article  PubMed  CAS  Google Scholar 

  5. Cohn JN, Levine TB, Olivari MT, et al.: Plasma norepinephrine as a guide to prognosis in patients with chronic congestive heart failure. N Engl J Med 1984, 311:819–823.

    PubMed  CAS  Google Scholar 

  6. Dohlman HG, Thorner J, Caron MG, Lefkowitz RJ: Model systems for the study of seven-transmembrane-segment receptors. Annu Rev Biochem 1991, 60:653–688.

    Article  PubMed  CAS  Google Scholar 

  7. Bristow MR: b-Adrenergic receptor blockade in chronic HF. Circulation 2000, 101:558–569.

    PubMed  CAS  Google Scholar 

  8. Communal C, Singh K, Sawyer DB, Colucci WS: Opposing effects of b1- and b2-adrenergic receptors on cardiac myocyte apoptosis: role of a pertussis toxin-sensitive G protein. Circulation 1999, 100:2210–2212.

    PubMed  CAS  Google Scholar 

  9. Zhu WZ, Zheng M, Koch WJ, et al.: Dual modulation of cell survival and cell death by b2-adrenergic signaling in adult mouse cardiac myocytes. Proc Natl Acad Sci U S A. 2001, 98:1607–1612.

    Article  PubMed  CAS  Google Scholar 

  10. Liggett SB, Tepe NM, Lorenz JN, et al.: Early and delayed consequences of b2-adrenergic receptor overexpression in mouse hearts: critical role for expression level. Circulation 2000, 101:1707–1714.

    PubMed  CAS  Google Scholar 

  11. Engelhardt S, Hein L, Wiesmann F, Lohse MJ: Progressive hypertrophy and heart failure in b1-adrenergic receptor transgenic mice. Proc Natl Acad Sci U S A 1999, 96:7059–7064.

    Article  PubMed  CAS  Google Scholar 

  12. Ahmet I, Krawczyk M, Heller P, et al.: Beneficial effects of chronic pharmacological manipulation of b-adrenoreceptor subtype signaling in rodent dilated ischemic cardiomyopathy. Circulation 2004, 110:1083–1090.

    Article  PubMed  CAS  Google Scholar 

  13. Maurice JP, Hata JA, Shah AS, et al.: Enhancement of cardiac function after adenoviral-mediated in vivo intra-coronary b2-adrenergic receptor gene delivery. J Clin Invest 1999, 104:21–29.

    Article  PubMed  CAS  Google Scholar 

  14. DeGeorge BR Jr, Gao E, Boucher M, et al.: Targeted inhibition of cardiomyocyte Gi signaling enhances susceptibility to apoptotic cell death in response to ischemic stress. Circulation 2008, 117:1378–1387.

    Article  PubMed  CAS  Google Scholar 

  15. Petrofski JA, Koch WJ: The b-adrenergic receptor kinase (bARK1) in heart failure. J Mol Cell Cardiol 2003, 35:1167–1174.

    Article  PubMed  CAS  Google Scholar 

  16. Lefkowitz RJ, Shenoy SK: Transduction of receptor signals by b-arrestins. Science 2005, 308:512–517.

    Article  PubMed  CAS  Google Scholar 

  17. Vinge LE, Raake PW, Koch WJ: Gene therapy in heart failure. Circ Res 2008, 102:1458–1470.

    Article  PubMed  CAS  Google Scholar 

  18. Koch WJ, Inglese J, Stone WC, Lefkowitz RJ: The binding site for the bg subunits of heterotrimeric G proteins on the beta-adrenergic receptor kinase. J Biol Chem 1993, 268:8256–8260.

    PubMed  CAS  Google Scholar 

  19. Koch WJ, Rockman HA, Samama P, et al.: Cardiac function in mice overexpressing the b-adrenergic receptor kinase or a bARK inhibitor. Science 1995, 268:1350–1353.

    Article  PubMed  CAS  Google Scholar 

  20. Shah AS, White DC, Emani S, et al.: In vivo ventricular gene delivery of a b-adrenergic receptor kinase inhibitor to the failing heart reverses cardiac dysfunction. Circulation 2001, 103:1311–1316.

    Article  PubMed  CAS  Google Scholar 

  21. White DC, Hata JA, Shah AS, et al.: Preservation of myocardial b-adrenergic receptor delays the development of heart failure following myocardial infarction. Proc Natl Acad Sci U S A 2000, 97:5428–5433.

    Article  PubMed  CAS  Google Scholar 

  22. Williams ML, Hata JA, Schroder J, et al.: Targeted b-adrenergic receptor kinase (bARK1) inhibition by gene transfer in failing human hearts. Circulation 2004, 109:1590–1593.

    Article  PubMed  CAS  Google Scholar 

  23. Rengo G, Lymperopoulos A, Zincarelli C, et al.: Myocardial adeno-associated virus serotype 6-bARKct gene therapy improves cardiac function and normalizes the neurohormonal axis in chronic heart failure. Circulation 2009, 119:89–98.

    Article  PubMed  CAS  Google Scholar 

  24. Rockman HA, Choi DJ, Akhter SA, et al.: Control of myocardial contractile function by the level of beta-adrenergic receptor kinase 1 in gene-targeted mice. J Biol Chem 1998, 273:18180–18184.

    Article  PubMed  CAS  Google Scholar 

  25. Raake PW, Vinge LE, Gao E, et al.: G protein-coupled receptor kinase 2 ablation in cardiac myocytes before or after myocardial infarction prevents heart failure. Circ Res 2008, 103:413–422.

    Article  PubMed  CAS  Google Scholar 

  26. Dzimiri N, Muiya P, Andres E, Al-Halees Z: Differential functional expression of human myocardial G protein receptor kinases in left ventricular cardiac diseases. Eur J Pharmacol 2004, 489:167–177.

    Article  PubMed  CAS  Google Scholar 

  27. Eckhart AD, Duncan SJ, Penn RB, et al.: Hybrid transgenic mice reveal in vivo specificity of G protein-coupled receptor kinases in the heart. Circ Res 2000, 86:43–50.

    PubMed  CAS  Google Scholar 

  28. Liggett SB, Cresci S, Kelly RJ, et al.: A GRK5 polymorphism that inhibits beta-adrenergic receptor signaling is protective in heart failure. Nat Med 2008, 14:510–517.

    Article  PubMed  CAS  Google Scholar 

  29. Noma T, Lemaire A, Naga Prasad SV, et al.: Beta-arrestin-mediated beta1-adrenergic receptor transactivation of the EGFR confers cardioprotection. J Clin Invest 2007, 117:2396–2398.

    Article  Google Scholar 

  30. Martini JS, Raake P, Vinge LE, et al.: Uncovering G protein-coupled receptor kinase-5 as a histone deacetylase kinase in the nucleus of cardiomyocytes. Proc Natl Acad Sci U S A 2008, 105:12457–12462.

    Article  PubMed  CAS  Google Scholar 

  31. Rajagopal K, Whalen EJ, Violin JD et al.: b-Arrestin2-mediated inotropic effects of the angiotensin II type 1A receptor in isolated cardiac myocytes. Proc Natl Acad Sci U S A 2006, 103:16284–16289.

    Article  PubMed  CAS  Google Scholar 

  32. Richter W, Day P, Agrawal R, et al.: Signaling from beta1- and beta2-adrenergic receptors is defined by differential interactions with PDE4. EMBO J 2008, 27:384–393.

    Article  PubMed  CAS  Google Scholar 

  33. Brede M, Nagy G, Philipp M, et al.: Differential control of adrenal and sympathetic catecholamine release by alpha 2-adrenoceptor subtypes. Mol Endocrinol 2003, 17:1640–1646.

    Article  PubMed  CAS  Google Scholar 

  34. Lymperopoulos A, Rengo G, Funakoshi H, et al.: Adrenal GRK2 upregulation mediates sympathetic overdrive in heart failure. Nat Med 2007, 13:315–323.

    Article  PubMed  CAS  Google Scholar 

  35. Lymperopoulos A, Rengo G, Zincarelli C, et al.: Modulation of adrenal catecholamine secretion by in vivo gene transfer and manipulation of G protein-coupled receptor kinase-2 activity. Mol Ther 2008, 16:302–307.

    Article  PubMed  CAS  Google Scholar 

  36. Willenbrock R, Philipp S, Mitrovic V, Dietz R: Neurohumoral blockade in CHF management. J Renin Angiotensin Aldosterone Syst 2000, 1(Suppl 1):24–30.

    Article  PubMed  Google Scholar 

  37. Berk BC: Angiotensin type 2 receptor (AT2R): a challenging twin. Sci STKE 2003, 181:PE16.

    Google Scholar 

  38. Matsumoto T, Wada A, Tsutamoto T, et al.: Chymase inhibition prevents cardiac fibrosis and improves diastolic dysfunction in the progression of heart failure. Circulation 2003, 107:2555–2558.

    Article  PubMed  Google Scholar 

  39. Pfeffer MA, McMurray JJV, Velazquez EJ, et al.: Valsartan, captopril, or both in myocardial infarction complicated by heart failure, left ventricular dysfunction, or both. N Engl J Med 2003, 349:1893–1906.

    Article  PubMed  CAS  Google Scholar 

  40. Cruden NL, Witherow FN, Webb DJ, et al.: Bradykinin contributes to the systemic hemodynamic effects of chronic angiotensin-converting enzyme inhibition in patients with heart failure. Arterioscler Thromb Vasc Biol 2004, 24:1043–1048.

    Article  PubMed  CAS  Google Scholar 

  41. Violin JD, Lefkowitz RJ: Beta-arrestin-biased ligands at seven-transmembrane receptors. Trends Pharmacol Sci 2007, 28:416–422.

    Article  PubMed  CAS  Google Scholar 

  42. Modlinger PS, Welch WJ: Adenosine A1 receptor antagonists and the kidney. Curr Opin Nephrol Hypertens 2003, 12:497–502.

    Article  PubMed  CAS  Google Scholar 

  43. Gottlieb SS, Brater DC, Thomas I, et al.: BG9719 (CVT-124), an A1 adenosine receptor antagonist, protects against the decline in renal function observed with diuretic therapy. Circulation 2002, 105:1348–1353.

    Article  PubMed  CAS  Google Scholar 

  44. Headrick JP, Willems L, Ashton KJ, et al.: Ischaemic tolerance in aged mouse myocardium: the role of adenosine and effects of A1 adenosine receptor overexpression. J Physiol 2003, 549:823–833.

    Article  PubMed  CAS  Google Scholar 

  45. Liao Y, Takashima S, Asano Y, et al.: Activation of adenosine A1 receptor attenuates cardiac hypertrophy and prevents heart failure in murine left ventricular pressure-overload model. Circ Res 2003, 93:759–766.

    Article  PubMed  CAS  Google Scholar 

  46. Funakoshi H, Chan TO, Good JC, et al.: Regulated overexpression of the A1-adenosine receptor in mice results in adverse but reversible changes in cardiac morphology and function. Circulation 2006, 114:2240–2250.

    Article  PubMed  CAS  Google Scholar 

  47. Chan TO, Funakosji H, Song K, et al.: Cardiac-restricted overexpression of the A2A-adenosine receptor in FVB mice transiently increases contractile performance and rescues the heart failure phenotype in mice overexpressing the A1-adenosine receptor. Clin Trans Sci 2008, 1:126–133.

    Article  CAS  Google Scholar 

  48. Kirkby NS, Hadoke PWF, Bagnall AJ, Webb DJ: The endothelin system as therapeutic target in cardiovascular disease: great expectations or bleak house? Br J Pharmacol 2008, 153:1105–1119.

    Article  PubMed  CAS  Google Scholar 

  49. D’Orléans-Juste P, Labonté J, Bkaily G, et al.: Function of the endothelin(B) receptor in cardiovascular physiology and pathophysiology. Pharmacol Ther 2002, 221–238.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Walter J. Koch.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Rengo, G., Lymperopoulos, A. & Koch, W.J. Future G protein-coupled receptor targets for treatment of heart failure. Curr Treat Options Cardio Med 11, 328–338 (2009). https://doi.org/10.1007/s11936-009-0033-5

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11936-009-0033-5

Keywords

Navigation