Skip to main content
Log in

Adaptive Evolution of Saccharomyces cerevisiae with Enhanced Ethanol Tolerance for Chinese Rice Wine Fermentation

  • Published:
Applied Biochemistry and Biotechnology Aims and scope Submit manuscript

Abstract

High tolerance towards ethanol is a desirable property for the Saccharomyces cerevisiae strains used in the alcoholic beverage industry. To improve the ethanol tolerance of an industrial Chinese rice wine yeast, a sequential batch fermentation strategy was used to adaptively evolve a chemically mutagenized Chinese rice wine G85 strain. The high level of ethanol produced under Chinese rice wine-like fermentation conditions was used as the selective pressure. After adaptive evolution of approximately 200 generations, mutant G85X-8 was isolated and shown to have markedly increased ethanol tolerance. The evolved strain also showed higher osmotic and temperature tolerances than the parental strain. Laboratory Chinese rice wine fermentation showed that the evolved G85X-8 strain was able to catabolize sugars more completely than the parental G85 strain. A higher level of yeast cell activity was found in the fermentation mash produced by the evolved strain, but the aroma profiles were similar between the evolved and parental strains. The improved ethanol tolerance in the evolved strain might be ascribed to the altered fatty acids composition of the cell membrane and higher intracellular trehalose concentrations. These results suggest that adaptive evolution is an efficient approach for the non-recombinant modification of industrial yeast strains.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Xie, G. F., Li, W. J., Lu, J., Cao, Y., Fang, H., Zou, H. J., et al. (2007). Journal of the Institute of Brewing, 113, 272–279.

    Article  CAS  Google Scholar 

  2. Xu, Y., Wang, D., Fan, W. L., Mu, X. Q., & Chen, J. A. (2010). In G. T. Tsao, P. Ouyang, & J. Chen (Eds.), Traditional Chinese biotechnology (pp. 189–233). Berlin: Springer-Verlag Berlin.

    Google Scholar 

  3. Zhou, J. Q. (1996). Chinese rice wine brewing process. Beijing: China light industry Press.

    Google Scholar 

  4. Ma, M. G., & Liu, Z. L. (2010). Applied Microbiology and Biotechnology, 87, 829–845.

    Article  CAS  Google Scholar 

  5. Chambers, P. J., Bellon, J. R., Schmidt, S. A., Varela, C., & Pretorius, I. S. (2009). Non-genetic engineering approaches for isolating and generating novel yeasts for industrial applications. In T. Satyanarayana & G. Kunze (Eds.), Yeast biotechnology: Diversity and applications (pp. 433–457). Dordrecht: Springer.

    Google Scholar 

  6. McBryde, C., Gardner, J. M., Lopes, M. D., & Jiranek, V. (2006). American Journal of Enology and Viticulture, 57, 423–430.

    CAS  Google Scholar 

  7. Aguilera, J., Andreu, P., Randez-Gil, F., & Antonio Prieto, J. (2010). Microbial Biotechnology, 3, 210–221.

    Article  CAS  Google Scholar 

  8. Cadière, A., Ortiz-Julien, A., Camarasa, C., & Dequin, S. (2011). Metabolic Engineering, 13, 263–271.

    Article  Google Scholar 

  9. Kutyna, D. R., Varela, C., Stanley, G. A., Borneman, A. R., Henschke, P. A., & Chambers, P. J. (2012). Applied Microbiology and Biotechnology, 93, 1175–1184.

    Article  CAS  Google Scholar 

  10. Çakar, Z. P., Turanlı-Yıldız, B., Alkım, C., & Yılmaz, Ü. (2012). FEMS Yeast Research, 12, 171–182.

    Article  Google Scholar 

  11. Chen, C. Y., Tang, X. Y., Xiao, Z. Y., Zhou, Y. H., Jiang, Y., & Fu, S. W. (2013). Applied Biochemistry and Biotechnology, 169, 2362–2373.

    Article  CAS  Google Scholar 

  12. Laluce, C., Schenberg, A. C. G., Gallardo, J. C. M., Coradello, L. F. C., & Pombeiro-Sponchiado, S. R. (2012). Applied Biochemistry and Biotechnology, 166, 1908–1926.

    Article  CAS  Google Scholar 

  13. Brown, S. W., & Oliver, S. G. (1982). Applied Microbiology and Biotechnology, 16, 119–122.

    Google Scholar 

  14. Dinh, T., Nagahisa, K., Hirasawa, T., Furusawa, C., & Shimizu, H. (2008). PLoS ONE, 3, e2623.

    Article  Google Scholar 

  15. Stanley, D., Fraser, S., Chambers, P. J., Rogers, P., & Stanley, G. A. (2010). Journal of Industrial Microbiology and Biotechnology, 37, 139–149.

    Article  CAS  Google Scholar 

  16. Fiedurek, J., Skowronek, M., & Gromada, A. (2011). Polish Journal of Microbiology, 60, 51–58.

    CAS  Google Scholar 

  17. Amberg, D. C., Burke, D. J., & Strathern, J. N. (2006). Cold Spring Harbor Protocols, 2006: pdb.prot4180.

  18. Nikolaou, E., Soufleros, E. H., Bouloumpasi, E., & Tzanetakis, N. (2006). Food Microbiology, 23, 205–211.

    Article  CAS  Google Scholar 

  19. Pérez-Coello, M. S., Briones Pérez, A. I., Ubeda Iranzo, J. F., & Martin Alvarez, P. J. (1999). Food Microbiology, 16, 563–573.

    Article  Google Scholar 

  20. Razes, N., Garcia-Jares, C., Larue, F., & Lonvaud-Funel, A. (1992). Journal of the Science of Food and Agriculture, 59, 351–357.

    Article  Google Scholar 

  21. Beltran, G., Novo, M., Guillamon, J. M., Mas, A., & Rozes, N. (2008). International Journal of Food Microbiology, 121, 169–177.

    Article  CAS  Google Scholar 

  22. Mahmud, S. A., Nagahisa, K., Hirasawa, T., Yoshikawa, K., Ashitani, K., & Shimizu, H. (2009). Yeast, 26, 17–30.

    Article  CAS  Google Scholar 

  23. Chen, S., & Xu, Y. (2010). Journal of the Institute of Brewing, 116, 190–196.

    Article  CAS  Google Scholar 

  24. Chen, S., Xu, Y., & Qian, M. C. (2013). Journal of Agricultural and Food Chemistry, 61, 11295–11302.

    Article  CAS  Google Scholar 

  25. Chen, S., Wang, D., & Xu, Y. (2013). Journal of Agricultural and Food Chemistry, 61, 9712–9718.

    CAS  Google Scholar 

  26. Aguilera, F., Peinado, R. A., Millán, C., Ortega, J. M., & Mauricio, J. C. (2006). International Journal of Food Microbiology, 110, 34–42.

    Article  CAS  Google Scholar 

  27. Alexandre, H., Rousseaux, I., & Charpentier, C. (1994). Biotechnology and Applied Biochemistry, 20, 173–183.

    CAS  Google Scholar 

  28. Mannazzu, I., Angelozzi, D., Belviso, S., Budroni, M., Farris, G. A., Goffrini, P., et al. (2008). International Journal of Food Microbiology, 121, 84–91.

    Article  CAS  Google Scholar 

  29. Mansure, J. J. C., Panek, A. D., Crowe, L. M., & Crowe, J. H. (1994). Biochimica et Biophysica Acta (BBA) - Biomembranes, 1191, 309–316.

    Article  CAS  Google Scholar 

  30. Piper, P. W. (1995). FEMS Microbiology Letters, 134, 121–127.

    Article  CAS  Google Scholar 

  31. Tao, X., Zheng, D., Liu, T., Wang, P., Zhao, W., Zhu, M., et al. (2012). PLoS ONE, 7, e31235.

    Article  CAS  Google Scholar 

  32. You, K. M., Rosenfield, C.-L., & Knipple, D. C. (2003). Applied and Environmental Microbiology, 69, 1499–1503.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by grants from the National High Technology Research and Development Program of China (863 Program; no. 2013AA102108), the Priority Academic Program Development of Jiangsu Higher Education Institutions, the 111 Project (No. 111-2-06), and the Jiangsu province "Collaborative Innovation Center for Advanced Industrial Fermentation" industry development program.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yan Xu.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chen, S., Xu, Y. Adaptive Evolution of Saccharomyces cerevisiae with Enhanced Ethanol Tolerance for Chinese Rice Wine Fermentation. Appl Biochem Biotechnol 173, 1940–1954 (2014). https://doi.org/10.1007/s12010-014-0978-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12010-014-0978-z

Keywords

Navigation