Skip to main content

Advertisement

Log in

Exploring dynamics in living cells by tracking single particles

  • Original Paper
  • Published:
Cell Biochemistry and Biophysics Aims and scope Submit manuscript

Abstract

In the last years, significant advances in microscopy techniques and the introduction of a novel technology to label living cells with genetically encoded fluorescent proteins revolutionized the field of Cell Biology. Our understanding on cell dynamics built from snapshots on fixed specimens has evolved thanks to our actual capability to monitor in real time the evolution of processes in living cells. Among these new tools, single particle tracking techniques were developed to observe and follow individual particles. Hence, we are starting to unravel the mechanisms driving the motion of a wide variety of cellular components ranging from organelles to protein molecules by following their way through the cell. In this review, we introduce the single particle tracking technology to new users. We briefly describe the instrumentation and explain some of the algorithms commonly used to locate and track particles. Also, we present some common tools used to analyze trajectories and illustrate with some examples the applications of single particle tracking to study dynamics in living cells.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Alberts, B., Johnson, A., Lewis, J., Raff, M., Roberts, K., & Walter, P. (2002). Methods. In Molecular biology of the cell (pp. 469–582). New York: Garland Science.

  2. Alberts, B., Johnson, A., Lewis, J., Raff, M., Roberts, K., & Walter, P (2002). Cells in their social context. In Molecular biology of the cell (pp. 1065–1423). New York: Garland Science.

  3. Babcock, H. P., Chen, C., & Zhuang, X. (2004). Using single-particle tracking to study nuclear trafficking of viral genes. Biophysical Journal, 87, 2749–2758.

    Article  PubMed  CAS  Google Scholar 

  4. Belmont, A. S., & Straight, A. F. (1998). In vivo visualization of chromosomes using lac operator-repressor binding. Trends in Cell Biology, 8, 121–124.

    Article  PubMed  CAS  Google Scholar 

  5. Belmont, A. S. (2001). Visualizing chromosome dynamics with GFP. Trends in Cell Biology, 11, 250–257.

    Article  PubMed  CAS  Google Scholar 

  6. Berland, K. M., So, P. T., & Gratton, E. (1995). Two-photon fluorescence correlation spectroscopy: Method and application to the intracellular environment. Biophysical Journal, 68, 694–701.

    PubMed  CAS  Google Scholar 

  7. Berland, K. M., Jacobson, K. A., Frenche, T., & Rajfur, Z. (2003). Electronic cameras for low-light microscopy. In G. Sluder & D. E. Wolf (Eds.), Digital microscopy: A second edition of video microscopy (pp. 103–132). Amsterdam: Elsevier Academic Press.

  8. de Brabander, M., Nuydens, R., Ishihara, A., Holifield, B., Jacobson, K., & Geerts, H. (1991). Lateral diffusion and retrograde movements of individual cell surface components on single motile cells observed with Nanovid microscopy. The Journal of Cell Biology, 112, 111–124.

    Google Scholar 

  9. Bruchez, M. Jr., Moronne, M., Gin, P., Weiss, S., & Alivisatos, A. P. (1998). Semiconductor nanocrystals as fluorescent biological labels. Science, 281, 2013–2016.

    Article  PubMed  CAS  Google Scholar 

  10. Capps, G. G., Pine, S., Edidin, M., & Zuniga, M. C. (2004). Short class I major histocompatibility complex cytoplasmic tails differing in charge detect arbiters of lateral diffusion in the plasma membrane. Biophysical Journal, 86, 2896–2909.

    PubMed  CAS  Google Scholar 

  11. Carter, B., Shubeita, G., & Gross, S. (2005). Tracking single particles: A user-friendly quantitative evaluation. Physical Biology, 2, 60–72.

    Article  PubMed  Google Scholar 

  12. Cheezum, M. K., Walker, W. F., & Guilford, W. H. (2001). Quantitative comparison of algorithms for tracking single fluorescent particles. Biophysical Journal, 81, 2378–2388.

    PubMed  CAS  Google Scholar 

  13. Chubb, J. R., Boyle, S., Perry, P., & Bickmore, W. A. (2002). Chromatin motion is constrained by association with nuclear compartments in human cells. Current Biology, 12, 439–445.

    Article  PubMed  CAS  Google Scholar 

  14. Dahan, M., Levi, S., Luccardini, C., Rostaing, P., Riveau, B., & Triller, A. (2003). Diffusion dynamics of glycine receptors revealed by single-quantum dot tracking. Science, 302, 442–445.

    Article  PubMed  CAS  Google Scholar 

  15. Daniels, B. R., Masi, B. C., & Wirtz, D. (2006). Probing single-cell micromechanics in␣vivo: The microrheology of C.␣elegans developing embryos. Biophysical Journal, 90, 4712–4719.

    Article  PubMed  CAS  Google Scholar 

  16. Deacon, S. W., Serpinskaya, A. S., Vaughan, P. S., Lopez Fanarraga, M., Vernos, I., Vaughan, K. T., & Gelfand, V. I. (2003). Dynactin is required for bidirectional organelle transport. The Journal of Cell Biology, 160, 297–301.

    Article  PubMed  CAS  Google Scholar 

  17. Digman, M. A., Brown, C. M., Sengupta, P., Wiseman, P. W., Horwitz, A. R., & Gratton, E. (2005). Measuring fast dynamics in solutions and cells with a laser scanning microscope. Biophysical Journal, 89, 1317–1327.

    Article  PubMed  CAS  Google Scholar 

  18. Dubertret, B., Skourides, P., Norris, D. J., Noireaux, V., Brivanlou, A. H., & Libchaber, A. (2002). In vivo imaging of quantum dots encapsulated in phospholipid micelles. Science, 298, 1759–1762.

    Article  PubMed  CAS  Google Scholar 

  19. Enderlein, J. (2000). Tracking of fluorescent molecules diffusing within membranes. Applied Physics B-Lasers and Optics, 71, 773–777.

    Article  CAS  Google Scholar 

  20. Feder, T. J., Brust-Mascher, I., Slattery, J. P., Baird, B., & Webb, W. W. (1996). Constrained diffusion or immobile fraction on cell surfaces: a new interpretation. Biophysical Journal, 70, 2767–2773.

    PubMed  CAS  Google Scholar 

  21. Fujiwara, T., Ritchie, K., Murakoshi, H., Jacobson, K., & Kusumi, A. (2002). Phospholipids undergo hop diffusion in compartmentalized cell membrane. The Journal of Cell Biology, 157, 1071–1081.

    Article  PubMed  CAS  Google Scholar 

  22. Gao, X., Yang, L., Petros, J. A., Marshall, F. F., Simons, J. W., & Nie, S. (2005). In vivo molecular and cellular imaging with quantum dots. Current Opinion in Biotechnology, 16, 63–72.

    Article  PubMed  CAS  Google Scholar 

  23. Gasser, S. M. (2002). Visualizing chromatin dynamics in interphase nuclei. Science, 296, 1412–1416.

    Article  PubMed  CAS  Google Scholar 

  24. Geerts, H., de Brabander, M., & Nuydens, R. (1991). Nanovid microscopy. Nature, 351, 765–766.

    Article  PubMed  CAS  Google Scholar 

  25. Gelles, J., Schnapp, B. J., & Sheetz, M. P. (1988). Tracking kinesin-driven movements with nanometre-scale precision. Nature, 331, 450–453.

    Article  PubMed  CAS  Google Scholar 

  26. Gross, S. P., Tuma, M. C., Deacon, S. W., Serpinskaya, A. S., Reilein, A. R., & Gelfand, V. I. (2002). Interactions and regulation of molecular motors in Xenopus melanophores. The Journal of Cell Biology, 156, 855–865.

    Article  PubMed  CAS  Google Scholar 

  27. Gross, S. P., Welte, M. A., Block, S. M., & Wieschaus, E. F. (2002). Coordination of opposite-polarity microtubule motors. The Journal of Cell Biology, 156, 715–724.

    Article  PubMed  CAS  Google Scholar 

  28. Gross, S. P. (2004). Hither and yon: A review of bi-directional microtubule-based transport. Physical Biology, 1, R1–R11.

    Article  PubMed  CAS  Google Scholar 

  29. Haughland, R. P. (1998). Handbook of fluorescent probes and research chemicals. Eugene, OR: Molecular Probes.

  30. Hebert, B., Costantino, S., & Wiseman, P. W. (2005). Spatiotemporal image correlation spectroscopy (STICS) theory, verification, and application to protein velocity mapping in living CHO cells. Biophysical Journal, 88, 3601–3614.

    Article  PubMed  CAS  Google Scholar 

  31. Heidemann, S. R., & Wirtz, D. (2004). Towards a regional approach to cell mechanics. Trends in Cell Biology, 14, 161–166.

    Article  CAS  Google Scholar 

  32. Heun, P., Laroche, T., Shimada, K., Furrer, P., & Gasser, S. M. (2001). Chromosome dynamics in the yeast interphase nucleus. Science, 294, 2181–2186.

    Article  PubMed  CAS  Google Scholar 

  33. Hill, D. B., Plaza, M. J., Bonin, K., & Holzwarth, G. (2004). Fast vesicle transport in PC12 neurites: Velocities and forces. European Journal of Biophysics Journal, 33, 623–632.

    Article  CAS  Google Scholar 

  34. Kis-Petikova, K., & Gratton, E. (2004). Distance measurement by circular scanning of the excitation beam in the two-photon microscope. Microscopy Research and Technique, 63, 34–49.

    Article  PubMed  Google Scholar 

  35. Klonis, N., Rug, M., Harper, I., Wickham, M., Cowman, A., & Tilley, L. (2002). Fluorescence photobleaching analysis for the study of cellular dynamics. European Journal of Biophysics Journal, 31, 36–51.

    Article  CAS  Google Scholar 

  36. Kole, T. P., Tseng, Y., Jiang, I., Katz, J. L., & Wirtz, D. (2005). Intracellular mechanics of migrating fibroblasts. Molecular Biology of the Cell, 16, 328–338.

    Article  PubMed  CAS  Google Scholar 

  37. Kuno, M., Fromm, D. P., Hamann, H. F., Gallagher, A., & Nesbitt, D. J. (2000). Nonexponential “blinking” kinetics of single CdSe quantum dots: A universal power law behavior. The Journal of Chemical Physics, 112, 3117–3120.

    Article  CAS  Google Scholar 

  38. Kural, C., Kim, H., Syed, S., Goshima, G., Gelfand, V. I., & Selvin, P. R. (2005). Kinesin and dynein move a peroxisome in␣vivo: A tug-of-war or coordinated movement? Science, 308, 1469–1472.

    Article  PubMed  CAS  Google Scholar 

  39. Kusumi, A., Nakada, C., Ritchie, K., Murase, K., Suzuki, K., Murakoshi, H., Kasai, R. S., Kondo, J., & Fujiwara, T. (2005). Paradigm shift of the plasma membrane concept from the two-dimensional continuum fluid to the partitioned fluid: High-speed single-molecule tracking of membrane molecules. Annual Review of Biophysics and Biomolecular Structure, 34, 351–378.

    Article  PubMed  CAS  Google Scholar 

  40. Lakadamyali, M., Rust, M. J., Babcock, H. P., & Zhuang, X. (2003). Visualizing infection of individual influenza viruses. Proceedings of the National Academy of Sciences of the United States of America, 100, 9280–9285.

    Article  PubMed  CAS  Google Scholar 

  41. Lee, J. S., Panorchan, P., Hale, C. M., Khatau, S. B., Kole, T. P., Tseng, Y., & Wirtz, D. (2006). Ballistic intracellular nanorheology reveals ROCK-hard cytoplasmic stiffening response to fluid Flow. Journal of Cell Science, 1760–1768.

  42. Levi, V., Ruan, Q., Plutz, M., Belmont, A. S., & Gratton, E. (2005). Chromatin dynamics in interphase cells revealed by tracking in a two-photon excitation microscope. Biophysical Journal, 89, 4275–4285.

    Article  PubMed  CAS  Google Scholar 

  43. Levi, V., Ruan, Q., & Gratton, E. (2005). 3-D particle tracking in a two-photon microscope: application to the study of molecular dynamics in cells. Biophysical Journal, 88, 2919–2928.

    Article  PubMed  CAS  Google Scholar 

  44. Levi, V., Serpinskaya, A. S., Gratton, E., & Gelfand, V. (2006). Organelle transport along microtubules in Xenopus melanophores: evidence for cooperation between multiple motors. Biophysical Journal, 90, 318–327.

    Article  PubMed  CAS  Google Scholar 

  45. Levi, V., Gelfand, V. I., Serpinskaya, A. S., & Gratton, E. (2006). Melanosomes transported by Myosin-V in Xenopus melanophores perform slow 35 nm steps. Biophysical Journal, 90, L7–L9.

    Article  CAS  Google Scholar 

  46. Lommerse, P. H., Spaink, H. P., & Schmidt, T. (2004). In vivo plasma membrane organization: results of biophysical approaches. Biochimica et Biophysica Acta, 1664, 119–131.

    Article  PubMed  CAS  Google Scholar 

  47. Lommerse, P. H., Snaar-Jagalska, B. E., Spaink, H. P., & Schmidt, T. (2005). Single-molecule diffusion measurements of H-Ras at the plasma membrane of live cells reveal microdomain localization upon activation. Journal of Cell Science, 118, 1799–1809.

    Article  PubMed  CAS  Google Scholar 

  48. Ma, S., & Chisholm, R. L. (2002). Cytoplasmic dynein-associated structures move bidirectionally in␣vivo. Journal of Cell Science, 115, 1453–1460.

    PubMed  CAS  Google Scholar 

  49. Marshall, W. F., Straight, A., Marko, J. F., Swedlow, J., Dernburg, A., Belmont, A., Murray, A. W., Agard, D. A., & Sedat, J. W. (1997). Interphase chromosomes undergo constrained diffusional motion in living cells. Current Biology, 7, 930–939.

    Article  PubMed  CAS  Google Scholar 

  50. Mason, T. G., Ganesan, K., van Zanten, J. H., Wirtz, D., & Kuo, S. C. (1997). Particle tracking microrheology of complex fluids. Physical Review Letters, 79, 3282–3285.

    Article  CAS  Google Scholar 

  51. Meier, J., Vannier, C., Serge, A., Triller, A., & Choquet, D. (2001). Fast and reversible trapping of surface glycine receptors by gephyrin. Nature Neuroscience, 4, 253–260.

    Article  PubMed  CAS  Google Scholar 

  52. Michalet, X., Pinaud, F. F., Bentolila, L. A., Tsay, J. M., Doose, S., Li, J. J., Sundaresan, G., Wu, A. M., Gambhir, S. S., & Weiss, S. (2005). Quantum dots for live cells, in␣vivo imaging, and diagnostics. Science, 307, 538–544.

    Article  PubMed  CAS  Google Scholar 

  53. Misteli, T. (2005). Concepts in nuclear architecture. Bioessays, 27, 477–487.

    Article  PubMed  CAS  Google Scholar 

  54. Murase, K., Fujiwara, T., Umemura, Y., Suzuki, K., Iino, R., Yamashita, H., Saito, M., Murakoshi, H., Ritchie, K., & Kusumi, A. (2004). Ultrafine membrane compartments for molecular diffusion as revealed by single molecule techniques. Biophysical Journal, 86, 4075–4093.

    Article  PubMed  CAS  Google Scholar 

  55. Muratani, M., Gerlich, D., Janicki, S. M., Gebhard, M., Eils, R., & Spector, D. L. (2002). Metabolic-energy-dependent movement of PML bodies within the mammalian cell nucleus. Nature Cell Biology, 4, 106–110.

    Article  PubMed  CAS  Google Scholar 

  56. On-chip multiplication gain. (2002). Technical Note 14. In. Trenton, NJ: Roper Scientific.

  57. Oshiro, M., & Moomaw, B. (2003). Cooled vs. intensified vs. electron bombardment CCD cameras–applications and relative advantages. In G. Sluder & D. E. Wolf (Eds.), Digital microscopy: A second edition of video microscopy (pp. 133–156). Amsterdam: Elsevier Academic Press.

  58. Piston, D. (1996). Two-photon excitation microscopy. In X. Wang & B. Herman (Eds.), Fluorescence imaging spectroscopy and microscopy (pp. 253–272). New York: John Wiley & Sons.

  59. Platani, M., Goldberg, I., Lamond, A. I., & Swedlow, J. R. (2002). Cajal body dynamics and association with chromatin are ATP-dependent. Nature Cell Biology, 4, 502–508.

    Article  PubMed  CAS  Google Scholar 

  60. Qian, H., Sheetz, M. P., & Elson, E. L. (1991). Single particle tracking. Analysis of diffusion and flow in two-dimensional systems. Biophysical Journal, 60, 910–921.

    PubMed  CAS  Google Scholar 

  61. Reits, E. A., & Neefjes, J. J. (2001). From fixed to FRAP: measuring protein mobility and activity in living cells. Nature Cell Biology, 3, E145–E147.

    Article  PubMed  CAS  Google Scholar 

  62. Ritchie, K., Iino, R., Fujiwara, T., Murase, K., & Kusumi, A. (2003). The fence and picket structure of the plasma membrane of live cells as revealed by single molecule techniques (Review). Molecular Membrane Biology, 20, 13–18.

    Article  PubMed  CAS  Google Scholar 

  63. Rogers, S. L., Tint, I. S., & Gelfand, V. I. (1998). In vitro motility assay for melanophore pigment organelles. Methods in Enzymology, 298, 361–372.

    Article  PubMed  CAS  Google Scholar 

  64. Ruan, Q., Cheng, M. A., Levi, M., Gratton, E., & Mantulin, W. W. (2004). Spatial-temporal studies of membrane dynamics: scanning fluorescence correlation spectroscopy (SFCS). Biophysical Journal, 87, 1260–1267.

    Article  PubMed  CAS  Google Scholar 

  65. Sako, Y., & Kusumi, A. (1994). Compartmentalized structure of the plasma membrane for receptor movements as revealed by a nanometer-level motion analysis. The Journal of Cell Biology, 125, 1251–1264.

    Article  PubMed  CAS  Google Scholar 

  66. Sako, Y., Minoghchi, S., & Yanagida, T. (2000). Single-molecule imaging of EGFR signalling on the surface of living cells. Nature Cell Biology, 2, 168–172.

    Article  PubMed  CAS  Google Scholar 

  67. Sako, Y., & Uyemura, T. (2002). Total internal reflection fluorescence microscopy for single-molecule imaging in living cells. Cell Structure and Function, 27, 357–365.

    Article  PubMed  CAS  Google Scholar 

  68. Sanchez, S. A., & Gratton, E. (2005). Lipid–protein interactions revealed by two-photon microscopy and fluorescence correlation spectroscopy. Accounts of Chemical Research, 38, 469–477.

    Article  PubMed  CAS  Google Scholar 

  69. Saxton, M. J., & Jacobson, K. (1997). Single-particle tracking: Applications to membrane dynamics. Annual Review of Biophysics and Biomolecular Structure, 26, 373–399.

    Article  PubMed  CAS  Google Scholar 

  70. Saxton, M. J. (1994). Anomalous diffusion due to obstacles: A Monte Carlo study. Biophysical Journal, 66, 394–401.

    PubMed  CAS  Google Scholar 

  71. Saxton, M. J. (1994). Single-particle tracking: Models of directed transport. Biophysical Journal, 67, 2110–2119.

    PubMed  CAS  Google Scholar 

  72. Saxton, M. J. (1997). Single-particle tracking: the distribution of diffusion coefficients. Biophysical Journal, 72, 1744–1753.

    PubMed  CAS  Google Scholar 

  73. Saxton, M. J. (1996). Anomalous diffusion due to binding: A Monte Carlo study. Biophysical Journal, 70, 1250–1262.

    PubMed  CAS  Google Scholar 

  74. Saxton, M. J. (1993). Lateral diffusion in an archipelago. Single-particle diffusion. Biophysical Journal, 64, 1766–1780.

    PubMed  CAS  Google Scholar 

  75. Saxton, M. J. (1995). Single-particle tracking: Effects of corrals. Biophysical Journal, 69, 389–398.

    PubMed  CAS  Google Scholar 

  76. Schneckenburger, H. (2005). Total internal reflection fluorescence microscopy: technical innovations and novel applications. Current Opinion in Biotechnology, 16, 13–18.

    Article  PubMed  CAS  Google Scholar 

  77. Sheetz, M. P., Turney, S., Qian, H., & Elson, E. L. (1989). Nanometre-level analysis demonstrates that lipid flow does not drive membrane glycoprotein movements. Nature, 340, 284–288.

    Article  PubMed  CAS  Google Scholar 

  78. Simson, R., Yang, B., Moore, S. E., Doherty, P., Walsh, F. S., & Jacobson, K. A. (1998). Structural mosaicism on the submicron scale in the plasma membrane. Biophysical Journal, 74, 297–308.

    PubMed  CAS  Google Scholar 

  79. Singer, S. J., & Nicolson, G. L. (1972). The fluid mosaic model of the structure of cell membranes. Science, 175, 720–731.

    Article  PubMed  CAS  Google Scholar 

  80. So, P. T., Dong, C. Y., Masters, B. R., & Berland, K. M. (2000). Two-photon excitation fluorescence microscopy. Annual Review of Biomedical Engineering, 2, 399–429.

    Article  PubMed  CAS  Google Scholar 

  81. Sodeik B. (2000). Mechanisms of viral transport in the cytoplasm. Trends in Microbiology, 8, 465–472.

    Article  PubMed  CAS  Google Scholar 

  82. Spring, K. R. (2003). Cameras for digital microscopy. In G. Sluder & D. E. Wolf (Eds.), Digital microscopy: A second edition of video microscopy (pp. 87–132). Amsterdam: Elsevier Academic Press.

  83. Stephens, D. J., & Allan, V. J. (2003). Light microscopy techniques for live cell imaging. Science, 300, 82–86.

    Article  PubMed  CAS  Google Scholar 

  84. Syed, S., Snyder, G. E., Franzini-Armstrong, C., Selvin, P. R., & Goldman, Y. E. (2006). Adaptability of myosin V studied by simultaneous detection of position and orientation. The Embo Journal, 25, 1795–1803.

    Google Scholar 

  85. Thompson, R. E., Larson, D. R., & Webb, W. W. (2002). Precise nanometer localization analysis for individual fluorescent probes. Biophysical Journal, 82, 2775–2783.

    PubMed  CAS  Google Scholar 

  86. Tomishige, M., Sako, Y., & Kusumi, A. (1998). Regulation mechanism of the lateral diffusion of band 3 in erythrocyte membranes by the membrane skeleton. The Journal of Cell Biology, 142, 989–1000.

    Article  PubMed  CAS  Google Scholar 

  87. Toprak, E., Enderlein, J., Syed, S., McKinney, S. A., Petschek, R. G., Ha, T., Goldman, Y. E., & Selvin, P. R. (2006). Defocused orientation and position imaging (DOPI) of myosin V. Proceedings of the National Academy of Sciences of the United States of America, 103, 6495–6499.

    Article  PubMed  CAS  Google Scholar 

  88. Tseng, Y., Kole, T. P., & Wirtz, D. (2002). Micromechanical mapping of live cells by multiple-particle-tracking microrheology. Biophysical Journal, 83, 3162–3176.

    PubMed  CAS  Google Scholar 

  89. Tseng, Y., Lee, J. S., Kole, T. P., Jiang, I., & Wirtz, D. (2004). Micro-organization and visco-elasticity of the interphase nucleus revealed by particle nanotracking. Journal of Cell Science, 117, 2159–2167.

    Article  PubMed  CAS  Google Scholar 

  90. Tsien, R. Y. (1998). The green fluorescent protein. Annual Review of Biochemistry, 67, 509–544.

    Article  PubMed  CAS  Google Scholar 

  91. Tumbar, T., & Belmont, A. S. (2001). Interphase movements of a DNA chromosome region modulated by VP16 transcriptional activator. Nature Cell Biology, 3, 134–139.

    Article  PubMed  CAS  Google Scholar 

  92. Vale, R. D. (2003). The molecular motor toolbox for intracellular transport. Cell, 112, 467–480.

    Article  PubMed  CAS  Google Scholar 

  93. Vazquez, J., Belmont, A. S., & Sedat, J. W. (2001). Multiple regimes of constrained chromosome motion are regulated in the interphase Drosophila nucleus. Current Biology, 11, 1227–1239.

    Article  PubMed  CAS  Google Scholar 

  94. Warshaw, D. M., Kennedy, G. G., Work, S. S., Krementsova, E. B., Beck, S., & Trybus, K. M. (2005). Differential labeling of myosin V heads with quantum dots allows direct visualization of hand-over-hand processivity. Biophysical Journal, 88, L30–L32.

    Article  PubMed  CAS  Google Scholar 

  95. Wazawa, T., & Ueda, M. (2005). Total internal reflection fluorescence microscopy in single molecule nanobioscience. Advances in Biochemical Engineering/Biotechnology, 95,␣77–106.

    PubMed  CAS  Google Scholar 

  96. Welte, M. A., Gross, S. P., Postner, M., Block, S. M., & Wieschaus, E. F. (1998). Developmental regulation of vesicle transport in Drosophila embryos: Forces and kinetics. Cell, 92, 547–557.

    Article  PubMed  CAS  Google Scholar 

  97. Welte, M. A. (2004). Bidirectional transport along microtubules. Current Biology, 14, R525–R537.

    Article  PubMed  CAS  Google Scholar 

  98. Yamada, S., Wirtz, D., & Kuo, S. C. (2000). Mechanics of living cells measured by laser tracking microrheology. Biophysical Journal, 78, 1736–1747.

    Article  PubMed  CAS  Google Scholar 

  99. Yildiz, A., Forkey, J. N., McKinney, S. A., Ha, T., Goldman, Y. E., & Selvin, P. R. (2003). Myosin V walks hand-over-hand: single fluorophore imaging with 1.5-nm localization. Science, 300, 2061–2065.

    Article  PubMed  CAS  Google Scholar 

  100. Yildiz, A., Park, H., Safer, D., Yang, Z., Chen, L. Q., Selvin, P. R., & Sweeney, H. L. (2004). Myosin VI steps via a hand-over-hand mechanism with its lever arm undergoing fluctuations when attached to actin. The Journal of Biological Chemistry, 279, 37223–37226.

    Article  PubMed  CAS  Google Scholar 

  101. Yildiz, A., Tomishige, M., Vale, R. D., & Selvin, P. R. (2004). Kinesin walks hand-over-hand. Science, 303, 676–678.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Enrico Gratton.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Levi, V., Gratton, E. Exploring dynamics in living cells by tracking single particles. Cell Biochem Biophys 48, 1–15 (2007). https://doi.org/10.1007/s12013-007-0010-0

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12013-007-0010-0

Keywords

Navigation