Skip to main content
Log in

Computational Analysis of C-Reactive Protein for Assessment of Molecular Dynamics and Interaction Properties

  • Original Paper
  • Published:
Cell Biochemistry and Biophysics Aims and scope Submit manuscript

Abstract

Serum C-reactive protein (CRP) is used as a marker of inflammation in several diseases including autoimmune disease and cardiovascular disease. CRP, a member of the pentraxin family, is comprised of five identical subunits. CRP has diverse ligand-binding properties which depend upon different structural states of CRP. However, little is known about the molecular dynamics and interaction properties of CRP. In this study, we used SAPS, SCRATCH protein predictor, PDBsum, ConSurf, ProtScale, Drawhca, ASAView, SCide and SRide server and performed comprehensive analyses of molecular dynamics, protein–protein and residue–residue interactions of CRP. We used 1GNH.pdb file for the crystal structure of human CRP which generated two pentamers (ABCDE and FGHIJ). The number of residues involved in residue–residue interactions between A–B, B–C, C–D, D–E, F–G, G–H, H–I, I–J, A–E and F–J subunits were 12, 11, 10, 11, 12, 11, 10, 11, 10 and 10, respectively. Fifteen antiparallel β sheets were involved in β-sheet topology, and five β hairpins were involved in forming the secondary structure. Analysis of hydrophobic segment distribution revealed deviations in surface hydrophobicity at different cavities present in CRP. Approximately 33 % of all residues were involved in the stabilization centers. We show that the bioinformatics tools can provide a rapid method to predict molecular dynamics and interaction properties of CRP. Our prediction of molecular dynamics and interaction properties of CRP combined with the modeling data based on the known 3D structure of CRP is helpful in designing stable forms of CRP mutants for structure–function studies of CRP and may facilitate in silico drug design for therapeutic targeting of CRP.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Agrawal, A., Singh, P. P., Bottazzi, B., Garlanda, C., & Mantovani, A. (2009). Pattern recognition by pentraxins. Advances in Experimental Medicine and Biology, 653, 98–116.

    Article  PubMed  CAS  Google Scholar 

  2. Agrawal, A., Hammond, D. J., Jr, & Singh, S. K. (2010). Atherosclerosis-related functions of C-reactive protein. Cardiovascular & Hematological Disorders: Drug Targets, 10, 235–240.

    Article  CAS  Google Scholar 

  3. Pepys, M. B., Dash, A. C., Fletcher, T. C., Richardson, N., Munn, E. A., et al. (1978). Analogues in other mammals and in fish of human plasma proteins C-reactive protein and amyloid P component. Nature, 273, 168–177.

    Article  PubMed  CAS  Google Scholar 

  4. Kushner, I., Rzewnicki, D., & Samols, D. (2006). What does minor elevation of C-reactive protein signify? American Journal of Medicine, 119(166), e17–e28.

    PubMed  Google Scholar 

  5. Ridker, P. M., Cushman, M., Stampfer, M. J., Tracy, R. P., & Hennekens, C. H. (1997). Inflammation, aspirin, and the risk of cardiovascular disease in apparently healthy men. The New England Journal of Medicine, 336, 973–979.

    Article  PubMed  CAS  Google Scholar 

  6. Shrive, A. K., Cheetham, G. M., Holden, D., Myles, D. A., Turnell, W. G., et al. (1996). Three dimensional structure of human C-reactive protein. Nature Structural Biology, 3, 346–354.

    Article  PubMed  CAS  Google Scholar 

  7. Thompson, D., Pepys, M. B., & Wood, S. P. (1999). The physiological structure of human C-reactive protein and its complex with phosphocholine. Structure, 7, 169–177.

    Article  PubMed  CAS  Google Scholar 

  8. Volanakis, J. E., & Kaplan, M. H. (1971). Specificity of C-reactive protein for choline phosphate residues of pneumococcal C-polysaccharide. Proceedings of the Society for Experimental Biology and Medicine, 136, 612–614.

    Article  PubMed  CAS  Google Scholar 

  9. Singh, S. K., Hammond, D. J., Jr, Beeler, B. W., & Agrawal, A. (2009). The binding of C-reactive protein, in the presence of phosphoethanolamine, to low-density lipoproteins is due to phosphoethanolamine-generated acidic pH. Clinica Chimica Acta, 409, 143–144.

    Article  CAS  Google Scholar 

  10. Hammond, D. J., Jr, Singh, S. K., Thompson, J. A., Beeler, B. W., Rusiñol, A. E., et al. (2010). Identification of acidic pH-dependent ligands of pentameric C-reactive protein. Journal of Biological Chemistry, 285, 36235–36244.

    Article  PubMed  CAS  Google Scholar 

  11. Singh, S. K., Thirumalai, A., Hammond, D. J., Jr, Pangburn, M. K., Mishra, V. K., et al. (2012). Exposing a hidden functional site of C-reactive protein by site-directed mutagenesis. Journal of Biological Chemistry, 287, 3550–3558.

    Article  PubMed  CAS  Google Scholar 

  12. Potempa, L. A., Siegel, J. N., Fiedel, B. A., Potempa, R. T., & Gewurz, H. (1987). Expression, detection and assay of a neoantigen (Neo-CRP) associated with a free, human C-reactive protein subunit. Molecular Immunology, 24, 531–541.

    Article  PubMed  CAS  Google Scholar 

  13. Verma, S., Szmitko, P. E., & Yeh, E. T. (2004). C-reactive protein, structure affects function. Circulation, 109, 1914–1917.

    Article  PubMed  Google Scholar 

  14. Ji, S. R., Wu, Y., Potempa, L. A., Qiu, Q., & Zhao, J. (2006). Interactions of C-reactive protein with low-density lipoproteins, implications for an active role of modified C-reactive protein in atherosclerosis. International Journal of Biochemistry & Cell Biology, 38, 648–661.

    Article  CAS  Google Scholar 

  15. Ji, S. R., Wu, Y., Zhu, L., Potempa, L. A., Sheng, F. L., et al. (2007). Cell membranes and liposomes dissociate C-reactive protein (CRP) to form a new, biologically active structural intermediate, mCRP(m). Journal of Federation of American Societies for Experimental Biology, 21, 284–294.

    Article  CAS  Google Scholar 

  16. Boncler, M., & Watała, C. (2009). Regulation of cell function by isoforms of C-reactive protein, a comparative analysis. Acta Biochimica Polonica, 56, 17–31.

    PubMed  CAS  Google Scholar 

  17. Eisenhardt, S. U., Habersberger, J., Murphy, A., Chen, Y. C., Woollard, K. J., et al. (2009). Dissociation of pentameric to monomeric C-reactive protein on activated platelets localizes inflammation to atherosclerotic plaques. Circulation Research, 105, 128–137.

    Article  PubMed  CAS  Google Scholar 

  18. Pepys, M. B., Hirschfield, G. M., Tennent, G. A., Gallimore, J. R., Kahan, M. C., et al. (2006). Targeting C-reactive protein for the treatment of cardiovascular disease. Nature, 440, 1217–1221.

    Article  PubMed  CAS  Google Scholar 

  19. Tokuriki, N., Stricher, F., Serrano, L., & Tawfik, D. S. (2008). How protein stability and new functions trade off. PLoS Computational Biology, 4, e1000002.

    Article  PubMed  Google Scholar 

  20. Shoichet, B. K., Baase, W. A., Kuroki, R., & Matthews, B. W. (1995). A relationship between protein stability and protein function. Proceedings of the National Academy of Sciences of the United States of America, 92, 452–456.

    Article  PubMed  CAS  Google Scholar 

  21. Gutierrez, H., Castillo, A., Monzon, J., & Urrutia, A. O. (2011). Protein amino acid composition, a genomic signature of encephalization in mammals. PLoS ONE, 6, e27261.

    Article  PubMed  CAS  Google Scholar 

  22. Marques, J. R., da Fonseca, R. R., Drury, B., & Melo, A. (2010). Amino acid patterns around disulfide bonds. International Journal of Molecular Sciences, 11, 4673–4686.

    Article  PubMed  CAS  Google Scholar 

  23. Bhattacharyya, R., Pal, D., & Chakrabarti, P. (2004). Disulfide bonds, their stereospecific environment and conservation in protein structures. Protein Engineering, Design & Selection, 17, 795–808.

    Article  CAS  Google Scholar 

  24. Hogg, P. J. (2003). Disulfide bonds as switches for protein function. Trends in Biochemical Sciences, 28, 210–214.

    Article  PubMed  CAS  Google Scholar 

  25. Klink, T. A., Woycechowsky, K. J., Taylor, K. M., & Raines, R. T. (2000). Contribution of disulfide bonds to the conformational stability and catalytic activity of ribonuclease A. European Journal of Biochemistry, 267, 566–572.

    Article  PubMed  CAS  Google Scholar 

  26. Sardiu, M. E., Cheung, M. S., & Yi-Kuo, Y. (2007). Cysteine-cysteine contact preference leads to target-focusing in protein folding. Journal of Biophysics, 93, 938–951.

    Article  CAS  Google Scholar 

  27. Wedemeyer, W. J., Welker, E., Narayan, M., & Scheraga, H. A. (2000). Disulfide bonds and protein folding. Biochemistry, 39, 4208–4216.

    Google Scholar 

  28. Kamat, A. P., & Lesk, A. M. (2007). Contact patterns between helices and strands of sheet define protein folding patterns. Proteins, 66, 869–876.

    Article  PubMed  CAS  Google Scholar 

  29. Chikalov, I., Yao, P., Moshkov, M., & Latombe, J. C. (2011). Learning probabilistic models of hydrogen bond stability from molecular dynamics simulation trajectories. BMC Bioinformatics, 12(Suppl 1), S34.

    Article  PubMed  Google Scholar 

  30. Manning, J. R., Jefferson, E. R., & Barton, G. J. (2008). The contrasting properties of conservation and correlated phylogeny in protein functional residue prediction. BMC Bioinformatics, 9, 51.

    Article  PubMed  Google Scholar 

  31. Chakraborty, C., Agoramoorthy, G., & Hsu, M. J. (2011). Exploring the evolutionary relationship of insulin receptor substrate family using computational biology. PLoS ONE, 6, e16580.

    Article  PubMed  CAS  Google Scholar 

  32. Higurashi, M., Ishida, T., & Kinoshita, K. (2008). Identification of transient hub proteins and the possible structural basis for their multiple interactions. Protein Science, 17, 72–78.

    Article  PubMed  CAS  Google Scholar 

  33. Chakraborty, C., Roy, S. S., Hsu, M. J., & Agoramoorthy, G. (2011). Landscape mapping of functional proteins in insulin signal transduction and insulin resistance, a network-based protein–protein interaction analysis. PLoS ONE, 6, e16388.

    Article  PubMed  CAS  Google Scholar 

  34. Privalov, P. L. (1979). Stability of proteins, small globular proteins. Advances in Protein Chemistry, 33, 167–241.

    Article  PubMed  CAS  Google Scholar 

  35. Baldwin, R. L. (1986). Temperature dependence of the hydrophobic interaction in protein folding. Proceedings of the National Academy of Sciences of the United States of America, 83, 8069–8072.

    Article  PubMed  CAS  Google Scholar 

  36. Dill, K. A. (1990). Dominant forces in protein folding. Biochemistry, 29, 7133–7155.

    Article  PubMed  CAS  Google Scholar 

  37. Stigter, D., & Dill, K. A. (1990). Charge effects on folded and unfolded proteins. Biochemistry, 29, 1262–1271.

    Article  PubMed  CAS  Google Scholar 

  38. Andjelković, U., Theisgen, S., Scheidt, H. A., Petković, M., Huster, D., et al. (2012). The thermal stability of the external invertase isoforms from Saccharomyces cerevisiae correlates with the surface charge density. Biochimie, 94, 510–515.

    Article  PubMed  Google Scholar 

  39. Simon, Á., Dosztányi, Z., Magyar, C., Szirtes, G., Rajnavölgyi, É., et al. (2001). Stabilization centers and protein stability. Theoretical Chemistry Accounts, Theory, Computation, and Modeling, 106, 121–127.

    Article  CAS  Google Scholar 

  40. Dosztányi, Z., Fiser, A., & Simon, I. (1997). Stabilization centers in proteins, identification, characterization and predictions. Journal of Molecular Cell Biology, 272, 597–612.

    Google Scholar 

  41. Gilis, D., & Rooman, M. (1997). Predicting protein stability changes upon mutation using database-derived potentials, solvent accessibility determines the importance of local versus non-local interactions along the sequence. Journal of Molecular Cell Biology, 272, 276–290.

    CAS  Google Scholar 

  42. Sayers, E. W., Barrett, T., Benson, D. A., Bolton, E., Bryant, S. H., et al. (2011). Database resources of the national center for biotechnology information. Nucleic Acids Research, 39, D38–D51.

    Article  PubMed  CAS  Google Scholar 

  43. Berman, H. M., Westbrook, J., Feng, Z., Gilliland, G., Bhat, T. N., et al. (2000). The protein data bank. Nucleic Acids Research, 28, 235–242.

    Article  PubMed  CAS  Google Scholar 

  44. Brendel, V., Bucher, P., Nourbakhsh, I., Blaisdell, B. E., & Karlin, S. (1992). Methods and algorithms for statistical analysis of protein sequences. Proceedings of the National Academy of Sciences of the United States of America, 89, 2002–2006.

    Article  PubMed  CAS  Google Scholar 

  45. Cheng, J., Randall, A. Z., Sweredoski, M. J., & Baldi, P. (2005). SCRATCH, a protein structure and structural feature prediction server. Nucleic Acids Research, 33, W72–W76.

    Article  PubMed  CAS  Google Scholar 

  46. Laskowski, R. A. (2001). PDBsum, summaries and analyses of PDB structures. Nucleic Acids Research, 29, 221–222.

    Article  PubMed  CAS  Google Scholar 

  47. Laskowski, R. A., Chistyakov, V. V., & Thornton, J. M. (2005). PDBsum more, new summaries and analyses of the known 3D structures of proteins and nucleic acids. Nucleic Acids Research, 33, D266–D268.

    Article  PubMed  CAS  Google Scholar 

  48. Laskowski, R. A. (2009). PDBsum new things. Nucleic Acids Research, 37, D355–D359.

    Article  PubMed  CAS  Google Scholar 

  49. Hutchinson, E. G., & Thornton, J. M. (1990). HERA, a program to draw schematic diagrams of protein secondary structures. Proteins, 8, 203–212.

    Article  PubMed  CAS  Google Scholar 

  50. Ashkenazy, H., Erez, E., Martz, E., Pupko, T., & Ben-Tal, N. (2010). ConSurf 2010, calculating evolutionary conservation in sequence and structure of proteins and nucleic acids. Nucleic Acids Research, 38, W529–W533.

    Article  PubMed  CAS  Google Scholar 

  51. Roseman, M. A. (1988). Hydrophilicity of polar amino acid side-chains is markedly reduced by flanking peptide bonds. Journal of Molecular Biology, 200, 513–522.

    Article  PubMed  CAS  Google Scholar 

  52. Callebaut, I., Labesse, G., Durand, P., Poupon, A., Canard, L., et al. (1997). Deciphering protein sequence information through hydrophobic cluster analysis (HCA), current status and perspectives. Cellular and Molecular Life Sciences, 53, 621–645.

    Article  PubMed  CAS  Google Scholar 

  53. Shrake, A., & Rupley, J. A. (1973). Environment and exposure to solvent of protein atoms, Lysozyme and insulin. Journal of Molecular Biology, 79, 351–371.

    Article  PubMed  CAS  Google Scholar 

  54. Ahmad, S., Gromiha, M., Fawareh, H., & Sarai, A. (2004). ASAView, database and tool for solvent accessibility representation in proteins. BMC Bioinformatics, 5, 51.

    Article  PubMed  Google Scholar 

  55. Glaser, F., Pupko, T., Paz, I., Bell, R. E., Bechor-Shental, D., et al. (2003). ConSurf, identification of functional regions in proteins by surface-mapping of phylogenetic information. Bioinformatics, 19, 163–164.

    Article  PubMed  CAS  Google Scholar 

  56. Dosztányi, Z. S., Magyar, C. S., Tusnády, G. E., & Simon, I. (2003). SCide, identification of stabilization centers in proteins. Bioinformatics, 19, 899–900.

    Article  PubMed  Google Scholar 

  57. Magyar, C., Gromiha, M. M., Pujadas, G., Tusnády, G. E., & Simon, I. (2005). SRide, a server for identifying stabilizing residues in proteins. Nucleic Acids Research, 33, W303–W305.

    Article  PubMed  CAS  Google Scholar 

  58. Gromiha, M. M., Pujadas, G., Magyar, C., Selvaraj, S., & Simon, I. (2004). Locating the stabilizing residues in (alpha/beta)8 barrel proteins based on hydrophobicity, long-range interactions, and sequence conservation. Proteins, 55, 316–329.

    Article  PubMed  CAS  Google Scholar 

  59. Wang, M. Y., Ji, S. R., Bai, C. J., El Kebir, D., Li, H. Y., et al. (2011). A redox switch in C-reactive protein modulates activation of endothelial cells. Journal of Federation of American Societies for Experimental Biology, 25, 3186–3196.

    Article  CAS  Google Scholar 

  60. Ji, S. R., Ma, L., Bai, C. J., Shi, J. M., Li, H. Y., et al. (2009). Monomeric C-reactive protein activates endothelial cells via interaction with lipid raft micro-domains. Journal of Federation of American Societies for Experimental Biology, 23, 1806–1816.

    Article  CAS  Google Scholar 

  61. Chemel, B. R., Bonner, L. A., Watts, V. J., & Nichols, D. E. (2012). Ligand-specific roles for transmembrane 5 serine residues in the binding and efficacy of dopamine D(1) receptor catechol agonists. Molecular Pharmacology, 81, 729–738.

    Article  PubMed  CAS  Google Scholar 

  62. Ma, B., Elkayam, T., Wolfson, H., & Nussinov, R. (2003). Protein-protein interactions, structurally conserved residues distinguish between binding sites and exposed protein surfaces. Proceedings of the National Academy of Sciences of the United States of America, 100, 5772–5777.

    Article  PubMed  CAS  Google Scholar 

  63. Kumar, S. V., Ravunny, R. K., & Chakraborty, C. (2011). Conserved domains, conserved residues, and surface cavities of C-reactive protein (CRP). Applied Biochemistry and Biotechnology, 165, 497–505.

    Article  PubMed  CAS  Google Scholar 

  64. Khreiss, T., Jozsef, L., Hossain, S., Chan, J. S., Potempa, L. A., et al. (2002). Loss of pentameric symmetry of C-reactive protein is associated with delayed apoptosis of human neutrophils. The Journal of Biological Chemistry, 277, 40775–40781.

    Article  PubMed  CAS  Google Scholar 

  65. Emsley, J., White, H. E., O’Hara, B. P., Oliva, G., Srinivasan, N., et al. (1994). Structure of pentameric human serum amyloid P component. Nature, 367, 338–345.

    Article  PubMed  CAS  Google Scholar 

  66. Politi, R., & Harries, D. (2010). Enthalpically driven peptide stabilization by protective osmolytes. Chemical Communications (Cambridge, England), 46, 6449–6451.

    Article  CAS  Google Scholar 

  67. Srinivasan, N., White, H. E., Emsley, J., Wood, S. P., Pepys, M. B., et al. (1994). Comparative analyses of pentraxins, implications for protomer assembly and ligand binding. Structure, 2, 1017–1027.

    Article  PubMed  CAS  Google Scholar 

  68. Politi, R., & Harries, D. (2011). Unraveling the molecular mechanism of enthalpy driven peptide folding by polyol osmolytes. Journal of Chemical Theory and Computation, 7, 3816–3828.

    Article  Google Scholar 

  69. Bourgeas, R., Basse, M.-J., Morelli, X., & Roche, P. (2010). Atomic analysis of protein–protein interfaces with known inhibitors, the 2P2I database. PLoS ONE, 5, e9598.

    Article  PubMed  Google Scholar 

  70. Munson, M., Balasubramanian, S., Fleming, K. G., Nagi, A. D., O’Brien, R., et al. (1996). What makes a protein a protein? Hydrophobic core designs that specify stability and structural properties. Protein Science, 5, 1584–1593.

    Article  PubMed  CAS  Google Scholar 

  71. Dill, K. A., Bromberg, S., Yue, K., Fiebig, K. M., Yee, D. P., et al. (1995). Principles of protein folding, a perspective from simple exact models. Protein Science, 4, 561–602.

    Article  PubMed  CAS  Google Scholar 

  72. Giovambattista, N., Lopez, C. F., Rossky, P. J., & Debenedetti, P. G. (2008). Hydrophobicity of protein surfaces: Separating geometry from chemistry. Proceedings of the National Academy of Sciences of the United States of America, 105, 2274–2279.

    Article  PubMed  CAS  Google Scholar 

  73. Ponnuswamy, P. K. (1993). Hydrophobic characteristics of folded proteins. Progress in Biophysics and Molecular Biology, 59, 57–103.

    Article  PubMed  CAS  Google Scholar 

  74. Agrawal, A., Simpson, M. J., Black, S., Carey, M. P., & Samols, D. (2002). A C-reactive protein mutant that does not bind to phosphocholine and pneumococcal C-polysaccharide. Journal of Immunology, 169, 3217–3222.

    CAS  Google Scholar 

  75. Black, S., Agrawal, A., & Samols, D. (2003). The phosphocholine and the polycation-binding sites on rabbit C-reactive protein are structurally and functionally distinct. Molecular Immunology, 39, 1045–1054.

    Article  PubMed  CAS  Google Scholar 

  76. Bang, R., Marnell, L., Mold, C., Stein, M. P., Clos, K. T., et al. (2005). Analysis of binding sites in human C-reactive protein for Fc{gamma}RI, Fc{gamma}RIIA, and C1q by site-directed mutagenesis. The Journal of Biological Chemistry, 280, 25095–25102.

    Article  PubMed  CAS  Google Scholar 

  77. Yue, C. C., Muller-Greven, J., Dailey, P., Lozanski, G., Anderson, V., & Macintyre, S. (1996). Identification of a C-reactive protein binding site in two hepatic carboxylesterases capable of retaining C-reactive protein within the endoplasmic reticulum. The Journal of Biological Chemistry, 271, 22245–22250.

    Article  PubMed  CAS  Google Scholar 

  78. Black, S., Kushner, I., & Samols, D. (2004). C-reactive protein. The Journal of Biological Chemistry, 279, 48487–48490.

    Article  PubMed  CAS  Google Scholar 

  79. Gaboriaud, C., Juanhuix, J., Gruez, A., Lacroix, M., & Darnault, C. (2003). The crystal structure of the globular head of complement protein C1q provides a basis for its versatile recognition properties. The Journal of Biological Chemistry, 278, 46974–46982.

    Article  PubMed  CAS  Google Scholar 

  80. Stigter, D., Alonso, D. O., & Dill, K. A. (1991). Protein stability, electrostatics and compact denatured states. Proceedings of the National Academy of Sciences of the United States of America, 88, 4176–4180.

    Article  PubMed  CAS  Google Scholar 

  81. Abkevich, V. I., Gutin, A. M., & Shakhnovich, E. I. (1995). Impact of local and non-local interactions on thermodynamics and kinetics of protein folding. The Journal of Biological Chemistry, 252, 460–471.

    CAS  Google Scholar 

  82. Mirny, L. A., & Shakhnovich, E. (1996). How to drive a protein folding potential? A new approach to an old problem. The Journal of Biological Chemistry, 264, 1164–1179.

    CAS  Google Scholar 

  83. Bahar, I., & Jernigan, R. L. (1997). Inter-residue potentials in globular proteins and the dominance of highly specific hydrophilic interactions at close separation. The Journal of Biological Chemistry, 266, 195–214.

    CAS  Google Scholar 

  84. Dosztányi, Z., Fiser, A., & Simon, I. (1997). Stabilization centers in proteins, identification, characterization and predictions. The Journal of Biological Chemistry, 272, 597–612.

    Google Scholar 

  85. Ponnuswamy, P. K., & Gromiha, M. M. (1994). On the conformational stability of folded proteins. Journal of Theoretical Biology, 166, 63–74.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chiranjib Chakraborty.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOC 360 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Chakraborty, C., Agrawal, A. Computational Analysis of C-Reactive Protein for Assessment of Molecular Dynamics and Interaction Properties. Cell Biochem Biophys 67, 645–656 (2013). https://doi.org/10.1007/s12013-013-9553-4

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12013-013-9553-4

Keywords

Navigation