Skip to main content

Advertisement

Log in

Therapeutic Potentials of Mesenchymal Stem Cells Derived from Human Umbilical Cord

  • Published:
Stem Cell Reviews and Reports Aims and scope Submit manuscript

Abstract

Human umbilical cord-derived mesenchymal stem cells (hUC-MSCs), isolated from discarded extra-embryonic tissue after birth, are promising candidate source of mesenchymal stem cells (MSCs). Apart from their prominent advantages in abundant supply, painless collection, and faster self-renewal, hUC-MSCs have shown the potencies to differentiate into a variety of cells of three germ layers (such as bone, cartilage, adipose, skeletal muscle, cardiomyocyte, endothelium, hepatocyte-like cluster, islet-like cluster, neuron, astrocyte and oligodendrocyte), to synthesize and secret a set of trophic factors and cytokines, to support the expansion and function of other cells (like hematopoietic stem cells, embryonic stem cells, natural killer cells, islet-like cell clusters, neurons and glial cells) , to migrate toward and home to pathological areas, and to be readily transfected with conventional methods. Two excellent previous reviews documenting the characteristics of this cell population with special emphasis on its niche, isolation, surface markers and primitive properties have been published recently. In this review, we will firstly give a brief introduction of this cell population, and subsequently dwell on the findings of differential capacities with emphasis on its therapeutic potentials.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Nanaev, A. K., Kohnen, G., Milovanov, A. P., Domogatsky, S. P., & Kaufmann, P. (1997). Stromal differentiation and architecture of the human umbilical cord. Placenta, 18(1), 53–64.

    CAS  PubMed  Google Scholar 

  2. Eyden, B. P., Ponting, J., Davies, H., Bartley, C., & Torgersen, E. (1994). Defining the myofibroblast: normal tissues, with special reference to the stromal cells of Wharton’s jelly in human umbilical cord. Journal of Submicroscopic Cytology and Pathology, 26(3), 347–355.

    CAS  PubMed  Google Scholar 

  3. Kobayashi, K., Kubota, T., & Aso, T. (1998). Study on myofibroblast differentiation in the stromal cells of Wharton’s jelly: expression and localization of alpha-smooth muscle actin. Early Human Development, 51(3), 223–233.

    CAS  PubMed  Google Scholar 

  4. Mitchell, K. E., Weiss, M. L., Mitchell, B. M., et al. (2003). Matrix cells from Wharton’s jelly form neurons and glia. Stem Cells, 21(1), 50–60.

    CAS  PubMed  Google Scholar 

  5. Romanov, Y. A., Svintsitskaya, V. A., & Smirnov, V. N. (2003). Searching for alternative sources of postnatal human mesenchymal stem cells: candidate MSC-like cells from umbilical cord. Stem Cells, 21(1), 105–110.

    PubMed  Google Scholar 

  6. Can, A., & Karahuseyinoglu, S. (2007). Concise review: human umbilical cord stroma with regard to the source of fetus-derived stem cells. Stem Cells, 25(11), 2886–2895.

    PubMed  Google Scholar 

  7. Troyer, D. L., & Weiss, M. L. (2008). Wharton’s jelly-derived cells are a primitive stromal cell population. Stem Cells, 26(3), 591–599.

    PubMed  Google Scholar 

  8. Hyslop, L. A., Armstrong, L., Stojkovic, M., & Lako, M. (2005). Human embryonic stem cells: biology and clinical implications. Expert Reviews in Molecular Medicine, 7(19), 1–21.

    PubMed  Google Scholar 

  9. Geeta, R., Ramnath, R. L., Rao, H. S., & Chandra, V. (2008). One year survival and significant reversal of motor deficits in parkinsonian rats transplanted with hESC derived dopaminergic neurons. Biochemical and Biophysical Research Communications, 373(2), 258–264.

    CAS  PubMed  Google Scholar 

  10. López-González, R., Knuckles, P., & Velasco, I. (2009). Transient Recovery in a Rat Model of Familial Amyotrophic Lateral Sclerosis after Transplantation of Motor Neurons Derived From Mouse Embryonic Stem Cells. Cell Transplantation, 18(10), 1171–1181.

    PubMed  Google Scholar 

  11. Sharp, J., Frame, J., Siegenthaler, M., Nistor, G., & Keirstead, H. S. (2010). Human embryonic stem cell-derived oligodendrocyte progenitor cell transplants improve recovery after cervical spinal cord injury. Stem Cells, 28(1), 152–163.

    CAS  PubMed  Google Scholar 

  12. Hatami, M., Mehrjardi, N. Z., Kiani, S., et al. (2009). Human embryonic stem cell-derived neural precursor transplants in collagen scaffolds promote recovery in injured rat spinal cord. Cytotherapy, 11(5), 618–630.

    CAS  PubMed  Google Scholar 

  13. Hicks, A. U., Lappalainen, R. S., Narkilahti, S., et al. (2009). Transplantation of human embryonic stem cell-derived neural precursor cells and enriched environment after cortical stroke in rats: cell survival and functional recovery. The European Journal of Neuroscience, 29(3), 562–574.

    PubMed  Google Scholar 

  14. Pal, R. (2009). Embryonic stem (ES) cell-derived cardiomyocytes: a good candidate for cell therapy applications. Cell Biology International, 33(3), 325–336.

    CAS  PubMed  Google Scholar 

  15. Jiang, J., Au, M., Lu, K., et al. (2007). Generation of insulin-producing islet-like clusters from human embryonic stem cells. Stem Cells, 25(8), 1940–1953.

    CAS  PubMed  Google Scholar 

  16. Wang, Y., Yates, F., Naveiras, O., Ernst, P., & Daley, G. Q. (2005). Embryonic stem cell-derived hematopoietic stem cells. Proceedings of the National Academy of Sciences of the United States of America, 102(52), 19081–6.

    CAS  PubMed  Google Scholar 

  17. Ishii, T., Yasuchika, K., Machimoto, T., et al. (2007). Transplantation of embryonic stem cell-derived endodermal cells into mice with induced lethal liver damage. Stem Cells, 25(12), 3252–3260.

    CAS  PubMed  Google Scholar 

  18. Van Vranken, B.E., Rippon, H.J., Samadikuchaksaraei, A., Trounson, A.O., & Bishop, A.E. (2007). The differentiation of distal lung epithelium from embryonic stem cells. Curr Protoc Stem Cell Biol, Chapter 1, Unit 1G.1.

  19. Riekstina, U., Muceniece, R., Cakstina, I., Muiznieks, I., & Ancans, J. (2008). Characterization of human skin-derived mesenchymal stem cell proliferation rate in different growth conditions. Cytotechnology, 58(3), 153–162.

    CAS  PubMed  Google Scholar 

  20. Gastens, M. H., Goltry, K., Prohaska, W., et al. (2007). Good manufacturing practice-compliant expansion of marrow-derived stem and progenitor cells for cell therapy. Cell Transplantation, 16(7), 685–696.

    PubMed  Google Scholar 

  21. Keyser, K. A., Beagles, K. E., & Kiem, H. P. (2007). Comparison of mesenchymal stem cells from different tissues to suppress T-cell activation. Cell Transplantation, 16(5), 555–562.

    PubMed  Google Scholar 

  22. Roobrouck, V. D., Ulloa-Montoya, F., & Verfaillie, C. M. (2008). Self-renewal and differentiation capacity of young and aged stem cells. Experimental Cell Research, 314(9), 1937–1944.

    CAS  PubMed  Google Scholar 

  23. Chang, P. L., Blair, H. C., Zhao, X., et al. (2006). Comparison of fetal and adult marrow stromal cells in osteogenesis with and without glucocorticoids. Connective Tissue Research, 47(2), 67–76.

    CAS  PubMed  Google Scholar 

  24. Fan, C. G., Tang, F. W., Zhang, Q. J., et al. (2005). Characterization and neural differentiation of fetal lung mesenchymal stem cells. Cell Transplantation, 14(5), 311–321.

    PubMed  Google Scholar 

  25. In’t Anker, P. S., Noort, W. A., Scherjon, S. A., et al. (2003). Mesenchymal stem cells in human second-trimester bone marrow, liver, lung, and spleen exhibit a similar immunophenotype but a heterogeneous multilineage differentiation potential. Haematologica, 88(8), 845–852.

    Google Scholar 

  26. Hu, Y., Liao, L., Wang, Q., et al. (2003). Isolation and identification of mesenchymal stem cells from human fetal pancreas. The Journal of Laboratory and Clinical Medicine, 141(5), 342–349.

    CAS  PubMed  Google Scholar 

  27. Yu, M., Xiao, Z., Shen, L., & Li, L. (2004). Mid-trimester fetal blood-derived adherent cells share characteristics similar to mesenchymal stem cells but full-term umbilical cord blood does not. British Journal Haematology, 124(5), 666–675.

    Google Scholar 

  28. Lu, F. Z., Fujino, M., Kitazawa, Y., et al. (2005). Characterization and gene transfer in mesenchymal stem cells derived from human umbilical-cord blood. The Journal of Laboratory and Clinical Medicine, 146(5), 271–278.

    CAS  PubMed  Google Scholar 

  29. Fan, C. G., Zhang, Q. J., & Han, Z. C. (2005). Neural differentiation of mesenchymal stem cells from umbilical cord. Chinese Journal of Neurosurgery, 21(7), 388–392.

    Google Scholar 

  30. Mareschi, K., Rustichelli, D., Comunanza, V., et al. (2009). Multipotent mesenchymal stem cells from amniotic fluid originate neural precursors with functional voltage-gated sodium channels. Cytotherapy, 11(5), 534–547.

    CAS  PubMed  Google Scholar 

  31. In’t Anker, P. S., Scherjon, S. A., Kleijburg-van der Keur, C., et al. (2004). Isolation of mesenchymal stem cells of fetal or maternal origin from human placenta. Stem Cells, 22(7), 1338–1345.

    Google Scholar 

  32. Bilic, G., Zeisberger, S. M., Mallik, A. S., Zimmermann, R., & Zisch, A. H. (2008). Comparative characterization of cultured human term amnion epithelial and mesenchymal stromal cells for application in cell therapy. Cell Transplantation, 17(8), 955–968.

    PubMed  Google Scholar 

  33. Wang, H. S., Hung, S. C., Peng, S. T., et al. (2004). Mesenchymal stem cells in the Wharton’s jelly of the human umbilical cord. Stem Cells, 22(7), 1330–1337.

    PubMed  Google Scholar 

  34. Karahuseyinoglu, S., Cinar, O., Kilic, E., et al. (2007). Biology of stem cells in human umbilical cord stroma: in situ and in vitro surveys. Stem Cells, 25(2), 319–331.

    CAS  PubMed  Google Scholar 

  35. Schneider, R. K., Puellen, A., Kramann, R., et al. (2010). The osteogenic differentiation of adult bone marrow and perinatal umbilical mesenchymal stem cells and matrix remodelling in three-dimensional collagen scaffolds. Biomaterials, 31(3), 467–480.

    CAS  PubMed  Google Scholar 

  36. Wang, L., Tran, I., Seshareddy, K., Weiss, M. L., & Detamore, M. S. (2009). A comparison of human bone marrow-derived mesenchymal stem cells and human umbilical cord-derived mesenchymal stromal cells for cartilage tissue engineering. Tissue Engineering. Part A, 15(8), 2259–2266.

    CAS  PubMed  Google Scholar 

  37. Karahuseyinoglu, S., Kocaefe, C., Balci, D., Erdemli, E., & Can, A. (2008). Functional structure of adipocytes differentiated from human umbilical cord stroma-derived stem cells. Stem Cells, 26(3), 682–691.

    PubMed  Google Scholar 

  38. Woodbury, D., Schwarz, E. J., Prockop, D. J., & Black, I. B. (2000). Adult rat and human bone marrow stromal cells differentiate into neurons. Journal of Neuroscience Research, 61(4), 364–370.

    CAS  PubMed  Google Scholar 

  39. Fu, Y. S., Shih, Y. T., Cheng, Y. C., & Min, M. Y. (2004). Transformation of human umbilical mesenchymal cells into neurons in vitro. Journal of Biomedical Science, 11(5), 652–660.

    CAS  PubMed  Google Scholar 

  40. Ma, L., Feng, X. Y., Cui, B. L., et al. (2005). Human umbilical cord Wharton’s Jelly-derived mesenchymal stem cells differentiation into nerve-like cells. Chinese Medical Journal (English), 118(23), 1987–1993.

    CAS  Google Scholar 

  41. Ding, D. C., Shyu, W. C., Chiang, M. F., et al. (2007). Enhancement of neuroplasticity through upregulation of beta1-integrin in human umbilical cord-derived stromal cell implanted stroke model. Neurobiology of Disease, 27(3), 339–353.

    CAS  PubMed  Google Scholar 

  42. Kadam, S. S., Tiwari, S., & Bhonde, R. R. (2009). Simultaneous isolation of vascular endothelial cells and mesenchymal stem cells from the human umbilical cord. In Vitro Cellular & Developmental Biology Animal, 45(1–2), 23–27.

    Google Scholar 

  43. Weiss, M. L., Medicetty, S., Bledsoe, A. R., et al. (2006). Human umbilical cord matrix stem cells: preliminary characterization and effect of transplantation in a rodent model of Parkinson’s disease. Stem Cells, 24(3), 781–792.

    CAS  PubMed  Google Scholar 

  44. Fu, Y. S., Cheng, Y. C., Lin, M. Y., et al. (2006). Conversion of human umbilical cord mesenchymal stem cells in Wharton’s jelly to dopaminergic neurons in vitro: potential therapeutic application for Parkinsonism. Stem Cells, 24(1), 115–124.

    PubMed  Google Scholar 

  45. Kadivar, M., Khatami, S., Mortazavi, Y., Shokrgozar, M. A., Taghikhani, M., & Soleimani, M. (2006). In vitro cardiomyogenic potential of human umbilical vein-derived mesenchymal stem cells. Biochemical and Biophysical Research Communications, 340(2), 639–647.

    CAS  PubMed  Google Scholar 

  46. Koh, S. H., Kim, K. S., Choi, M. R., et al. (2008). Implantation of human umbilical cord-derived mesenchymal stem cells as a neuroprotective therapy for ischemic stroke in rats. Brain Research, 1229, 233–248.

    CAS  PubMed  Google Scholar 

  47. Lund, R. D., Wang, S., Lu, B., et al. (2007). Cells isolated from umbilical cord tissue rescue photoreceptors and visual functions in a rodent model of retinal disease. Stem Cells, 25(3), 602–611.

    CAS  PubMed  Google Scholar 

  48. Hess, D. C., & Borlongan, C. V. (2008). Cell-based therapy in ischemic stroke. Expert Review of Neurotherapeutics, 8(8), 1193–1201.

    CAS  PubMed  Google Scholar 

  49. Skvortsova, V. I., Gubskiy, L. V., Tairova, R. T., et al. (2008). Use of bone marrow mesenchymal (stromal) stem cells in experimental ischemic stroke in rats. Bulletin of Experimental Biology and Medicine, 145(1), 122–128.

    CAS  PubMed  Google Scholar 

  50. Liao, W., Xie, J., Zhong, J., et al. (2009). Therapeutic effect of human umbilical cord multipotent mesenchymal stromal cells in a rat model of stroke. Transplantation, 87(3), 350–359.

    PubMed  Google Scholar 

  51. Liao, W., Zhong, J., Yu, J., et al. (2009). Therapeutic benefit of human umbilical cord derived mesenchymal stromal cells in intracerebral hemorrhage rat: implications of anti-inflammation and angiogenesis. Cellular Physiology and Biochemistry, 24(3–4), 307–316.

    CAS  PubMed  Google Scholar 

  52. Deshpande, D. M., Kim, Y. S., Martinez, T., et al. (2006). Recovery from paralysis in adult rats using embryonic stem cells. Annals of Neurology, 60(1), 32–44.

    CAS  PubMed  Google Scholar 

  53. Lim, J. H., Byeon, Y. E., Ryu, H. H., et al. (2007). Transplantation of canine umbilical cord blood-derived mesenchymal stem cells in experimentally induced spinal cord injured dogs. Journal of Veterinary Science, 8(3), 275–282.

    PubMed  Google Scholar 

  54. Zhao, Z. M., Li, H. J., Liu, H. Y., et al. (2004). Intraspinal transplantation of CD34+ human umbilical cord blood cells after spinal cord hemisection injury improves functional recovery in adult rats. Cell Transplantation, 13(2), 113–122.

    PubMed  Google Scholar 

  55. Coutts, M., & Keirstead, H. S. (2008). Stem cells for the treatment of spinal cord injury. Experimental Neurology, 209(2), 368–377.

    CAS  PubMed  Google Scholar 

  56. Yang, C. C., Shih, Y. H., Ko, M. H., Hsu, S. Y., Cheng, H., & Fu, Y. S. (2008). Transplantation of human umbilical mesenchymal stem cells from Wharton’s jelly after complete transection of the rat spinal cord. PLoS ONE, 3(10), e3336.

    PubMed  Google Scholar 

  57. Zhang, L., Zhang, H. T., Hong, S. Q., Ma, X., Jiang, X. D., & Xu, R. X. (2009). Cografted Wharton's jelly cells-derived neurospheres and BDNF promote functional recovery after rat spinal cord transection. Neurochemical Research, 34(11), 2030–2039.

    CAS  PubMed  Google Scholar 

  58. Yasuhara, T., & Date, I. (2007). Intracerebral transplantation of genetically engineered cells for Parkinson's disease: toward clinical application. Cell Transplantation, 16(2), 125–132.

    PubMed  Google Scholar 

  59. Zhang, S., Liu, X. Z., Liu, Z. L., et al. (2009). Stem cells modified by brain-derived neurotrophic factor to promote stem cells differentiation into neurons and enhance neuromotor function after brain injury. Chinese Journal of Traumatology, 12(4), 195–199.

    PubMed  Google Scholar 

  60. Zimmet, P., Alberti, K. G., & Shaw, J. (2001). Global and societal implications of the diabetes epidemic. Nature, 414, 782–787.

    CAS  PubMed  Google Scholar 

  61. Bretzel, R. G., Browatzki, C. C., Schultz, A., et al. (1993). Clinical islet transplantation in diabetes mellitus-report of the Islet Transplant Registry and the Giessen Center experience. Diabet Stoffwechsel, 2, 378–390.

    Google Scholar 

  62. Shapiro, A. M., Lakey, J. R., Ryan, E. A., et al. (2000). Islet transplantation in seven patients with type 1 diabetes mellitus using a glucocorticoid-free immunosuppressive regimen. The New England Journal of Medicine, 343, 230–238.

    CAS  PubMed  Google Scholar 

  63. Lumelsky, N., Blondel, O., Laeng, P., et al. (2001). Differentiation of embryonic stem cells to insulin-secreting structures similar to pancreatic islets. Science, 292, 1389–1394.

    CAS  PubMed  Google Scholar 

  64. Ramiya, V. K., Maraist, M., Arfors, K. E., et al. (2000). Reversal of insulin-dependent diabetes using islets generated in vitro from pancreatic stem cells. Natural Medicines, 6, 278–282.

    CAS  Google Scholar 

  65. Yang, L., Li, S., Hatch, H., et al. (2002). In vitro transdifferentiation of adult hepatic stem cells into pancreatic endocrine hormoneproducing cells. Proceedings of the National Academy of Sciences of the United States of America, 99, 8078–8083.

    CAS  PubMed  Google Scholar 

  66. Hori, Y., Gu, X., Xie, X., et al. (2005). Differentiation of insulin-producing cells from human neural progenitor cells. PLoS Medicine, 2(4), e103.

    PubMed  Google Scholar 

  67. Oh, S. H., Muzzonigro, T. M., Bae, S. H., et al. (2004). Adult bone marrow-derived cells trans-differentiating into insulin-producing cells for the treatment of type I diabetes. Laboratory Investigation, 84, 607–617.

    CAS  PubMed  Google Scholar 

  68. Ende, N., Chen, R., & Reddi, A. S. (2004). Effect of human umbilical cord blood cells on glycemia and insulitis in type 1 diabetic mice. Biochemical and Biophysical Research Communications, 325, 665–669.

    CAS  PubMed  Google Scholar 

  69. Chao, K. C., Chao, K. F., Fu, Y. S., & Liu, S. H. (2008). Islet-like clusters derived from mesenchymal stem cells in Wharton's Jelly of the human umbilical cord for transplantation to control type 1 diabetes. PLoS ONE, 3(1), e1451.

    PubMed  Google Scholar 

  70. Lorenzini, S., Gitto, S., Grandini, E., Andreone, P., & Bernardi, M. (2008). Stem cells for end stage liver disease: how far have we got? World Journal of Gastroenterology, 14(29), 4593–4599.

    PubMed  Google Scholar 

  71. Campard, D., Lysy, P. A., Najimi, M., & Sokal, E. M. (2008). Native umbilical cord matrix stem cells express hepatic markers and differentiate into hepatocyte-like cells. Gastroenterology, 134(3), 833–848.

    CAS  PubMed  Google Scholar 

  72. Zhang, Y. N., Lie, P. C., & Wei, X. (2009). Differentiation of mesenchymal stromal cells derived from umbilical cord Wharton's jelly into hepatocyte-like cells. Cytotherapy, 11(5), 548–558.

    CAS  PubMed  Google Scholar 

  73. Zhao, Q., Ren, H., Li, X., et al. (2009). Differentiation of human umbilical cord mesenchymal stromal cells into low immunogenic hepatocyte-like cells. Cytotherapy, 11(4), 414–426.

    CAS  PubMed  Google Scholar 

  74. Tsai, P. C., Fu, T. W., Chen, Y. M., et al. (2009). The therapeutic potential of human umbilical mesenchymal stem cells from Wharton's jelly in the treatment of rat liver fibrosis. Liver Transplant, 15(5), 484–495.

    Google Scholar 

  75. Yan, Y., Xu, W., Qian, H., et al. (2009). Mesenchymal stem cells from human umbilical cords ameliorate mouse hepatic injury in vivo. Liver International, 29(3), 356–365.

    CAS  PubMed  Google Scholar 

  76. Kadner, A., Hoerstrup, S. P., Tracy, J., et al. (2002). Human umbilical cord cells: a new cell source for cardiovascular tissue engineering. The Annals of Thoracic Surgery, 74(4), S1422–1428.

    PubMed  Google Scholar 

  77. Kadner, A., Zund, G., Maurus, C., et al. (2004). Human umbilical cord cells for cardiovascular tissue engineering: a comparative study. European Journal of Cardiothoracic Surgery, 25(4), 635–641.

    PubMed  Google Scholar 

  78. Hoerstrup, S. P., Kadner, A., Breymann, C., et al. (2002). Living, autologous pulmonary artery conduits tissue engineered from human umbilical cord cells. The Annals of Thoracic Surgery, 74(1), 46–52.

    PubMed  Google Scholar 

  79. Schmidt, D., Mol, A., Neuenschwander, S., et al. (2005). Living patches engineered from human umbilical cord derived fibroblasts and endothelial progenitor cells. European Journal of Cardiothoracic Surgery, 27(5), 795–800.

    PubMed  Google Scholar 

  80. Sodian, R., Lueders, C., Kraemer, L., et al. (2006). Tissue engineering of autologous human heart valves using cryopreserved vascular umbilical cord cells. The Annals of Thoracic Surgery, 81(6), 2207–2216.

    PubMed  Google Scholar 

  81. Breymann, C., Schmidt, D., & Hoerstrup, S. P. (2006). Umbilical cord cells as a source of cardiovascular tissue engineering. Stem Cell Reviews, 2(2), 87–92.

    PubMed  Google Scholar 

  82. Pereira, W. C., Khushnooma, I., Madkaikar, M., & Ghosh, K. (2008). Reproducible methodology for the isolation of mesenchymal stem cells from human umbilical cord and its potential for cardiomyocyte generation. Journal of Tissue Engineering and Regenerative Medicine, 2(7), 394–399.

    CAS  PubMed  Google Scholar 

  83. Martin-Rendon, E., Sweeney, D., Lu, F., Girdlestone, J., Navarrete, C., & Watt, S. M. (2008). 5-Azacytidine-treated human mesenchymal stem/progenitor cells derived from umbilical cord, cord blood and bone marrow do not generate cardiomyocytes in vitro at high frequencies. Vox Sanguinis, 95(2), 137–148.

    CAS  PubMed  Google Scholar 

  84. Wu, K. H., Zhou, B., Lu, S. H., et al. (2007). In vitro and in vivo differentiation of human umbilical cord derived stem cells into endothelial cells. Journal of Cellular Biochemistry, 100(3), 608–616.

    CAS  PubMed  Google Scholar 

  85. Conconi, M. T., Burra, P., Di Liddo, R., et al. (2006). CD105(+) cells from Wharton's jelly show in vitro and in vivo myogenic differentiative potential. International Journal of Molecular Medicine, 18(6), 1089–1096.

    CAS  PubMed  Google Scholar 

  86. Chen, M. Y., Lie, P. C., Li, Z. L., & Wei, X. (2009). Endothelial differentiation of Wharton's jelly-derived mesenchymal stem cells in comparison with bone marrow-derived mesenchymal stem cells. Experimental Hematology, 37(5), 629–640.

    CAS  PubMed  Google Scholar 

  87. Wang, S. H., Lin, S. J., Chen, Y. H., et al. (2009). Late outgrowth endothelial cells derived from Wharton jelly in human umbilical cord reduce neointimal formation after vascular injury: involvement of pigment epithelium-derived factor. Arteriosclerosis, Thrombosis, and Vascular Biology, 29(6), 816–822.

    PubMed  Google Scholar 

  88. Li, N., Feugier, P., Serrurrier, B., et al. (2007). Human mesenchymal stem cells improve ex vivo expansion of adult human CD34+ peripheral blood progenitor cells and decrease their allostimulatory capacity. Experimental Hematology, 35(3), 507–515.

    CAS  PubMed  Google Scholar 

  89. Kim, D. W., Chung, Y. J., Kim, T. G., Kim, Y. L., & Oh, I. H. (2004). Cotransplantation of third-party mesenchymal stromal cells can alleviate single-donor predominance and increase engraftment from double cord transplantation. Blood, 103(5), 1941–1948.

    CAS  PubMed  Google Scholar 

  90. Lu, L. L., Liu, Y. J., Yang, S. G., et al. (2006). Isolation and characterization of human umbilical cord mesenchymal stem cells with hematopoiesis-supportive function and other potentials. Haematologica, 91(8), 1017–1026.

    CAS  PubMed  Google Scholar 

  91. Bakhshi, T., Zabriskie, R. C., Bodie, S., et al. (2008). Mesenchymal stem cells from the Wharton's jelly of umbilical cord segments provide stromal support for the maintenance of cord blood hematopoietic stem cells during long-term ex vivo culture. Transfusion, 48(12), 2638–2644.

    PubMed  Google Scholar 

  92. Friedman, R., Betancur, M., Boissel, L., Tuncer, H., Cetrulo, C., & Klingemann, H. (2007). Umbilical cord mesenchymal stem cells: adjuvants for human cell transplantation. Biology of Blood and Marrow Transplantation, 13(12), 1477–1486.

    PubMed  Google Scholar 

  93. Hao, M., Meng, H. X., Li, G., et al. (2009). Study of influence of umbilical cord mesenchymal stem cells on CD34+ cells in vivo homing in NOD/SCID. Zhonghua Xue Ye Xue Za Zhi, 30(2), 103–106.

    CAS  PubMed  Google Scholar 

  94. Liu, M., Yang, S. G., Liu, P. X., et al. (2009). Comparative study of in vitro hematopoietic supportive capability of human mesenchymal stem cells derived from bone marrow and umbilical cord. Zhongguo Shi Yan Xue Ye Xue Za Zhi, 17(5), 1294–1300.

    PubMed  Google Scholar 

  95. Chao, K. C., Chao, K. F., Chen, C. F., & Liu, S. H. (2008). A novel human stem cell coculture system that maintains the survival and function of culture islet-like cell clusters. Cell Transplantation, 17(6), 657–664.

    PubMed  Google Scholar 

  96. Boissel, L., Tuncer, H. H., Betancur, M., Wolfberg, A., & Klingemann, H. (2008). Umbilical cord mesenchymal stem cells increase expansion of cord blood natural killer cells. Biology of Blood and Marrow Transplantation, 14(9), 1031–1038.

    CAS  PubMed  Google Scholar 

  97. Skottman, H., & Hovatta, O. (2006). Culture conditions for human embryonic stem cells. Reproduction, 132(5), 691–698.

    CAS  PubMed  Google Scholar 

  98. Hiroyama, T., Sudo, K., Aoki, N., et al. (2008). Human umbilical cord-derived cells can often serve as feeder cells to maintain primate embryonic stem cells in a state capable of producing hematopoietic cells. Cell Biology International, 32(1), 1–7.

    CAS  PubMed  Google Scholar 

  99. Salgado, A. J., Fraga, J. S., Mesquita, A. R., Neves, N. M., Reis, R. L., & Sousa, N. (2009). Role of Human Umbilical Cord Mesenchymal Progenitors Conditioned Media in Neuronal/Glial Cell Densities. Viability and Proliferation. Stem Cells and Development. doi:10.1089/scd.2009.0279.

    Google Scholar 

  100. Nauta, A. J., & Fibbe, W. E. (2007). Immunomodulatory properties of mesenchymal stromal cells. Blood, 110(10), 3499–3506.

    CAS  PubMed  Google Scholar 

  101. Weiss, M. L., Anderson, C., Medicetty, S., et al. (2008). Immune properties of human umbilical cord Wharton's jelly-derived cells. Stem Cells, 26(11), 2865–2874.

    CAS  PubMed  Google Scholar 

  102. Yoo, K. H., Jang, I. K., Lee, M. W., et al. (2009). Comparison of immunomodulatory properties of mesenchymal stem cells derived from adult human tissues. Cellular Immunology, 259(2), 150–156.

    CAS  PubMed  Google Scholar 

  103. Cho, P. S., Messina, D. J., Hirsh, E. L., et al. (2008). Immunogenicity of umbilical cord tissue derived cells. Blood, 111(1), 430–438.

    CAS  PubMed  Google Scholar 

  104. Kumar, S., Chanda, D., & Ponnazhagan, S. (2008). Therapeutic potential of genetically modified mesenchymal stem cells. Gene Therapy, 15(10), 711–715.

    CAS  PubMed  Google Scholar 

  105. Fritz, V., & Jorgensen, C. (2008). Mesenchymal stem cells: an emerging tool for cancer targeting and therapy. Current Stem Cell Research & Therapy, 3(1), 32–42.

    CAS  Google Scholar 

  106. Baksh, D., Yao, R., & Tuan, R. S. (2007). Comparison of proliferative and multilineage differentiation potential of human mesenchymal stem cells derived from umbilical cord and bone marrow. Stem Cells, 25(6), 1384–1392.

    CAS  PubMed  Google Scholar 

  107. Rachakatla, R. S., Pyle, M. M., Ayuzawa, R., et al. (2008). Combination treatment of human umbilical cord matrix stem cell-based interferon-beta gene therapy and 5-fluorouracil significantly reduces growth of metastatic human breast cancer in SCID mouse lungs. Cancer Investigation, 26(7), 662–670.

    CAS  PubMed  Google Scholar 

  108. Rachakatla, R. S., Marini, F., Weiss, M. L., Tamura, M., & Troyer, D. (2007). Development of human umbilical cord matrix stem cell-based gene therapy for experimental lung tumors. Cancer Gene Therapy, 14(10), 828–835.

    CAS  PubMed  Google Scholar 

  109. Chen, X. L., Dong, C. L., Feng, X. M., et al. (2009). Expression of human factor IX in retrovirus-transfected human umbilical cord tissue derived mesenchymal stem cells. Zhongguo Shi Yan Xue Ye Xue Za Zhi, 17(1), 184–187.

    CAS  PubMed  Google Scholar 

  110. Lee, D. H., Ahn, Y., Kim, S. U., et al. (2009). Targeting rat brainstem glioma using human neural stem cells and human mesenchymal stem cells. Clinical Cancer Research, 15(15), 4925–4934.

    CAS  PubMed  Google Scholar 

  111. Stolzing, A., Jones, E., McGonagle, D., & Scutt, A. (2008). Age-related changes in human bone marrow-derived mesenchymal stem cells: consequences for cell therapies. Mechanisms of Ageing and Development, 129(3), 163–173.

    CAS  PubMed  Google Scholar 

  112. Zhou, S., Greenberger, J. S., Epperly, M. W., et al. (2008). Age-related intrinsic changes in human bone-marrow-derived mesenchymal stem cells and their differentiation to osteoblasts. Aging Cell, 7(3), 335–343.

    CAS  PubMed  Google Scholar 

  113. Rao, M. S., & Mattson, M. P. (2001). Stem cells and aging: expanding the possibilities. Mechanisms of Ageing and Development, 122(7), 713–734.

    CAS  PubMed  Google Scholar 

  114. Petsa, A., Gargani, S., Felesakis, A., Grigoriadis, N., & Grigoriadis, I. (2009). Effectiveness of protocol for the isolation of Wharton's Jelly stem cells in large-scale applications. In Vitro Cellular & Developmental Biology. Animal, 45(10), 573–576.

    Google Scholar 

  115. Shetty, P., Cooper, K., & Viswanathan, C. (2010). Comparison of proliferative and multilineage differentiation potentials of cord matrix, cord blood, and bone marrow mesenchymal stem cells. Asian Journal Transfusion Science, 4(1), 14–24.

    CAS  Google Scholar 

  116. Han, Z. C. (2009). Umblical cord mesenchymal stem cells (UC-MSC: biology, banking and clinical applications). Bulletin de l'Académie Nationale de Médecine, 193(3), 545–547. discussion 547.

    PubMed  Google Scholar 

  117. Secco, M., Zucconi, E., Vieira, N. M., et al. (2008). Mesenchymal stem cells from umbilical cord: do not discard the cord! Neuromuscular Disorders, 18(1), 17–18.

    PubMed  Google Scholar 

  118. Secco, M., Zucconi, E., Vieira, N. M., et al. (2008). Multipotent stem cells from umbilical cord: cord is richer than blood! Stem Cells, 26(1), 146–150.

    CAS  PubMed  Google Scholar 

  119. Xu, J., Liao, W., Gu, D., et al. (2009). Neural ganglioside GD2 identifies a subpopulation of mesenchymal stem cells in umbilical cord. Cellular Physiology and Biochemistry, 23(4–6), 415–424.

    CAS  PubMed  Google Scholar 

  120. Liang, J., Gu, F., Wang, H., et al. (2010). Mesenchymal stem cell transplantation for diffuse alveolar hemorrhage in SLE. Nature Reviews Rheumatology. doi:10.1038/nrrheum.2010.80.

    PubMed  Google Scholar 

  121. Sun, L., Wang, D., Liang, J., et al. (2010). Umbilical cord mesenchymal stem cell transplantation in severe and refractory systemic lupus erythematosus. Arthritis and Rheumatism. doi:10.1177/1352458509104590.

    Google Scholar 

  122. Liang, J., Zhang, H., Hua, B., et al. (2009). Allogeneic mesenchymal stem cells transplantation in treatment of multiple sclerosis. Multiple Sclerosis, 15(5), 644–646.

    CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Qing-jun Zhang.

Additional information

The authors declare no potential conflicts of interest.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Fan, CG., Zhang, Qj. & Zhou, Jr. Therapeutic Potentials of Mesenchymal Stem Cells Derived from Human Umbilical Cord. Stem Cell Rev and Rep 7, 195–207 (2011). https://doi.org/10.1007/s12015-010-9168-8

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12015-010-9168-8

Keywords

Navigation