Skip to main content

Advertisement

Log in

Elucidating the Preadipocyte and Its Role in Adipocyte Formation: a Comprehensive Review

  • Published:
Stem Cell Reviews and Reports Aims and scope Submit manuscript

Abstract

Adipogenesis is a complex process whereby the multipotent adipose-derived stem cell is converted to a preadipocyte before terminal differentiation into the mature adipocyte. Preadipocytes are present throughout adult life, exhibit adipose fat depot specificity, and differentiate and proliferate from distinct progenitor cells. The mechanisms that promote preadipocyte commitment and maturation involve numerous protein factor regulators, epigenetic factors, and miRNAs. Detailed characterization of this process is currently an area of intense research and understanding the roles of preadipocytes in tissue plasticity may provide insight into novel approaches for tissue engineering, regenerative medicine and treating a host of obesity-related conditions. In the current study, we analyzed the current literature and present a review of the characteristics of transitioning adipocytes and detail how local microenvironments influence their progression towards terminal differentiation and maturation. Specifically, we detail the characterization of preadipocyte via surface markers, examine the signaling cascades and regulation behind adipogenesis and cell maturation, and survey their role in tissue plasticity and health and disease.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1

Similar content being viewed by others

References

  1. Moreno-Navarrete, J. M., & Fernandez-Real, J. M. (2012). Adipocyte differentiation. In: M. E. Symonds (Ed.), Adipose tissue biology. 1 online resource (vi, 413 p.). New York: Springer.

  2. Rosen, E. D., & Spiegelman, B. M. (2014). What we talk about when we talk about fat. Cell, 156, 20–44.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Nguyen, A., Guo, J., Banyard, D. A., et al. (2016). Stromal vascular fraction: a regenerative reality? Part 1: current concepts and review of the literature. Journal of Plastic, Reconstructive & Aesthetic Surgery, 69, 170–179.

    Article  Google Scholar 

  4. Banyard, D. A., Borad, V., Amezcua, E., Wirth, G. A., Evans, G. R., & Widgerow, A. D. (2016). Preparation, characterization, and clinical implications of human decellularized adipose tissue extracellular matrix (hDAM): a comprehensive review. Aesthetic Surgery Journal, 36, 349 – 57.

    Article  PubMed  Google Scholar 

  5. Guo, J., Nguyen, A., Banyard, D. A., et al. (2016). Stromal vascular fraction: a regenerative reality? Part 2: mechanisms of regenerative action. Journal of Plastic, Reconstructive & Aesthetic Surgery, 69, 180–188.

    Article  Google Scholar 

  6. Planat-Benard, V., Silvestre, J. S., Cousin, B., et al. (2004). Plasticity of human adipose lineage cells toward endothelial cells: physiological and therapeutic perspectives. Circulation, 109, 656 – 63.

    Article  PubMed  Google Scholar 

  7. Prunet-Marcassus, B., Cousin, B., Caton, D., Andre, M., Penicaud, L., & Casteilla, L. (2006). From heterogeneity to plasticity in adipose tissues: site-specific differences. Experimental Cell Research, 312, 727 – 36.

    Article  CAS  PubMed  Google Scholar 

  8. Zuk, P. A., Zhu, M., Ashjian, P., et al. (2002). Human adipose tissue is a source of multipotent stem cells. Molecular Biology of the Cell, 13, 4279–4295.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Cristancho, A. G., & Lazar, M. A. (2011). Forming functional fat: a growing understanding of adipocyte differentiation. Nature Reviews Molecular Cell Biology, 12, 722 – 34.

    Article  CAS  PubMed  Google Scholar 

  10. Hudak, C. S., & Sul, H. S. (2013). Pref-1, a gatekeeper of adipogenesis. Front Endocrinol (Lausanne), 4, 79.

    Google Scholar 

  11. Banyard, D. A., Salibian, A. A., Widgerow, A. D., & Evans, G. R. (2015). Implications for human adipose-derived stem cells in plastic surgery. Journal of Cellular and Molecular Medicine, 19, 21–30.

    Article  PubMed  Google Scholar 

  12. Gimble, J., & Guilak, F. (2003). Adipose-derived adult stem cells: isolation, characterization, and differentiation potential. Cytotherapy, 5, 362–369.

    Article  PubMed  Google Scholar 

  13. Zuk, P. (2013). Adipose-derived stem cells in tissue regeneration: a review. ISRN Stem Cells, 2013, 35.

    Article  CAS  Google Scholar 

  14. Gesta, S., Tseng, Y. H., & Kahn, C. R. (2007). Developmental origin of fat: tracking obesity to its source. Cell, 131, 242 – 256.

    Article  CAS  PubMed  Google Scholar 

  15. Rodeheffer, M. S., Birsoy, K., & Friedman, J. M. (2008). Identification of white adipocyte progenitor cells in vivo. Cell, 135, 240–249.

    Article  CAS  PubMed  Google Scholar 

  16. Cawthorn, W. P., Scheller, E. L., & MacDougald, O. A. (2012). Adipose tissue stem cells meet preadipocyte commitment: going back to the future. Journal of Lipid Research, 53, 227 – 46.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Jansen, B. J., Gilissen, C., Roelofs, H., et al. (2010). Functional differences between mesenchymal stem cell populations are reflected by their transcriptome. Stem Cells and Development, 19, 481 – 90.

    Article  CAS  PubMed  Google Scholar 

  18. Katz, A. J., Tholpady, A., Tholpady, S. S., Shang, H., & Ogle, R. C. (2005). Cell surface and transcriptional characterization of human adipose-derived adherent stromal (hADAS) cells. Stem Cells, 23, 412 – 23.

    Article  CAS  PubMed  Google Scholar 

  19. Scheideler, M., Elabd, C., Zaragosi, L. E., et al. (2008). Comparative transcriptomics of human multipotent stem cells during adipogenesis and osteoblastogenesis. BMC Genomics, 9, 340.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  20. Salgado, A. J., Reis, R. L., Sousa, N. J., & Gimble, J. M. (2010). Adipose tissue derived stem cells secretome: soluble factors and their roles in regenerative medicine. Current Stem Cell Research & Therapy, 5, 103 – 10.

    Article  CAS  Google Scholar 

  21. Boquest, A. C., Noer, A., & Collas, P. (2006). Epigenetic programming of mesenchymal stem cells from human adipose tissue. Stem Cell Reviews, 2, 319 – 29.

    Article  CAS  PubMed  Google Scholar 

  22. Bai, X., Ma, J., Pan, Z., et al. (2007). Electrophysiological properties of human adipose tissue-derived stem cells. American Journal of Physiology Cell Physiology, 293, C1539-50.

    Article  PubMed  CAS  Google Scholar 

  23. Zimmerlin, L., Donnenberg, V. S., Rubin, J. P., & Donnenberg, A. D. (2013). Mesenchymal markers on human adipose stem/progenitor cells. Cytometry Part A, 83, 134 – 40.

    Article  CAS  Google Scholar 

  24. Hausman, G. J., & Dodson, M. V. (2013). Stromal vascular cells and adipogenesis: cells within adipose depots regulate adipogenesis. Journal of Genomics, 1, 56–66.

  25. Bourin, P., Bunnell, B. A., Casteilla, L., Dominici, M., Katz, A. J., March, K. L., Redl, H., Rubin, J. P., Yoshimura, K., & Gimble, J. M. (2013). Stromal cells from the adipose tissue-derived stromal vascular fraction and culture expanded adipose tissue-derived stromal/stem cells: a joint statement of the International Federation for Adipose Therapeutics and Science (IFATS) and the International Society for Cellular Therapy (ISCT). Cytotherapy, 15(6), 641–648.

  26. Ussar, S., Lee, K. Y., Dankel, S. N., Boucher, J., Haering, M.-F., Kleinridders, A., Thomou, T., Xue, R., Macotela, Y., Cypess, A. M., Tseng, Y.-H., Mellgren, G., & Kahn, C. R. (2014). ASC-1, PAT2, and P2RX5 are cell surface markers for white, beige, and brown adipocytes. Science Translational Medicine, 6(247), 247ra103–247ra103.

  27. Arimochi, H., Sasaki, Y., Kitamura, A., & Yasutomo, K. (2016). Differentiation of preadipocytes and mature adipocytes requires PSMB8. Scientific Reports, 6, 26791.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Chazenbalk, G., Bertolotto, C., Heneidi, S., et al. (2011). Novel pathway of adipogenesis through cross-talk between adipose tissue macrophages, adipose stem cells and adipocytes: evidence of cell plasticity. PLoS One, 6, e17834.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Chazenbalk, G., Singh, P., Irge, D., Shah, A., Abbott, D. H., & Dumesic, D. A. (2013). Androgens inhibit adipogenesis during human adipose stem cell commitment to preadipocyte formation. Steroids, 78, 920–926.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Walmsley, G. G., Atashroo, D. A., Maan, Z. N., Hu, M. S., Zielins, E. R., Tsai, J. M., Duscher, D., Paik, K., Tevlin, R., Marecic, O., Wan, D. C., Gurtner, G. C., & Longaker, M. T. (2015). High-throughput screening of surface marker expression on undifferentiated and differentiated human adipose-derived stromal cells. Tissue Engineering Part A, 21(15–16), 2281–2291.

  31. Harhouri, K., Kebir, A., Guillet, B., et al. (2010). Soluble CD146 displays angiogenic properties and promotes neovascularization in experimental hind-limb ischemia. Blood, 115, 3843–3851.

    Article  CAS  PubMed  Google Scholar 

  32. Buxser, S., Puma, P., & Johnson, G. L. (1985). Properties of the nerve growth factor receptor. Relationship between receptor structure and affinity. The Journal of Biological Chemistry, 260(3), 1917–1926.

  33. Tchkonia, T., Thomou, T., Zhu, Y., et al. (2013). Mechanisms and metabolic implications of regional differences among fat depots. Cell Metabolism, 17, 644 – 56.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Tchkonia, T., Lenburg, M., Thomou, T., et al. (2007). Identification of depot-specific human fat cell progenitors through distinct expression profiles and developmental gene patterns. American Journal of Physiology Endocrinology and Metabolism, 292, E298-307.

    Article  PubMed  CAS  Google Scholar 

  35. Tchkonia, T., Tchoukalova, Y. D., Giorgadze, N., et al. (2005). Abundance of two human preadipocyte subtypes with distinct capacities for replication, adipogenesis, and apoptosis varies among fat depots. American Journal of Physiology Endocrinology and Metabolism, 288, E267-77.

    Article  PubMed  CAS  Google Scholar 

  36. Nielsen, R., Pedersen, T. A., Hagenbeek, D., et al. (2008). Genome-wide profiling of PPARgamma:RXR and RNA polymerase II occupancy reveals temporal activation of distinct metabolic pathways and changes in RXR dimer composition during adipogenesis. Genes and Development, 22, 2953–2967.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Sengenes, C., Lolmede, K., Zakaroff-Girard, A., Busse, R., & Bouloumie, A. (2005). Preadipocytes in the human subcutaneous adipose tissue display distinct features from the adult mesenchymal and hematopoietic stem cells. Journal of Cellular Physiology, 205, 114 – 22.

    Article  CAS  PubMed  Google Scholar 

  38. Gagnon, A., Landry, A., & Sorisky, A. (2009). IKKbeta and the anti-adipogenic effect of platelet-derived growth factor in human abdominal subcutaneous preadipocytes. The Journal of Endocrinology, 201, 75–80.

    Article  CAS  PubMed  Google Scholar 

  39. Fairbridge, N. A., Southall, T. M., Ayre, D. C., et al. (2015). Loss of CD24 in mice leads to metabolic dysfunctions and a reduction in white adipocyte tissue. PLoS One, 10, e0141966.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  40. Fang, X., Zheng, P., Tang, J., & Liu, Y. (2010). CD24: from A to Z. Cellular & Molecular Immunology, 7, 100–103.

    Article  CAS  Google Scholar 

  41. Smith, N. C., Fairbridge, N. A., Pallegar, N. K., & Christian, S. L. (2015). Dynamic upregulation of CD24 in pre-adipocytes promotes adipogenesis. Adipocyte, 4, 89–100.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Traustadottir, G. A., Kosmina, R., Sheikh, S. P., Jensen, C. H., & Andersen, D. C. (2013). Preadipocytes proliferate and differentiate under the guidance of Delta-like 1 homolog (DLK1). Adipocyte, 2, 272–275.

    Article  PubMed  PubMed Central  Google Scholar 

  43. Takada, I., Kouzmenko, A. P., & Kato, S. (2009). Wnt and PPARgamma signaling in osteoblastogenesis and adipogenesis. Nature Reviews Rheumatology, 5, 442–447.

    Article  CAS  PubMed  Google Scholar 

  44. Xu, Z., Yu, S., Hsu, C. H., Eguchi, J., & Rosen, E. D. (2008). The orphan nuclear receptor chicken ovalbumin upstream promoter-transcription factor II is a critical regulator of adipogenesis. Proceedings of the National Academy of Sciences of the United States of America, 105, 2421–2426.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Kanazawa, A., Tsukada, S., Kamiyama, M., Yanagimoto, T., Nakajima, M., & Maeda, S. (2005). Wnt5b partially inhibits canonical Wnt/beta-catenin signaling pathway and promotes adipogenesis in 3T3-L1 preadipocytes. Biochemical and Biophysical Research Communications, 330, 505 – 10.

    Article  CAS  PubMed  Google Scholar 

  46. Choy, L., Skillington, J., & Derynck, R. (2000). Roles of autocrine TGF-beta receptor and Smad signaling in adipocyte differentiation. The Journal of Cell Biology, 149, 667 – 82.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Zamani, N., & Brown, C. W. (2011). Emerging roles for the transforming growth factor-{beta} superfamily in regulating adiposity and energy expenditure. Endocrine Reviews, 32, 387–403.

    Article  CAS  PubMed  Google Scholar 

  48. Tang, Q. Q., Otto, T. C., & Lane, M. D. (2004). Commitment of C3H10T1/2 pluripotent stem cells to the adipocyte lineage. Proceedings of the National Academy of Sciences of the United States of America, 101, 9607–9611.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Suenaga, M., Kurosawa, N., Asano, H., et al. (2013). Bmp4 expressed in preadipocytes is required for the onset of adipocyte differentiation. Cytokine, 64, 138 – 45.

    Article  CAS  PubMed  Google Scholar 

  50. Suenaga, M., Matsui, T., & Funaba, M. (2010). BMP inhibition with dorsomorphin limits adipogenic potential of preadipocytes. The Journal of Veterinary Medical Science, 72, 373–377.

    Article  CAS  PubMed  Google Scholar 

  51. Yamasaki, M., Emoto, H., Konishi, M., et al. (1999). FGF-10 is a growth factor for preadipocytes in white adipose tissue. Biochemical and Biophysical Research Communications, 258, 109 – 12.

    Article  CAS  PubMed  Google Scholar 

  52. Hutley, L., Shurety, W., Newell, F., et al. (2004). Fibroblast growth factor 1: a key regulator of human adipogenesis. Diabetes, 53, 3097 – 106.

    Article  CAS  PubMed  Google Scholar 

  53. Widberg, C. H., Newell, F. S., Bachmann, A. W., et al. (2009). Fibroblast growth factor receptor 1 is a key regulator of early adipogenic events in human preadipocytes. American Journal of Physiology Endocrinology and Metabolism, 296, E121-31.

    Article  PubMed  CAS  Google Scholar 

  54. Suh, J. M., Gao, X., McKay, J., McKay, R., Salo, Z., & Graff, J. M. (2006). Hedgehog signaling plays a conserved role in inhibiting fat formation. Cell Metabolism, 3, 25–34.

    Article  CAS  PubMed  Google Scholar 

  55. Tong, Q., Tsai, J., Tan, G., Dalgin, G., & Hotamisligil, G. S. (2005). Interaction between GATA and the C/EBP family of transcription factors is critical in GATA-mediated suppression of adipocyte differentiation. Molecular and Cellular Biology, 25, 706 – 15.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Otto, T. C., & Lane, M. D. (2005). Adipose development: from stem cell to adipocyte. Critical Reviews in Biochemistry and Molecular Biology, 40, 229 – 42.

    Article  CAS  PubMed  Google Scholar 

  57. Tang, W., Zeve, D., Suh, J. M., et al. (2008). White fat progenitor cells reside in the adipose vasculature. Science, 322, 583–586.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Zhu, Y., Qi, C., Korenberg, J. R., et al. (1995). Structural organization of mouse peroxisome proliferator-activated receptor gamma (mPPAR gamma) gene: alternative promoter use and different splicing yield two mPPAR gamma isoforms. Proceedings of the National Academy of Sciences of the United States of America, 92, 7921–7925.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Mueller, E., Drori, S., Aiyer, A., et al. (2002). Genetic analysis of adipogenesis through peroxisome proliferator-activated receptor gamma isoforms. The Journal of Biological Chemistry, 277, 41925–41930.

    Article  CAS  PubMed  Google Scholar 

  60. Park, B. O., Ahrends, R., & Teruel, M. N. (2012). Consecutive positive feedback loops create a bistable switch that controls preadipocyte-to-adipocyte conversion. Cell Reports, 2, 976–90.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Quach, J. M., Walker, E. C., Allan, E., et al. (2011). Zinc finger protein 467 is a novel regulator of osteoblast and adipocyte commitment. The Journal of Biological Chemistry, 286, 4186–4198.

    Article  CAS  PubMed  Google Scholar 

  62. Tseng, Y. H., Kokkotou, E., Schulz, T. J., et al. (2008). New role of bone morphogenetic protein 7 in brown adipogenesis and energy expenditure. Nature, 454, 1000–1004.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Kawashima, I., Ohsumi, J., Mita-Honjo, K., et al. (1991). Molecular cloning of cDNA encoding adipogenesis inhibitory factor and identity with interleukin-11. FEBS Letters, 283, 199–202.

    Article  CAS  PubMed  Google Scholar 

  64. Plikus, M. V., Guerrero-Juarez, C. F., Ito, M., et al. (2017). Regeneration of fat cells from myofibroblasts during wound healing. Science, 355, 748 – 52.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Wang, Y., & Sul, H. S. (2009). Pref-1 regulates mesenchymal cell commitment and differentiation through Sox9. Cell Metabolism, 9, 287–302.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Gupta, R. K., Arany, Z., Seale, P., Mepani, R. J., Ye, L., Conroe, H. M., … Spiegelman, B. M. (2010). Transcriptional control of preadipocyte determination by Zfp423. Nature, 464(7288), 619–623.

  67. Festa, E., Fretz, J., Berry, R., Schmidt, B., Rodeheffer, M., Horowitz, M., & Horsley, V. (2011). Adipocyte lineage cells contribute to the skin stem cell niche to drive hair cycling. Cell, 146(5), 761–771.

  68. Kang, S., Akerblad, P., Kiviranta, R., Gupta, R. K., Kajimura, S., Griffin, M. J., Min, J., Baron, R., Rosen, E. D., & Vidal-Puig, A. J. (2012). Regulation of early adipose commitment by Zfp521. PLoS Biology, 10(11), e1001433.

  69. Rajakumari, S., Wu, J., Ishibashi, J., Hee-woong, L., Giang, A., Won, K., … Seale, P. (2014). EBF2 determines and maintains brown adipocyte identity. Cell Metabolism, 17(4), 562–574.

  70. Kajimura, S., Seale, P., Tomaru, T., Erdjument-Bromage, H., Cooper, M. P., Ruas, J. L., Chin, S., Tempst, P., Lazar, M. A., & Spiegelman, B. M. (2008). Regulation of the brown and white fat gene programs through a PRDM16/CtBP transcriptional complex. Genes & Development, 22(10),1397–1409.

  71. Villanueva, C. J., Vergnes, L., Wang, J., Drew, B. G., Hong, C., Tu, Y., Hu, Y., Peng, X., Xu, F., Saez, E., Wroblewski, K., Hevener, A. L., Reue, K., Fong, L. G., Young, S. G., & Tontonoz, P. (2013). Adipose subtype-selective recruitment of TLE3 or Prdm16 by PPARγ specifies lipid storage versus thermogenic gene programs. Cell Metabolism, 17(3), 423–435.

  72. Macotela, Y., Emanuelli, B., Mori, M. A., Gesta, S., Schulz, T. J., Tseng, Y. H., & Kahn, C. R. (2012). Intrinsic differences in adipocyte precursor cells from different white fat depots. Diabetes, 61(7), 1691–1699.

  73. Spiegelman, B. M., & Ginty, C. A. (1983). Fibronectin modulation of cell shape and lipogenic gene expression in 3T3-adipocytes. Cell, 35, 657 – 66.

    Article  CAS  PubMed  Google Scholar 

  74. Taleb, S., Cancello, R., Clement, K., & Lacasa, D. (2006). Cathepsin s promotes human preadipocyte differentiation: possible involvement of fibronectin degradation. Endocrinology, 147, 4950–4959.

    Article  CAS  PubMed  Google Scholar 

  75. Ibrahimi, A., Bonino, F., Bardon, S., Ailhaud, G., & Dani, C. (1992). Essential role of collagens for terminal differentiation of preadipocytes. Biochemical and Biophysical Research Communications, 187, 1314–1322.

    Article  CAS  PubMed  Google Scholar 

  76. Mori, S., Kiuchi, S., Ouchi, A., Hase, T., & Murase, T. (2014). Characteristic expression of extracellular matrix in subcutaneous adipose tissue development and adipogenesis; comparison with visceral adipose tissue. International Journal of Biological Sciences, 10, 825 – 33.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Winer, J. P., Janmey, P. A., McCormick, M. E., & Funaki, M. (2009). Bone marrow-derived human mesenchymal stem cells become quiescent on soft substrates but remain responsive to chemical or mechanical stimuli. Tissue Engineering Part A, 15, 147 – 54.

    Article  CAS  PubMed  Google Scholar 

  78. Chavey, C., Mari, B., Monthouel, M. N., et al. (2003). Matrix metalloproteinases are differentially expressed in adipose tissue during obesity and modulate adipocyte differentiation. The Journal of Biological Chemistry, 278, 11888–11896.

    Article  CAS  PubMed  Google Scholar 

  79. Majka, S. M., Barak, Y., & Klemm, D. J. (2011). Concise review: adipocyte origins: weighing the possibilities. Stem Cells, 29, 1034–1040.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Iyama, K., Ohzono, K., & Usuku, G. (1979). Electron microscopical studies on the genesis of white adipocytes: differentiation of immature pericytes into adipocytes in transplanted preadipose tissue. Virchows Archiv B Cell Pathology Including Molecular Pathology, 31, 143 – 55.

    Article  CAS  PubMed  Google Scholar 

  81. Charriere, G., Cousin, B., Arnaud, E., et al. (2003). Preadipocyte conversion to macrophage. Evidence of plasticity. The Journal of Biological Chemistry, 278, 9850–9855.

    Article  CAS  PubMed  Google Scholar 

  82. Sanchez-Gurmaches, J., Hung, C. M., & Guertin, D. A. (2016). Emerging complexities in adipocyte origins and identity. Trends in Cell Biology, 26, 313 – 26.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Despres, J. P., & Lemieux, I. (2006). Abdominal obesity and metabolic syndrome. Nature, 444, 881–887.

    Article  CAS  PubMed  Google Scholar 

  84. Ellis, J. R., McDonald, R. B., & Stern, J. S. (1990). A diet high in fat stimulates adipocyte proliferation in older (22 month) rats. Experimental Gerontology, 25, 141–148.

    Article  CAS  PubMed  Google Scholar 

  85. Tchoukalova, Y., Koutsari, C., & Jensen, M. (2007). Committed subcutaneous preadipocytes are reduced in human obesity. Diabetologia, 50, 151–157.

    Article  CAS  PubMed  Google Scholar 

  86. Tchoukalova, Y. D., Votruba, S. B., Tchkonia, T., Giorgadze, N., Kirkland, J. L., & Jensen, M. D. (2010). Regional differences in cellular mechanisms of adipose tissue gain with overfeeding. Proceedings of the National Academy of Sciences of the United States of America, 107, 18226–18231.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  87. Ong, W. K., Tan, C. S., Chan, K. L., et al. (2014). Identification of specific cell-surface markers of adipose-derived stem cells from subcutaneous and visceral fat depots. Stem Cell Reports, 2, 171–179.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  88. Wabitsch, M., Heinze, E., Hauner, H., et al. (1996). Biological effects of human growth hormone in rat adipocyte precursor cells and newly differentiated adipocytes in primary culture. Metabolism, 45, 34–42.

    Article  CAS  PubMed  Google Scholar 

  89. Sepe, A., Tchkonia, T., Thomou, T., Zamboni, M., & Kirkland, J. L. (2011). Aging and regional differences in fat cell progenitors—a mini-review. Gerontology, 57, 66–75.

    Article  PubMed  Google Scholar 

  90. Stout, M. B., Tchkonia, T., & Kirkland, J. L. (2015). Growth hormone in adipose dysfunction and senescence. Oncotarget, 6, 10667–10668.

    PubMed  PubMed Central  Google Scholar 

  91. Lai, N., Sims, J. K., Jeon, N. L., & Lee, K. (2012). Adipocyte induction of preadipocyte differentiation in a gradient chamber. Tissue Engineering Part C Methods, 18, 958 – 67.

    Article  PubMed  PubMed Central  Google Scholar 

  92. Zingaretti, M. C., Crosta, F., Vitali, A., et al. (2009). The presence of UCP1 demonstrates that metabolically active adipose tissue in the neck of adult humans truly represents brown adipose tissue. FASEB Journal, 23, 3113–3120.

    Article  CAS  PubMed  Google Scholar 

  93. Zimmerlin, L., Donnenberg, V. S., Pfeifer, M. E., et al. (2010). Stromal vascular progenitors in adult human adipose tissue. Cytometry Part A, 77, 22–30.

    Google Scholar 

  94. Tang, Y., Qian, S. W., Wu, M. Y., et al. (2016). BMP4 mediates the interplay between adipogenesis and angiogenesis during expansion of subcutaneous white adipose tissue. Journal of Molecular Cell Biology, 8, 302 – 12.

    Article  PubMed  Google Scholar 

  95. Yagi, K., Kondo, D., Okazaki, Y., & Kano, K. (2004). A novel preadipocyte cell line established from mouse adult mature adipocytes. Biochemical and Biophysical Research Communications, 321, 967 – 74.

    Article  CAS  PubMed  Google Scholar 

  96. Jumabay, M., Matsumoto, T., Yokoyama, S., et al. (2009). Dedifferentiated fat cells convert to cardiomyocyte phenotype and repair infarcted cardiac tissue in rats. Journal of Molecular and Cellular Cardiology, 47, 565 – 75.

    Article  CAS  PubMed  Google Scholar 

  97. Kazama, T., Fujie, M., Endo, T., & Kano, K. (2008). Mature adipocyte-derived dedifferentiated fat cells can transdifferentiate into skeletal myocytes in vitro. Biochemical and Biophysical Research Communications, 377, 780–785.

    Article  CAS  PubMed  Google Scholar 

  98. Jumabay, M., Zhang, R., Yao, Y., Goldhaber, J. I., & Bostrom, K. I. (2010). Spontaneously beating cardiomyocytes derived from white mature adipocytes. Cardiovascular Research, 85, 17–27.

    Article  CAS  PubMed  Google Scholar 

  99. Isakson, P., Hammarstedt, A., Gustafson, B., & Smith, U. (2009). Impaired preadipocyte differentiation in human abdominal obesity: role of Wnt, tumor necrosis factor-alpha, and inflammation. Diabetes, 58, 1550–1557.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  100. Chung, S., Lapoint, K., Martinez, K., Kennedy, A., Boysen Sandberg, M., & McIntosh, M. K. (2006). Preadipocytes mediate lipopolysaccharide-induced inflammation and insulin resistance in primary cultures of newly differentiated human adipocytes. Endocrinology, 147, 5340–5351.

    Article  CAS  PubMed  Google Scholar 

  101. Phipps, K. D., Gebremeskel, S., Gillis, J., Hong, P., Johnston, B., & Bezuhly, M. (2015). Alternatively activated M2 macrophages improve autologous fat graft survival in a mouse model through induction of angiogenesis. Plastic and Reconstructive Surgery, 135, 140–149.

    Article  CAS  PubMed  Google Scholar 

  102. Hocking, S. L., Wu, L. E., Guilhaus, M., Chisholm, D. J., & James, D. E. (2010). Intrinsic depot-specific differences in the secretome of adipose tissue, preadipocytes, and adipose tissue-derived microvascular endothelial cells. Diabetes, 59, 3008–3016.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  103. Ignacio, R. M. C., Gibbs, C. R., Lee, E.-S., & Son, D.-S. (2016). Differential chemokine signature between human preadipocytes and adipocytes. Immune Network, 16(3), 189–194.

  104. Ohashi, K., Shibata, R., Murohara, T., & Ouchi, N. (2014). Role of anti-inflammatory adipokines in obesity-related diseases. Trends in Endocrinology and Metabolism, 25, 348 – 55.

    Article  CAS  PubMed  Google Scholar 

  105. Dordevic, A. L., Konstantopoulos, N., & Cameron-Smith, D. (2014). 3T3-L1 preadipocytes exhibit heightened monocyte-chemoattractant protein-1 response to acute fatty acid exposure. PLoS One, 9, e99382.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  106. Aoki, N., Yokoyama, R., Asai, N., et al. (2010). Adipocyte-derived microvesicles are associated with multiple angiogenic factors and induce angiogenesis in vivo and in vitro. Endocrinology, 151, 2567–2576.

    Article  CAS  PubMed  Google Scholar 

  107. Connolly, K. D., Guschina, I. A., Yeung, V., et al. (2015). Characterisation of adipocyte-derived extracellular vesicles released pre- and post-adipogenesis. Journal of Extracell Vesicles, 4, 29159.

    Article  Google Scholar 

  108. Choi, S. W., Claycombe, K. J., Martinez, J. A., Friso, S., & Schalinske, K. L. (2013). Nutritional epigenomics: a portal to disease prevention. Advances in Nutrition, 4, 530–532.

    Article  PubMed  PubMed Central  Google Scholar 

  109. Sakamoto, H., Kogo, Y., Ohgane, J., et al. (2008). Sequential changes in genome-wide DNA methylation status during adipocyte differentiation. Biochemical and Biophysical Research Communications, 366, 360–366.

    Article  CAS  PubMed  Google Scholar 

  110. Li, H. X., Xiao, L., Wang, C., Gao, J. L., Zhai, Y. G.. Review (2010). Epigenetic regulation of adipocyte differentiation and adipogenesis. Journal of Zhejiang University Science B, 11, 784 – 91.

    Article  PubMed  PubMed Central  Google Scholar 

  111. Yokomori, N., Tawata, M., & Onaya, T. (2002). DNA demethylation modulates mouse leptin promoter activity during the differentiation of 3T3-L1 cells. Diabetologia, 45, 140–148.

    Article  CAS  PubMed  Google Scholar 

  112. Wakabayashi, K., Okamura, M., Tsutsumi, S., et al. (2009). The peroxisome proliferator-activated receptor gamma/retinoid X receptor alpha heterodimer targets the histone modification enzyme PR-Set7/Setd8 gene and regulates adipogenesis through a positive feedback loop. Molecular and Cellular Biology, 29, 3544–3555.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  113. Arce-Cerezo, A., Garcia, M., Rodriguez-Nuevo, A., et al. (2015). HMGA1 overexpression in adipose tissue impairs adipogenesis and prevents diet-induced obesity and insulin resistance. Scientific Reports, 5, 14487.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  114. Ambros, V. (2004). The functions of animal microRNAs. Nature, 431, 350–355.

    Article  CAS  PubMed  Google Scholar 

  115. Esau, C., Kang, X., Peralta, E., Hanson, E., Marcusson, E. G., Ravichandran, L. V., Sun, Y., Koo, S., Perera, R. J., Jain, R., Dean, N. M., Freier, S. M., Bennett, C. F., Lollo, B., & Griffey, R. (2004). MicroRNA-143 regulates adipocyte differentiation. Journal of Biological Chemistry, 279(50), 52361–52365.

  116. Alexander, R., Lodish, H., & Sun, L. (2011). MicroRNAs in adipogenesis and as therapeutic targets for obesity. Expert Opinion on Therapeutic Targets, 15(5), 623–636.

  117. Wang, Q., Li, Y. C., Wang, J., Kong, J., Qi, Y., Quigg, R. J., & Li, X. (2008). miR-17-92 cluster accelerates adipocyte differentiation by negatively regulating tumor-suppressor Rb2/p130. Proceedings of the National Academy of Sciences, 105(8), 2889–2894.

  118. Ortega, F. J., Moreno-Navarrete, J. M., Pardo, G., et al. (2010). MiRNA expression profile of human subcutaneous adipose and during adipocyte differentiation. PLoS One, 5, e9022.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alan D. Widgerow.

Ethics declarations

Conflict of Interest

The Authors declare no potential conflicts of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sarantopoulos, C.N., Banyard, D.A., Ziegler, M.E. et al. Elucidating the Preadipocyte and Its Role in Adipocyte Formation: a Comprehensive Review. Stem Cell Rev and Rep 14, 27–42 (2018). https://doi.org/10.1007/s12015-017-9774-9

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12015-017-9774-9

Keywords

Navigation