Skip to main content

Advertisement

Log in

Structure, Distribution, and Function of Neuronal/Synaptic Spinules and Related Invaginating Projections

  • Review Paper
  • Published:
NeuroMolecular Medicine Aims and scope Submit manuscript

Abstract

Neurons and especially their synapses often project long thin processes that can invaginate neighboring neuronal or glial cells. These “invaginating projections” can occur in almost any combination of postsynaptic, presynaptic, and glial processes. Invaginating projections provide a precise mechanism for one neuron to communicate or exchange material exclusively at a highly localized site on another neuron, e.g., to regulate synaptic plasticity. The best-known types are postsynaptic projections called “spinules” that invaginate into presynaptic terminals. Spinules seem to be most prevalent at large very active synapses. Here, we present a comprehensive review of all kinds of invaginating projections associated with both neurons in general and more specifically with synapses; we describe them in all animals including simple, basal metazoans. These structures may have evolved into more elaborate structures in some higher animal groups exhibiting greater synaptic plasticity. In addition to classic spinules and filopodial invaginations, we describe a variety of lesser-known structures such as amphid microvilli, spinules in giant mossy terminals and en marron/brush synapses, the highly specialized fish retinal spinules, the trophospongium, capitate projections, and fly gnarls, as well as examples in which the entire presynaptic or postsynaptic process is invaginated. These various invaginating projections have evolved to modify the function of a particular synapse, or to channel an effect to one specific synapse or neuron, without affecting those nearby. We discuss how they function in membrane recycling, nourishment, and cell signaling and explore how they might change in aging and disease.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  • Acsády, L., Katona, I., Martinez-Guijarro, F. J., Buzsaki, G., & Freund, T. F. (2000). Unusual target selectivity of perisomatic inhibitory cells in the hilar region of the rat hippocampus. Journal of Neuroscience, 20(18), 6907–6919.

    PubMed  Google Scholar 

  • Adamo, N. J., & Daigneault, E. A. (1973a). Ultrastructural features of neurons and nerve fibres in the spiral ganglia of cats. Journal of Neurocytology, 2(1), 91–103.

    CAS  PubMed  Google Scholar 

  • Adamo, N. J., & Daigneault, E. A. (1973b). Ultrastructural morphology of Schwann cell-neuronal relationships in the spiral ganglia of cats. American Journal of Anatomy, 138(1), 73–77. doi:10.1002/aja.1001380105.

    CAS  PubMed  Google Scholar 

  • Altman, J. (1971). Coated vesicles and synaptogenesis. A developmental study in the cerebellar cortex of the rat. Brain Research, 30(2), 311–322.

    CAS  PubMed  Google Scholar 

  • Altman, J. (1993). Postnatal development of the cerebellar cortex in the rat. II. Phases in the maturation of Purkinje cells and of the molecular layer. Journal of Comparative Neurology, 145, 399–464.

    Google Scholar 

  • Altman, J., & Bayer, S. A. (1997). Development of the cerebellar system in relation to its evolution, structure, and functions. New York: CRC Press.

    Google Scholar 

  • Anglade, P., Mouatt-Prigent, A., Agid, Y., & Hirsch, E. (1996). Synaptic plasticity in the caudate nucleus of patients with Parkinson’s disease. Neurodegeneration, 5(2), 121–128.

    CAS  PubMed  Google Scholar 

  • Ashton, F. T., Li, J., & Schad, G. A. (1999). Chemo- and thermosensory neurons: Structure and function in animal parasitic nematodes. Veterinary Parasitology, 84(3–4), 297–316.

    CAS  PubMed  Google Scholar 

  • Atwood, H. L., Govind, C. K., & Wu, C. F. (1993). Differential ultrastructure of synaptic terminals on ventral longitudinal abdominal muscles in Drosophila larvae. Journal of Neurobiology, 24(8), 1008–1024. doi:10.1002/neu.480240803.

    CAS  PubMed  Google Scholar 

  • Bailey, C. H., Chen, M., Keller, F., & Kandel, E. R. (1992). Serotonin-mediated endocytosis of apCAM: An early step of learning-related synaptic growth in Aplysia. Science, 256(5057), 645–649.

    CAS  PubMed  Google Scholar 

  • Bailey, C. H., Thompson, E. B., Castellucci, V. F., & Kandel, E. R. (1979). Ultrastructure of the synapses of sensory neurons that mediate the gill-withdrawal reflex in Aplysia. Journal of Neurocytology, 8(4), 415–444.

    CAS  PubMed  Google Scholar 

  • Biserova, N. M. (2008). Do glial cells exist in the nervous system of parasitic and free-living flatworms? An ultrastructural and immunocytochemical investigation. Acta Biologica Hungarica, 59(Suppl), 209–219. doi:10.1556/ABiol.59.2008.Suppl.30.

    PubMed  Google Scholar 

  • Biserova, N. M., Gordeev, I. I., Korneva, J. V., & Salnikova, M. M. (2010). Structure of the glial cells in the nervous system of parasitic and free-living flatworms. Biology Bulletin, 37(3), 277–287.

    Google Scholar 

  • Blanco, R. E. (1988). Glial cells in peripheral nerves of the cockroach, Periplaneta americana. Tissue and Cell, 20(5), 771–782.

    CAS  PubMed  Google Scholar 

  • Blanque, A., Repetto, D., Rohlmann, A., Brockhaus, J., Duning, K., Pavenstädt, H., et al. (2015). Deletion of KIBRA, protein expressed in kidney and brain, increases filopodial-like long dendritic spines in neocortical and hippocampal neurons in vivo and in vitro. Frontiers in Neuroanatomy, 9, 13. doi:10.3389/fnana.2015.00013.

    PubMed Central  PubMed  Google Scholar 

  • Bonga, S. E. W. (1970). Ultrastructure and histochemistry of neurosecretory cells and neurohaemal areas in the pond snail Lymnaea stagnalis. Zeitschrift für Zellforschung und Mikroskopische Anatomie, 108, 190–224.

    Google Scholar 

  • Boschek, C. B. (1971). On the fine structure of the peripheral retina and lamina ganglionaris of the fly, Musca domestica. Zeitschrift für Zellforschung und Mikroskopische Anatomie, 118(3), 369–409.

    CAS  PubMed  Google Scholar 

  • Boyne, A. F., & McLeod, S. (1979). Ultrastructural plasticity in stimulated nerve terminals: Pseudopodial invasions of abutted terminals in Torpedine ray electric organ. Neuroscience, 4(5), 615–624.

    CAS  PubMed  Google Scholar 

  • Boyne, A. F., & Tarrant, S. B. (1982). Pseudopodial interdigitations between abutted nerve terminals: diffusion traps which occur in several nuclei of the rat limbic system. Journal of Neuroscience, 2(4), 463–469.

    CAS  PubMed  Google Scholar 

  • Bozhilova-Pastirova, A., & Ovtscharoff, W. (1999). Intramembranous structure of synaptic membranes with special reference to spinules in the rat sensorimotor cortex. European Journal of Neuroscience, 11(5), 1843–1846.

    CAS  PubMed  Google Scholar 

  • Buchheit, T. E., & Tytell, M. (1992). Transfer of molecules from glia to axon in the squid may be mediated by glial vesicles. Journal of Neurobiology, 23(3), 217–230. doi:10.1002/neu.480230303.

    CAS  PubMed  Google Scholar 

  • Budziakowski, M. E., & Mettrick, D. F. (1985). Ultrastructural morphology of the neuropile of the cerebral ganglion of Moniliformis moniliformis (Acanthocephala). Journal of Parasitology, 71(1), 75–85.

    CAS  PubMed  Google Scholar 

  • Bumbarger, D. J., Wijeratne, S., Carter, C., Crum, J., Ellisman, M. H., & Baldwin, J. G. (2009). Three-dimensional reconstruction of the amphid sensilla in the microbial feeding nematode, Acrobeles complexus (Nematoda: Rhabditida). Journal of Comparative Neurology, 512(2), 271–281. doi:10.1002/cne.21882.

    PubMed Central  PubMed  Google Scholar 

  • Cadete-Leite, A., Tavares, M. A., Paula-Barbosa, M. M., & Gray, E. G. (1986). ‘Perforated’ synapses in frontal cortex of chronic alcohol-fed rats. Journal of Submicroscopic Cytology, 18(3), 495–499.

    CAS  PubMed  Google Scholar 

  • Cagan, R. L., Kramer, H., Hart, A. C., & Zipursky, S. L. (1992). The bride of sevenless and sevenless interaction: Internalization of a transmembrane ligand. Cell, 69(3), 393–399.

    CAS  PubMed  Google Scholar 

  • Calverley, R. K., & Jones, D. G. (1987). A serial-section study of perforated synapses in rat neocortex. Cell and Tissue Research, 247(3), 565–572.

    CAS  PubMed  Google Scholar 

  • Campos-Ortega, J. A., & Strausfeld, N. J. (1973). Synaptic connections of intrinsic cells and basket arborizations in the external plexiform layer of the fly’s eye. Brain Research, 59, 119–136.

    CAS  PubMed  Google Scholar 

  • Carlin, R. K., & Siekevitz, P. (1983). Plasticity in the central nervous system: Do synapses divide? Proceedings of the National Academy of Sciences of the USA, 80(11), 3517–3521.

    PubMed Central  CAS  PubMed  Google Scholar 

  • Carlson, S. D. (1987). Ultrastructure of the arthropod neuroglia and neuropil. In A. P. Gupta (Ed.), Arthropod brain: Its evolution, development, structure, and functions (pp. 323–346). New York: Wiley.

    Google Scholar 

  • Case, N. M., Gray, E. G., & Young, J. Z. (1972). Ultrastructure and synaptic relations in the optic lobe of the brain of Eledone and Octopus. Journal of Ultrastructure Research, 39(1), 115–123.

    CAS  PubMed  Google Scholar 

  • Chi, C., & Carlson, S. D. (1976). Close apposition of photoreceptor cell axons in the house fly. Journal of Insect Physiology, 22(8), 1153–1157.

    CAS  PubMed  Google Scholar 

  • Chicurel, M. E., & Harris, K. M. (1992). Three-dimensional analysis of the structure and composition of CA3 branched dendritic spines and their synaptic relationships with mossy fiber boutons in the rat hippocampus. Journal of Comparative Neurology, 325(2), 169–182. doi:10.1002/cne.903250204.

    CAS  PubMed  Google Scholar 

  • Chivet, M., Hemming, F., Pernet-Gallay, K., Fraboulet, S., & Sadoul, R. (2012). Emerging role of neuronal exosomes in the central nervous system. Frontiers in Physiology, 3, 145. doi:10.3389/fphys.2012.00145.

    PubMed Central  CAS  PubMed  Google Scholar 

  • Cocucci, E., & Meldolesi, J. (2015). Ectosomes and exosomes: Shedding the confusion between extracellular vesicles. Trends in Cell Biology, 25(6), 364–372.

    CAS  PubMed  Google Scholar 

  • Cocucci, E., Racchetti, G., & Meldolesi, J. (2009). Shedding microvesicles: Artefacts no more. Trends in Cell Biology, 19(2), 43–51. doi:10.1016/j.tcb.2008.11.003.

    CAS  PubMed  Google Scholar 

  • Coggeshall, R. E., & Fawcett, D. W. (1964). The fine structure of the central nervous system of the leech, Hirudo medicinalis. Journal of Neurophysiology, 27, 229–289.

    CAS  PubMed  Google Scholar 

  • Cohen, A. I. (1973). An ultrastructural analysis of the photoreceptors of the squid and their synaptic connections. 3. Photoreceptor terminations in the optic lobes. Journal of Comparative Neurology, 147(3), 399–426. doi:10.1002/cne.901470306.

    CAS  PubMed  Google Scholar 

  • Curcio, C. A., McNelly, N. A., & Hinds, J. W. (1985). Aging in the rat olfactory system: Relative stability of piriform cortex contrasts with changes in olfactory bulb and olfactory epithelium. Journal of Comparative Neurology, 235(4), 519–528. doi:10.1002/cne.902350409.

    CAS  PubMed  Google Scholar 

  • Dayel, M. J., Alegado, R. A., Fairclough, S. R., Levin, T. C., Nichols, S. A., McDonald, K., et al. (2011). Cell differentiation and morphogenesis in the colony-forming choanoflagellate Salpingoeca rosetta. Development Biology, 357(1), 73–82. doi:10.1016/j.ydbio.2011.06.003.

    CAS  Google Scholar 

  • Desmond, N. L., & Levy, W. B. (1983). Synaptic correlates of associative potentiation/depression: An ultrastructural study in the hippocampus. Brain Research, 265(1), 21–30.

    CAS  PubMed  Google Scholar 

  • Dilly, P. N., Gray, E. G., & Young, J. Z. (1963). Electron microscopy of optic nerves and optic lobes of Octopus and Eledone. Proceedings of the Royal Society of London. Series B: Biological Sciences, 158, 446–456.

    CAS  Google Scholar 

  • Dino, M. R., Nunzi, M. G., Anelli, R., & Mugnaini, E. (2000). Unipolar brush cells of the vestibulocerebellum: Afferents and targets. Progress in Brain Research, 124, 123–137. doi:10.1016/S0079-6123(00)24013-2.

    CAS  PubMed  Google Scholar 

  • Dirks, P., Tieding, S., Schneider, I., Mey, J., & Weiler, R. (2004). Characterization of retinoic acid neuromodulation in the carp retina. Journal of Neuroscience Research, 78(2), 177–185. doi:10.1002/jnr.20253.

    CAS  PubMed  Google Scholar 

  • Dyson, S. E., & Jones, D. G. (1984). Synaptic remodelling during development and maturation: Junction differentiation and splitting as a mechanism for modifying connectivity. Brain Research, 315(1), 125–137.

    CAS  PubMed  Google Scholar 

  • Eckenhoff, M. F., & Pysh, J. J. (1979). Double-walled coated vesicle formation: Evidence for massive and transient conjugate internalization of plasma membranes during cerebellar development. Journal of Neurocytology, 8(5), 623–638.

    CAS  PubMed  Google Scholar 

  • Erisir, A., & Dreusicke, M. (2005). Quantitative morphology and postsynaptic targets of thalamocortical axons in critical period and adult ferret visual cortex. Journal of Comparative Neurology, 485(1), 11–31. doi:10.1002/cne.20507.

    PubMed  Google Scholar 

  • Fabian-Fine, R., Verstreken, P., Hiesinger, P. R., Horne, J. A., Kostyleva, R., Zhou, Y., et al. (2003). Endophilin promotes a late step in endocytosis at glial invaginations in Drosophila photoreceptor terminals. Journal of Neuroscience, 23(33), 10732–10744.

    CAS  PubMed  Google Scholar 

  • Fader, C. M., & Colombo, M. I. (2009). Autophagy and multivesicular bodies: Two closely related partners. Cell Death and Differentiation, 16(1), 70–78. doi:10.1038/cdd.2008.168.

    CAS  PubMed  Google Scholar 

  • Fairchild, C. L., & Barna, M. (2014). Specialized filopodia: At the “tip” of morphogen transport and vertebrate tissue patterning. Current Opinion in Genetics & Development, 27, 67–73.

    CAS  Google Scholar 

  • Familtsev, D. (2013). Synapses, spines, zinc and pathology of Alzheimer’s disease. Louisville, Kentucky: University of Louisville.

    Google Scholar 

  • Farley, R. D., & Chan, D. J. (1985). The ultrastructure of the cardiac ganglion of the desert scorpion, Paruroctonus mesaensis (Scorpionida: Vaejovidae). J Morph, 184, 231–252.

    Google Scholar 

  • Fedorenko, G. M., & Uzdensky, A. B. (2009). Ultrastructure of neuroglial contacts in crayfish stretch receptor. Cell and Tissue Research, 337(3), 477–490. doi:10.1007/s00441-009-0825-7.

    PubMed  Google Scholar 

  • Fiala, J. C., Allwardt, B., & Harris, K. M. (2002). Dendritic spines do not split during hippocampal LTP or maturation. Nature Neuroscience, 5(4), 297–298. doi:10.1038/nn830.

    CAS  PubMed  Google Scholar 

  • Fiala, J. C., Feinberg, M., Popov, V., & Harris, K. M. (1998). Synaptogenesis via dendritic filopodia in developing hippocampal area CA1. Journal of Neuroscience, 18(21), 8900–8911.

    CAS  PubMed  Google Scholar 

  • Floris, A., Dino, M., Jacobowitz, D. M., & Mugnaini, E. (1994). The unipolar brush cells of the rat cerebellar cortex and cochlear nucleus are calretinin-positive: A study by light and electron microscopic immunocytochemistry. Anatomy and Embryology (Berl), 189(6), 495–520.

    CAS  Google Scholar 

  • Fox, C. A., Andrade, A. N., Lu Qui, I. J., & Rafols, J. A. (1974). The primate globus pallidus: A Golgi and electron microscopic study. Journal fur Hirnforschung, 15(1), 75–93.

    CAS  PubMed  Google Scholar 

  • Friedlander, M. J., Martin, K. A. C., & Wassenhove-McCarthy, D. (1991). Effects of monocular visual deprivation on geniculocortical innervation of area 18 in cat. Journal of Neuroscience, 11(10), 3268–3288.

    CAS  PubMed  Google Scholar 

  • Fritzsch, B., & Straka, H. (2014). Evolution of vertebrate mechanosensory hair cells and inner ears: Toward identifying stimuli that select mutation driven altered morphologies. Journal of Comparative Physiology. A, Neuroethology, Sensory, Neural, and Behavioral Physiology, 200(1), 5–18. doi:10.1007/s00359-013-0865-z.

    PubMed Central  PubMed  Google Scholar 

  • Fröhlich, A., & Meinertzhagen, I. A. (1982). Synaptogenesis in the first optic neuropile of the fly’s visual system. Journal of Neurocytology, 11(1), 159–180.

    PubMed  Google Scholar 

  • Gad, H., Low, P., Zotova, E., Brodin, L., & Shupliakov, O. (1998). Dissociation between Ca2+-triggered synaptic vesicle exocytosis and clathrin-mediated endocytosis at a central synapse. Neuron, 21(3), 607–616.

    CAS  PubMed  Google Scholar 

  • Ganeshina, O., Berry, R. W., Petralia, R. S., Nicholson, D. A., & Geinisman, Y. (2004a). Synapses with a segmented, completely partitioned postsynaptic density express more AMPA receptors than other axospinous synaptic junctions. Neuroscience, 125(3), 615–623.

    CAS  PubMed  Google Scholar 

  • Ganeshina, O., Berry, R. W., Petralia, R. S., Nicholson, D. A., & Geinisman, Y. (2004b). Differences in the expression of AMPA and NMDA receptors between axospinous perforated and nonperforated synapses are related to the configuration and size of postsynaptic densities. Journal of Comparative Neurology, 468(1), 86–95.

    CAS  PubMed  Google Scholar 

  • Gao, C., Cao, W., Bao, L., Zuo, W., Xie, G., Cai, T., et al. (2010). Autophagy negatively regulates Wnt signalling by promoting Dishevelled degradation. Nature Cell Biology, 12(8), 781–790. doi:10.1038/ncb2082.

    CAS  PubMed  Google Scholar 

  • Geinisman, Y. (2000). Structural synaptic modifications associated with hippocampal LTP and behavioral learning. Cerebral Cortex, 10(10), 952–962.

    CAS  PubMed  Google Scholar 

  • Geinisman, Y., deToledo-Morrell, L., & Morrell, F. (1994). Comparison of structural synaptic modifications induced by long-term potentiation in the hippocampal dentate gyrus of young adult and aged rats. Annals of the New York Academy of Sciences, 747, 452–466.

    CAS  PubMed  Google Scholar 

  • Gennaro, J. F, Jr, Nastuk, W. L., & Rutherford, D. T. (1978). Reversible depletion of synaptic vesicles induced by application of high external potassium to the frog neuromuscular junction. Journal of Physiology, 280, 237–247.

    PubMed Central  CAS  PubMed  Google Scholar 

  • Gonobobleva, E., & Maldonado, M. (2009). Choanocyte ultrastructure in Halisarca dujardini (Demospongiae, Halisarcida). Journal of Morphology, 270(5), 615–627. doi:10.1002/jmor.10709.

    PubMed  Google Scholar 

  • Gordon, W. C. (1985). Nonconventional interactions between photoreceptor axons in the butterfly lamina ganglionaris. Zeitschrift für Naturforschung, 40c, 460–463.

    Google Scholar 

  • Gray, E. G. (1961). The granule cells, mossy synapses and Purkinje spine synapses of the cerebellum: Light and electron microscope observations. Journal of Anatomy, 95, 345–356.

    PubMed Central  CAS  PubMed  Google Scholar 

  • Greco, V., Hannus, M., & Eaton, S. (2001). Argosomes: A potential vehicle for the spread of morphogens through epithelia. Cell, 106(5), 633–645.

    CAS  PubMed  Google Scholar 

  • Gregory, W. A., Hall, D. H., & Bennett, M. V. (1988). Satellite glial cells penetrate neurosecretory cells to perinuclear position in the goldfish preoptic area. Developmental Brain Research, 44(1), 1–8.

    CAS  PubMed  Google Scholar 

  • Gurke, S., Barroso, J. F., & Gerdes, H. H. (2008). The art of cellular communication: Tunneling nanotubes bridge the divide. Histochemistry and Cell Biology, 129(5), 539–550. doi:10.1007/s00418-008-0412-0.

    PubMed Central  CAS  PubMed  Google Scholar 

  • Haamedi, S. N., Karten, H. J., & Djamgoz, M. B. (2001). Nerve growth factor induces light adaptive cellular and synaptic plasticity in the outer retina of fish. Journal of Comparative Neurology, 431(4), 397–404.

    CAS  PubMed  Google Scholar 

  • Halanych, K. M. (2015). The ctenophore lineage is older than sponges? That cannot be right! Or can it? Journal of Experimental Biology, 218(Pt 4), 592–597. doi:10.1242/jeb.111872.

    PubMed  Google Scholar 

  • Harreveld, A. V., & Trubatch, J. (1975). Synaptic changes in frog brain after stimulation with potassium chloride. Journal of Neurocytology, 4(1), 33–46.

    CAS  PubMed  Google Scholar 

  • Hartfelder, K., Hanton, W. K., & Bollenbacher, W. E. (1994). Diapause-dependent changes in prothoracicotropic hormone-producing neurons of the tobacco hornworm, Manduca sexta. Cell and Tissue Research, 277(1), 69–78.

    CAS  PubMed  Google Scholar 

  • Heuser, J. E., & Reese, T. S. (1973). Evidence for recycling of synaptic vesicle membrane during transmitter release at the frog neuromuscular junction. Journal of Cell Biology, 57(2), 315–344.

    PubMed Central  CAS  PubMed  Google Scholar 

  • Holtmann, M., & Thurm, U. (2001). Mono- and oligo-vesicular synapses and their connectivity in a Cnidarian sensory epithelium (Coryne tubulosa). J Comp Neurol, 432(4), 537–549.

    CAS  PubMed  Google Scholar 

  • Hoyle, G., Williams, M., & Philips, C. (1986). Functional morphology of insect neuronal cell-surface/glial contacts: The trophospongium. Journal of Comparative Neurology, 246, 113–128.

    CAS  PubMed  Google Scholar 

  • Huganir, R. L., & Nicoll, R. A. (2013). AMPARs and synaptic plasticity: The last 25 years. Neuron, 80(3), 704–717. doi:10.1016/j.neuron.2013.10.025.

    PubMed Central  CAS  PubMed  Google Scholar 

  • Jia, X. X., Gorczyca, M., & Budnik, V. (1993). Ultrastructure of neuromuscular junctions in Drosophila: Comparison of wild type and mutants with increased excitability. Journal of Neurobiology, 24(8), 1025–1044. doi:10.1002/neu.480240804.

    CAS  PubMed  Google Scholar 

  • Jones, D. G., & Calverley, R. K. (1991). Perforated and non-perforated synapses in rat neocortex: Three-dimensional reconstructions. Brain Research, 556(2), 247–258.

    CAS  PubMed  Google Scholar 

  • Jorgensen, E. M. (2014). Animal evolution: Looking for the first nervous system. Current Biology, 24(14), R655–R658. doi:10.1016/j.cub.2014.06.036.

    CAS  PubMed  Google Scholar 

  • Joshi, P., Benussi, L., Furlan, R., Ghidoni, R., & Verderio, C. (2015). Extracellular Vesicles in Alzheimer’s Disease: Friends or Foes? Focus on Abeta-Vesicle Interaction. International Journal of Molecular Sciences, 16(3), 4800–4813. doi:10.3390/ijms16034800.

    PubMed Central  CAS  PubMed  Google Scholar 

  • Klooster, J., Yazulla, S., & Kamermans, M. (2009). Ultrastructural analysis of the glutamatergic system in the outer plexiform layer of zebrafish retina. Journal of Chemical Neuroanatomy, 37(4), 254–265. doi:10.1016/j.jchemneu.2009.02.004.

    CAS  PubMed  Google Scholar 

  • Klueg, K. M., & Muskavitch, M. A. (1999). Ligand-receptor interactions and trans-endocytosis of Delta, Serrate and Notch: Members of the Notch signalling pathway in Drosophila. Journal of Cell Science, 112(Pt 19), 3289–3297.

    CAS  PubMed  Google Scholar 

  • Korkut, C., Ataman, B., Ramachandran, P., Ashley, J., Barria, R., Gherbesi, N., et al. (2009). Trans-synaptic transmission of vesicular Wnt signals through Evi/Wntless. Cell, 139(2), 393–404. doi:10.1016/j.cell.2009.07.051.

    PubMed Central  CAS  PubMed  Google Scholar 

  • Korkut, C., Li, Y., Koles, K., Brewer, C., Ashley, J., Yoshihara, M., et al. (2013). Regulation of postsynaptic retrograde signaling by presynaptic exosome release. Neuron, 77(6), 1039–1046. doi:10.1016/j.neuron.2013.01.013.

    PubMed Central  CAS  PubMed  Google Scholar 

  • Kornberg, T. B., & Roy, S. (2014). Cytonemes as specialized signaling filopodia. Development, 141(4), 729–736. doi:10.1242/dev.086223.

    PubMed Central  CAS  PubMed  Google Scholar 

  • Krämer, H., Cagan, R. L., & Zipursky, S. L. (1991). Interaction of bride of sevenless membrane-bound ligand and the sevenless tyrosine-kinase receptor. Nature, 352(6332), 207–212. doi:10.1038/352207a0.

    PubMed  Google Scholar 

  • Kröger, R. H., & Wagner, H. J. (1996). Horizontal cell spinule dynamics in fish are affected by rearing in monochromatic light. Vision Research, 36(24), 3879–3889.

    PubMed  Google Scholar 

  • Larsen, W. J. (1983). Biological implications of gap junction structure, distribution and composition: A review. Tissue and Cell, 15(5), 645–671.

    CAS  PubMed  Google Scholar 

  • Leise, E. M., & Cloney, R. A. (1982). Chiton integument: Ultrastructure of the sensory hairs of Mopalia muscosa (Mollusca: Polyplacophora). Cell and Tissue Research, 223(1), 43–59.

    CAS  PubMed  Google Scholar 

  • Leranth, C., & Frotscher, M. (1986). Synaptic connections of cholecystokinin-immunoreactive neurons and terminals in the rat fascia dentata: A combined light and electron microscopic study. Journal of Comparative Neurology, 254(1), 51–64. doi:10.1002/cne.902540105.

    CAS  PubMed  Google Scholar 

  • Leys, S. P. (2015). Elements of a ‘nervous system’ in sponges. Journal of Experimental Biology, 218(Pt 4), 581–591. doi:10.1242/jeb.110817.

    PubMed  Google Scholar 

  • Li, Y. C., Li, Y. N., Cheng, C. X., Sakamoto, H., Kawate, T., Shimada, O., et al. (2005). Subsurface cisterna-lined axonal invaginations and double-walled vesicles at the axonal-myelin sheath interface. Neuroscience Research, 53(3), 298–303. doi:10.1016/j.neures.2005.07.006.

    CAS  PubMed  Google Scholar 

  • Mäntylä, K., Reuter, M., Halton, D. W., Maule, A. G., Brennan, G. P., Shaw, C., et al. (1998). The nervous system of Procerodes littoralis (Maricola, Tricladida). An ultrastructural and immunoelectron microscopical study. Acta Zoologica, 79(1), 1–8.

    Google Scholar 

  • Marston, D. J., Dickinson, S., & Nobes, C. D. (2003). Rac-dependent trans-endocytosis of ephrinBs regulates Eph–ephrin contact repulsion. Nature Cell Biology, 5(10), 879–888. doi:10.1038/ncb1044.

    CAS  PubMed  Google Scholar 

  • Mashanov, V. S., Zueva, O. R., Heinzeller, T., & Dolmatov, I. Y. (2006). Ultrastructure of the circumoral nerve ring and the radial nerve cords in holothurians (Echinodermata). Zoomorphology, 125, 27–38.

    Google Scholar 

  • Matsuo, I., Kimura-Yoshida, C., & Shimokawa, K. (2014). Divergent roles of heparan sulfate in regulation of FGF signaling during mammalian embryogenesis. In H. Kondoh & A. Kuroiwa (Eds.), New principles in developmental processes (pp. 239–251). Japan: Springer.

    Google Scholar 

  • Matthews, G., & Fuchs, P. (2010). The diverse roles of ribbon synapses in sensory neurotransmission. Nature Reviews Neuroscience, 11(12), 812–822. doi:10.1038/nrn2924.

    PubMed Central  CAS  PubMed  Google Scholar 

  • Medvedev, N. I., Dallérac, G., Popov, V. I., Rodriguez Arellano, J. J., Davies, H. A., Kraev, I. V., et al. (2014). Multiple spine boutons are formed after long-lasting LTP in the awake rat. Brain Structure and Function, 219(1), 407–414. doi:10.1007/s00429-012-0488-0.

    CAS  PubMed  Google Scholar 

  • Meyer, D., Bonhoeffer, T., & Scheuss, V. (2014). Balance and stability of synaptic structures during synaptic plasticity. Neuron, 82(2), 430–443. doi:10.1016/j.neuron.2014.02.031.

    CAS  PubMed  Google Scholar 

  • Mitchell, N., Petralia, R. S., Currier, D. G., Wang, Y. X., Kim, A., Mattson, M. P., et al. (2012). Sonic hedgehog regulates presynaptic terminal size, ultrastructure and function in hippocampal neurons. Journal of Cell Science, 125(Pt 18), 4207–4213. doi:10.1242/jcs.105080.

    PubMed Central  CAS  PubMed  Google Scholar 

  • Mueller, W. A., Hassel, M., & Grealy, M. (2015). Development and reproduction in humans and animal model species. Berlin: Springer.

    Google Scholar 

  • Mugnaini, E., Floris, A., & Wright-Goss, M. (1994). Extraordinary synapses of the unipolar brush cell: An electron microscopic study in the rat cerebellum. Synapse, 16(4), 284–311. doi:10.1002/syn.890160406.

    CAS  PubMed  Google Scholar 

  • Mugnaini, E., Osen, K. K., Dahl, A. L., Friedrich, V. L, Jr, & Korte, G. (1980). Fine structure of granule cells and related interneurons (termed Golgi cells) in the cochlear nuclear complex of cat, rat and mouse. Journal of Neurocytology, 9(4), 537–570.

    CAS  PubMed  Google Scholar 

  • Mugnaini, E., Sekerkova, G., & Martina, M. (2011). The unipolar brush cell: A remarkable neuron finally receiving deserved attention. Brain Research Reviews, 66(1–2), 220–245. doi:10.1016/j.brainresrev.2010.10.001.

    PubMed Central  CAS  PubMed  Google Scholar 

  • Muralidharan-Chari, V., Clancy, J., Plou, C., Romao, M., Chavrier, P., Raposo, G., et al. (2009). ARF6-regulated shedding of tumor cell-derived plasma membrane microvesicles. Current Biology, 19(22), 1875–1885. doi:10.1016/j.cub.2009.09.059.

    PubMed Central  CAS  PubMed  Google Scholar 

  • Muriel, M. P., Agid, Y., & Hirsch, E. (2001). Plasticity of afferent fibers to striatal neurons bearing D1 dopamine receptors in Parkinson’s disease. Movement Disorders, 16(3), 435–441.

    CAS  PubMed  Google Scholar 

  • Murphy, D. D., & Andrews, S. B. (2000). Culture models for the study of estradiol-induced synaptic plasticity. Journal of Neurocytology, 29(5–6), 411–417.

    CAS  PubMed  Google Scholar 

  • Nickel, M. (2010). Evolutionary emergence of synaptic nervous systems: What can we learn from the non-synaptic, nerveless Porifera? Invertebrate Biology, 129(1), 1–16.

    Google Scholar 

  • Nitsch, C., & Rinne, U. (1981). Large dense-core vesicle exocytosis and membrane recycling in the mossy fibre synapses of the rabbit hippocampus during epileptiform seizures. Journal of Neurocytology, 10(2), 201–209.

    CAS  PubMed  Google Scholar 

  • Nordlander, R. H., Masnyi, J. A., & Singer, M. (1975). Distribution of ultrastructural tracers in crustacean axons. Journal of Comparative Neurology, 161, 499–514.

    CAS  PubMed  Google Scholar 

  • Omiya, Y., Uchigashima, M., Konno, K., Yamasaki, M., Miyazaki, T., Yoshida, T., et al. (2015). VGluT3-Expressing CCK-positive basket cells construct invaginating synapses enriched with endocannabinoid signaling proteins in particular cortical and cortex-like amygdaloid regions of mouse brains. Journal of Neuroscience, 35(10), 4215–4228. doi:10.1523/JNEUROSCI.4681-14.2015.

    CAS  PubMed  Google Scholar 

  • Osborne, M. P. (1967). The fine structure of neuromuscular junctions in the segmental muscles of the blowfly larva. Journal of Insect Physiology, 13, 827–833.

    Google Scholar 

  • Palacios-Prü, E. L., Palacios, L., & Mendoza, R. V. (1981). Synaptogenetic mechanisms during chick cerebellar cortex development. Journal of Submicroscopic Cytology, 13(2), 145–167.

    PubMed  Google Scholar 

  • Palay, S. L., & Chan-Palay, V. (1974). Cerebellar cortex. Cytology and organization. New York: Springer.

    Google Scholar 

  • Papassotiropoulos, A., Stephan, D. A., Huentelman, M. J., Hoerndli, F. J., Craig, D. W., Pearson, J. V., et al. (2006). Common Kibra alleles are associated with human memory performance. Science, 314(5798), 475–478. doi:10.1126/science.1129837.

    CAS  PubMed  Google Scholar 

  • Pappas, G. D., & Purpura, D. P. (1961). Fine structure of dendrites in the superficial neocortical neuropil. Experimental Neurology, 4, 507–530.

    CAS  PubMed  Google Scholar 

  • Paspalas, C. D., Rakic, P., & Goldman-Rakic, P. S. (2006). Internalization of D2 dopamine receptors is clathrin-dependent and select to dendro-axonic appositions in primate prefrontal cortex. European Journal of Neuroscience, 24(5), 1395–1403. doi:10.1111/j.1460-9568.2006.05023.x.

    PubMed  Google Scholar 

  • Passey, S., Pellegrin, S., & Mellor, H. (2004). What is in a filopodium? Starfish versus hedgehogs. Biochemical Society Transactions, 32(Pt 6), 1115–1117. doi:10.1042/BST0321115.

    CAS  PubMed  Google Scholar 

  • Pavans de Ceccatty, M. (1966). Ultrastructures et rapports des cellules mesenchymateuses de type nerveux de l’eponge Tethya lyncurium Link. Annales des Sciences Naturelles—Zoologie et Biologie Animale, 8, 577–614.

    Google Scholar 

  • Pentreath, V. W., Berry, M. S., & Cobb, J. L. (1975). Nerve-ending specializations in the central ganglia of Planorbis corneus. Cell and Tissue Research, 163(1), 99–110.

    CAS  PubMed  Google Scholar 

  • Pérez-Cruz, C., Delgado, L., Lopez-Iglesias, C., & Mercade, E. (2015). Outer-inner membrane vesicles naturally secreted by gram-negative pathogenic bacteria. PLoS One, 10(1), e0116896. doi:10.1371/journal.pone.0116896.

    PubMed Central  PubMed  Google Scholar 

  • Petralia, R. S., Mattson, M. P., & Yao, P. J. (2014a). Communication breakdown: The impact of ageing on synapse structure. Ageing Res Rev, 14, 31–42.

    PubMed Central  CAS  PubMed  Google Scholar 

  • Petralia, R. S., Mattson, M. P., & Yao, P. J. (2014b). Aging and longevity in the simplest animals and the quest for immortality. Ageing Research Reviews, 16, 66–82. doi:10.1016/j.arr.2014.05.003.

    PubMed  Google Scholar 

  • Petralia, R. S., Schwartz, C. M., Wang, Y. X., Mattson, M. P., & Yao, P. J. (2011). Subcellular localization of patched and smoothened, the receptors for sonic hedgehog signaling, in the hippocampal neuron. Journal of Comparative Neurology, 519(18), 3684–3699. doi:10.1002/cne.22681.

    PubMed Central  CAS  PubMed  Google Scholar 

  • Petralia, R. S., Wang, Y. X., Mattson, M. P., & Yao, P. J. (2012). Subcellular distribution of patched and smoothened in the cerebellar neurons. Cerebellum, 11(4), 972–981. doi:10.1007/s12311-012-0374-6.

    PubMed Central  PubMed  Google Scholar 

  • Petralia, R. S., & Wenthold, R. J. (1992). Light and electron immunocytochemical localization of AMPA-selective glutamate receptors in the rat brain. Journal of Comparative Neurology, 318(3), 329–354. doi:10.1002/cne.903180309.

    CAS  PubMed  Google Scholar 

  • Popov, V. I., Kleschevnikov, A. M., Klimenko, O. A., Stewart, M. G., & Belichenko, P. V. (2011). Three-dimensional synaptic ultrastructure in the dentate gyrus and hippocampal area CA3 in the Ts65Dn mouse model of down syndrome. Journal of Comparative Neurology, 519(7), 1338–1354. doi:10.1002/cne.22573.

    CAS  PubMed  Google Scholar 

  • Popova, E. (2014). Role of dopamine in distal retina. Journal of Comparative Physiology. A, Neuroethology, Sensory, Neural, and Behavioral Physiology, 200(5), 333–358. doi:10.1007/s00359-014-0906-2.

    CAS  PubMed  Google Scholar 

  • Prokop, A., & Meinertzhagen, I. A. (2006). Development and structure of synaptic contacts in Drosophila. Seminars in Cell and Developmental Biology, 17(1), 20–30. doi:10.1016/j.semcdb.2005.11.010.

    CAS  PubMed  Google Scholar 

  • Raikova, O. I., Reuter, M., Jondelius, U., & Gustafsson, M. K. S. (2000). An immunocytochemical and ultrastructural study of the nervous and muscular systems of Xenoturbella westbladi (Bilateria inc. sed.). Zoomorphology, 120, 107–118.

    Google Scholar 

  • Rajendran, L., Bali, J., Barr, M. M., Court, F. A., Kramer-Albers, E. M., Picou, F., et al. (2014). Emerging roles of extracellular vesicles in the nervous system. Journal of Neuroscience, 34(46), 15482–15489. doi:10.1523/JNEUROSCI.3258-14.2014.

    PubMed Central  PubMed  Google Scholar 

  • Ramirez-Weber, F. A., & Kornberg, T. B. (1999). Cytonemes: Cellular processes that project to the principal signaling center in Drosophila imaginal discs. Cell, 97(5), 599–607.

    CAS  PubMed  Google Scholar 

  • Remis, J. P., Wei, D., Gorur, A., Zemla, M., Haraga, J., Allen, S., et al. (2014). Bacterial social networks: Structure and composition of Myxococcus xanthus outer membrane vesicle chains. Environmental Microbiology, 16(2), 598–610. doi:10.1111/1462-2920.12187.

    PubMed Central  CAS  PubMed  Google Scholar 

  • Renard, E., Vacelet, J., Gazave, E., Lapebie, P., Borchiellini, C., & Ereskovsky, A. V. (2009). Origin of the neuro-sensory system: New and expected insights from sponges. Integrative Zoology, 4(3), 294–308. doi:10.1111/j.1749-4877.2009.00167.x.

    PubMed  Google Scholar 

  • Richards, D. A., Mateos, J. M., Hugel, S., de Paola, V., Caroni, P., Gahwiler, B. H., et al. (2005). Glutamate induces the rapid formation of spine head protrusions in hippocampal slice cultures. Proceedings of the National Academy of Sciences of the USA, 102(17), 6166–6171. doi:10.1073/pnas.0501881102.

    PubMed Central  CAS  PubMed  Google Scholar 

  • Ringstad, N., Gad, H., Low, P., Di Paolo, G., Brodin, L., Shupliakov, O., et al. (1999). Endophilin/SH3p4 is required for the transition from early to late stages in clathrin-mediated synaptic vesicle endocytosis. Neuron, 24(1), 143–154.

    CAS  PubMed  Google Scholar 

  • Risinger, M. A., & Larsen, W. J. (1981). Endocytosis of cell-cell junctions and spontaneous cell disaggregation in a cultured human ovarian adenocarcinoma. (COLO 316). Tissue and Cell, 13(2), 413–430.

    CAS  PubMed  Google Scholar 

  • Robbins, J. R., Barth, A. I., Marquis, H., de Hostos, E. L., Nelson, W. J., & Theriot, J. A. (1999). Listeria monocytogenes exploits normal host cell processes to spread from cell to cell. Journal of Cell Biology, 146(6), 1333–1350.

    PubMed Central  CAS  PubMed  Google Scholar 

  • Saint Marie, R. L., & Carlson, S. D. (1982). Synaptic vesicle activity in stimulated and unstimulated photoreceptor axons in the housefly. A freeze-fracture study. Journal of Neurocytology, 11(5), 747–761.

    CAS  PubMed  Google Scholar 

  • Sasaki, S., & Iwata, M. (1995). Synaptic loss in the proximal axon of anterior horn neurons in motor neuron disease. Acta Neuropathologica, 90(2), 170–175.

    CAS  PubMed  Google Scholar 

  • Sasaki, S., & Iwata, M. (1996). Synaptic loss in anterior horn neurons in lower motor neuron disease. Acta Neuropathologica, 91(4), 416–421.

    CAS  PubMed  Google Scholar 

  • Sasaki, S., & Iwata, M. (1999). Ultrastructural change of synapses of Betz cells in patients with amyotrophic lateral sclerosis. Neuroscience Letters, 268(1), 29–32.

    CAS  PubMed  Google Scholar 

  • Satterlie, R. A., & Case, J. F. (1978). Gap junctions suggest epithelial conduction within the comb plates of the ctenophore Pleurobrachia bachei. Cell and Tissue Research, 193(1), 87–91.

    CAS  PubMed  Google Scholar 

  • Schmidt, A., Hannah, M. J., & Huttner, W. B. (1997). Synaptic-like microvesicles of neuroendocrine cells originate from a novel compartment that is continuous with the plasma membrane and devoid of transferrin receptor. Journal of Cell Biology, 137(2), 445–458.

    PubMed Central  CAS  PubMed  Google Scholar 

  • Schultz, K., Janssen-Bienhold, U., Gundelfinger, E. D., Kreutz, M. R., & Weiler, R. (2004). Calcium-binding protein Caldendrin and CaMKII are localized in spinules of the carp retina. Journal of Comparative Neurology, 479(1), 84–93. doi:10.1002/cne.20314.

    CAS  PubMed  Google Scholar 

  • Schuster, T., Krug, M., & Wenzel, J. (1990). Spinules in axospinous synapses of the rat dentate gyrus: Changes in density following long-term potentiation. Brain Research, 523(1), 171–174.

    CAS  PubMed  Google Scholar 

  • Sebé-Pedrós, A., Burkhardt, P., Sanchez-Pons, N., Fairclough, S. R., Lang, B. F., King, N., et al. (2013). Insights into the origin of metazoan filopodia and microvilli. Molecular Biology and Evolution, 30(9), 2013–2023. doi:10.1093/molbev/mst110.

    PubMed Central  PubMed  Google Scholar 

  • Shaw, S. R., & Meinertzhagen, I. A. (1986). Evolutionary progression at synaptic connections made by identified homologous neurones. Proceedings of the National Academy of Sciences of the USA, 83(20), 7961–7965.

    PubMed Central  CAS  PubMed  Google Scholar 

  • Sherer, N. M., Lehmann, M. J., Jimenez-Soto, L. F., Horensavitz, C., Pypaert, M., & Mothes, W. (2007). Retroviruses can establish filopodial bridges for efficient cell-to-cell transmission. Nature Cell Biology, 9(3), 310–315. doi:10.1038/ncb1544.

    PubMed Central  CAS  PubMed  Google Scholar 

  • Sherer, N. M., & Mothes, W. (2008). Cytonemes and tunneling nanotubules in cell-cell communication and viral pathogenesis. Trends in Cell Biology, 18(9), 414–420. doi:10.1016/j.tcb.2008.07.003.

    PubMed Central  CAS  PubMed  Google Scholar 

  • Shupliakov, O., Low, P., Grabs, D., Gad, H., Chen, H., David, C., et al. (1997). Synaptic vesicle endocytosis impaired by disruption of dynamin-SH3 domain interactions. Science, 276(5310), 259–263.

    CAS  PubMed  Google Scholar 

  • Smith, J. E., Clark, A. W., & Kuster, T. A. (1977). Suppression by elevated calcium of black widow spider venom activity at frog neuromuscular junctions. Journal of Neurocytology, 6(5), 519–539.

    CAS  PubMed  Google Scholar 

  • Smith, C. L., Varoqueaux, F., Kittelmann, M., Azzam, R. N., Cooper, B., Winters, C. A., et al. (2014). Novel cell types, neurosecretory cells, and body plan of the early-diverging metazoan Trichoplax adhaerens. Current Biology, 24(14), 1565–1572. doi:10.1016/j.cub.2014.05.046.

    PubMed Central  CAS  PubMed  Google Scholar 

  • Sobkowicz, H. M., August, B. K., Slapnick, S. M., & Luthy, D. F. (1998). Terminal dendritic sprouting and reactive synaptogenesis in the postnatal organ of Corti in culture. Journal of Comparative Neurology, 397(2), 213–230.

    CAS  PubMed  Google Scholar 

  • Sobkowicz, H. M., Rose, J. E., Scott, G. L., & Levenick, C. V. (1986). Distribution of synaptic ribbons in the developing organ of Corti. Journal of Neurocytology, 15(6), 693–714.

    CAS  PubMed  Google Scholar 

  • Sobkowicz, H. M., Slapnick, S. M., & August, B. K. (1999). Apoptosis of inner hair cells caused by laser ablation of their spiral ganglion neurons in cultures of the mouse organ of Corti. Journal of Neurocytology, 28(10–11), 939–954.

    CAS  PubMed  Google Scholar 

  • Sobkowicz, H. M., Slapnick, S. M., & August, B. K. (2002). Differentiation of spinous synapses in the mouse organ of corti. Synapse, 45(1), 10–24. doi:10.1002/syn.10080.

    CAS  PubMed  Google Scholar 

  • Sobkowicz, H. M., Slapnick, S. M., & August, B. K. (2003). Reciprocal synapses between inner hair cell spines and afferent dendrites in the organ of corti of the mouse. Synapse, 50(1), 53–66. doi:10.1002/syn.10241.

    CAS  PubMed  Google Scholar 

  • Sorra, K. E., Fiala, J. C., & Harris, K. M. (1998). Critical assessment of the involvement of perforations, spinules, and spine branching in hippocampal synapse formation. Journal of Comparative Neurology, 398(2), 225–240.

    CAS  PubMed  Google Scholar 

  • Spacek, J., & Harris, K. M. (2004). Trans-endocytosis via spinules in adult rat hippocampus. Journal of Neuroscience, 24(17), 4233–4241. doi:10.1523/JNEUROSCI.0287-04.2004.

    CAS  PubMed  Google Scholar 

  • Stark, W. S., & Carlson, S. D. (1986). Ultrastructure of capitate projections in the optic neuropil of Diptera. Cell and Tissue Research, 246(3), 481–486.

    CAS  PubMed  Google Scholar 

  • Stark, W. S., Sapp, R., & Carlson, S. D. (1989). Ultrastructure of the ocellar visual system in normal and mutant Drosophila melanogaster. Journal of Neurogenetics, 5, 127–153.

    CAS  PubMed  Google Scholar 

  • Stewart, M. G., Davies, H. A., Sandi, C., Kraev, I. V., Rogachevsky, V. V., Peddie, C. J., et al. (2005a). Stress suppresses and learning induces plasticity in CA3 of rat hippocampus: A three-dimensional ultrastructural study of thorny excrescences and their postsynaptic densities. Neuroscience, 131(1), 43–54. doi:10.1016/j.neuroscience.2004.10.031.

    CAS  PubMed  Google Scholar 

  • Stewart, M. G., Medvedev, N. I., Popov, V. I., Schoepfer, R., Davies, H. A., Murphy, K., et al. (2005b). Chemically induced long-term potentiation increases the number of perforated and complex postsynaptic densities but does not alter dendritic spine volume in CA1 of adult mouse hippocampal slices. European Journal of Neuroscience, 21(12), 3368–3378. doi:10.1111/j.1460-9568.2005.04174.x.

    CAS  PubMed  Google Scholar 

  • Sukhdeo, S. C., & Sukhdeo, M. V. K. (1994). Mesenchyme cells in Fasciola hepatica (Platyhelminthes): Primitive glia? Tissue and Cell, 26(1), 123–131.

    CAS  PubMed  Google Scholar 

  • Tao-Cheng, J. H., Dosemeci, A., Gallant, P. E., Miller, S., Galbraith, J. A., Winters, C. A., et al. (2009). Rapid turnover of spinules at synaptic terminals. Neuroscience, 160(1), 42–50. doi:10.1016/j.neuroscience.2009.02.031.

    PubMed Central  CAS  PubMed  Google Scholar 

  • Tarrant, S. B., & Routtenberg, A. (1977). The synaptic spinule in the dendritic spine: Electron microscopic study of the hippocampal dentate gyrus. Tissue and Cell, 9(3), 461–473.

    CAS  PubMed  Google Scholar 

  • Tarrant, S. B., & Routtenberg, A. (1979). Postsynaptic membrane and spine apparatus: Proximity in dendritic spines. Neuroscience Letters, 11(3), 289–294.

    CAS  PubMed  Google Scholar 

  • Toh, Y., & Kuwabara, M. (1974). Fine structure of the dorsal ocellus of the worker honeybee. Journal of Morphology, 143, 285–306.

    Google Scholar 

  • Toh, Y., & Kuwabara, M. (1975). Synaptic organization of the fleshfly ocellus. Journal of Neurocytology, 4(3), 271–287.

    CAS  PubMed  Google Scholar 

  • Toni, N., Buchs, P. A., Nikonenko, I., Bron, C. R., & Muller, D. (1999). LTP promotes formation of multiple spine synapses between a single axon terminal and a dendrite. Nature, 402(6760), 421–425. doi:10.1038/46574.

    CAS  PubMed  Google Scholar 

  • Trujillo-Cenóz, O. (1965). Some aspects of the structural organization of the intermediate retina of dipterans. Journal of Ultrastructure Research, 13(1), 1–33.

    PubMed  Google Scholar 

  • Ueda, Y. (2014). The role of phosphoinositides in synapse function. Molecular Neurobiology, 50(3), 821–838. doi:10.1007/s12035-014-8768-8.

    CAS  PubMed  Google Scholar 

  • Ueda, Y., & Hayashi, Y. (2013). PIP(3) regulates spinule formation in dendritic spines during structural long-term potentiation. Journal of Neuroscience, 33(27), 11040–11047. doi:10.1523/JNEUROSCI.3122-12.2013.

    PubMed Central  CAS  PubMed  Google Scholar 

  • Vaughn, J. E. (1989). Fine structure of synaptogenesis in the vertebrate central nervous system. Synapse, 3(3), 255–285. doi:10.1002/syn.890030312.

    CAS  PubMed  Google Scholar 

  • Wagner, H. J. (1980). Light-dependent plasticity of the morphology of horizontal cell terminals in cone pedicles of fish retinas. Journal of Neurocytology, 9(5), 573–590.

    CAS  PubMed  Google Scholar 

  • Wagner, H. J., & Djamgoz, M. B. (1993). Spinules: a case for retinal synaptic plasticity. Trends in Neurosciences, 16(6), 201–206.

    CAS  PubMed  Google Scholar 

  • Wanner, G., Vogl, K., & Overmann, J. (2008). Ultrastructural characterization of the prokaryotic symbiosis in “Chlorochromatium aggregatum”. Journal of Bacteriology, 190(10), 3721–3730. doi:10.1128/JB.00027-08.

    PubMed Central  CAS  PubMed  Google Scholar 

  • Waxman, S. G., Waxman, M., & Pappas, G. D. (1980). Coordinated micropinocytotic activity of adjacent neuronal membranes in mammalian central nervous system. Neuroscience Letters, 20(2), 141–146.

    CAS  PubMed  Google Scholar 

  • Weedman, D. L., Pongstaporn, T., & Ryugo, D. K. (1996). Ultrastructural study of the granule cell domain of the cochlear nucleus in rats: Mossy fiber endings and their targets. The Journal of Comparative Neurology, 369(3), 345–360. doi:10.1002/(SICI)1096-9861(19960603)369:3<345:AID-CNE2>3.0.CO;2-5.

    CAS  PubMed  Google Scholar 

  • Weiler, R., & Schultz, K. (1993). Ionotropic non-N-methyl-D-aspartate agonists induce retraction of dendritic spinules from retinal horizontal cells. Proceedings of the National Academy of Sciences of the USA, 90(14), 6533–6537.

    PubMed Central  CAS  PubMed  Google Scholar 

  • Weiler, R., Schultz, K., & Janssen-Bienhold, U. (1996). Ca(2+)-dependency of spinule plasticity at dendrites of retinal horizontal cells and its possible implication for the functional role of spinules. Vision Research, 36(24), 3891–3900.

    CAS  PubMed  Google Scholar 

  • Westfall, J. A. (1970). Ultrastructure of synapses in a primitive coelenterate. Journal of Ultrastructure Research, 32(3), 237–246.

    CAS  PubMed  Google Scholar 

  • Westrum, L. E., & Blackstad, T. W. (1962). An electron microscopic study of the stratum radiatum of the rat hippocampus (regio superior, CA 1) with particular emphasis on synaptology. Journal of Comparative Neurology, 119, 281–309.

    CAS  PubMed  Google Scholar 

  • Wierenga, C. J., Becker, N., & Bonhoeffer, T. (2008). GABAergic synapses are formed without the involvement of dendritic protrusions. Nature Neuroscience, 11(9), 1044–1052. doi:10.1038/nn.2180.

    CAS  PubMed  Google Scholar 

  • Williams, J. B. (1994). Unicellular adhesive secretion glands and other cells in the parenchyma of Temnocephala novaezealandiae (Platyhelminthes, Temnocephaloidea): Intercell relationships and nuclear pockets. New Zealand Journal of Zoology, 21(2), 167–178.

    Google Scholar 

  • Wood, C. R., & Rosenbaum, J. L. (2015). Ciliary ectosomes: Transmissions from the cell’s antenna. Trends in Cell Biology, 25(5), 276–285.

    CAS  PubMed  Google Scholar 

  • Wright, K. A. (1992). Peripheral sensilla of some lower invertebrates: The Platyhelminthes and Nematoda. Microscopy Research and Technique, 22(3), 285–297. doi:10.1002/jemt.1070220306.

    CAS  PubMed  Google Scholar 

  • Wright, K. A., & Hui, N. (1976). Post-labial sensory structures on the cecal worm, Heterakis gallinarum. Journal of Parasitology, 62(4), 579–584.

    CAS  PubMed  Google Scholar 

  • Yao, P. J., Petralia, R. S., Bushlin, I., Wang, Y., & Furukawa, K. (2005). Synaptic distribution of the endocytic accessory proteins AP180 and CALM. Journal of Comparative Neurology, 481(1), 58–69. doi:10.1002/cne.20362.

    CAS  PubMed  Google Scholar 

  • Yoshida, T., Uchigashima, M., Yamasaki, M., Katona, I., Yamazaki, M., Sakimura, K., et al. (2011). Unique inhibitory synapse with particularly rich endocannabinoid signaling machinery on pyramidal neurons in basal amygdaloid nucleus. Proceedings of the National Academy of Sciences of the USA, 108(7), 3059–3064. doi:10.1073/pnas.1012875108.

    PubMed Central  CAS  PubMed  Google Scholar 

  • Zhao, H. M., Wenthold, R. J., & Petralia, R. S. (1998). Glutamate receptor targeting to synaptic populations on Purkinje cells is developmentally regulated. Journal of Neuroscience, 18(14), 5517–5528.

    CAS  PubMed  Google Scholar 

  • Zimmer, J., Lawrence, J., & Raisman, G. (1982). A quantitative electron microscopic study of synaptic reorganization in the rat medial habenular nucleus after transection of the stria medullaris. Neuroscience, 7(8), 1905–1928.

    CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This work was supported by the Intramural Research Programs of NIDCD/NIH and NIA/NIH.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ronald S. Petralia.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Petralia, R.S., Wang, YX., Mattson, M.P. et al. Structure, Distribution, and Function of Neuronal/Synaptic Spinules and Related Invaginating Projections. Neuromol Med 17, 211–240 (2015). https://doi.org/10.1007/s12017-015-8358-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12017-015-8358-6

Keywords

Navigation