Skip to main content
Log in

The Role of Galectin-3/MAC-2 in the Activation of the Innate-Immune Function of Phagocytosis in Microglia in Injury and Disease

  • Published:
Journal of Molecular Neuroscience Aims and scope Submit manuscript

Abstract

Microglia are a self-sustained population of immune/myeloid cells present throughout the central nervous system (CNS). Microglia are in a “resting” state in the normal adult CNS. They turn “active” in injury and disease (e.g., trauma, neurodegeneration, and infection). Activated microglia can be beneficial as well as detrimental/neurotoxic. The innate-immune function of phagocytosis of tissue debris, neurotoxic factor, and pathogens is a beneficial function of microglia. The current manuscript reviews the role of Galectin-3 (known also as MAC-2; Galectin-3/MAC-2) in the activation of the phagocytosis of degenerated myelin that is mediated by complement receptor-3 (known also as MAC-1; CD11b/CD18; αMβ2 integrin) and SRA (scavenger receptor-AI/II). Observations suggest that Galectin-3/MAC-2 may act as a molecular switch that activates phagocytosis by up-regulating and prolonging KRas-GTP-dependent PI3K (phosphatidylinositol 3-kinase) activity. A similar mechanism may regulate the phagocytosis of other tissue debris, neurotoxic factors and pathogens in neurodegenerative and infectious diseases.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Figure 1
Figure 2

Similar content being viewed by others

References

  • Ajami, B., Bennett, J. L., Krieger, C., Tetzlaff, W., & Rossi, F. M. (2007). Local self-renewal can sustain CNS microglia maintenance and function throughout adult life. Nature Neuroscience, 10, 1538–1543.

    Article  PubMed  CAS  Google Scholar 

  • Alliot, F., Godin, I., & Pessac, B. (1999). Microglia derive from progenitors, originating from the yolk sac, and which proliferate in the brain. Developmental Brain Research, 117, 145–152.

    Article  PubMed  CAS  Google Scholar 

  • Ashery, U., Yizhar, O., Rotblat, B., Elad-Sfadia, G., Barkan, B., Haklai, R., et al. (2006). Spatiotemporal organization of Ras signaling: Rasosomes and the Galectin switch. Cellular and Molecular Neurobiology, 26, 471–495.

    Article  PubMed  CAS  Google Scholar 

  • Be'eri, H., Reichert, F., Saada, A., & Rotshenker, S. (1998). The cytokine network of Wallerian degeneration: IL-10 and GM-CSF. European Journal of Neuroscience, 10, 2707–2713.

    Article  PubMed  Google Scholar 

  • Bell, M. D., Lopez-Gonzalez, R., Lawson, L., Hughes, D., Fraser, I., Gordon, S., et al. (1994). Upregulation of the macrophage scavenger receptor in response to different forms of injury in the CNS. Journal of Neurocytology, 23, 605–613.

    Article  PubMed  CAS  Google Scholar 

  • Block, M. L., Zecca, L., & Hong, J. S. (2007). Microglia-mediated neurotoxicity: Uncovering the molecular mechanisms. Nature Reviews Neuroscience, 8, 57–69.

    Article  PubMed  CAS  Google Scholar 

  • Cohen, G., Makranz, C., Spira, M., Kodama, T., Reichert, F., & Rotshenker, S. (2006). Non-PKC DAG/Phorbol-Ester receptor(s) inhibit complement receptor-3 and nPKC inhibit scavenger receptor-AI/II-mediated myelin phagocytosis but cPKC, PI3K, and PLCgamma activate myelin phagocytosis by both. Glia, 53, 538–550.

    Article  PubMed  Google Scholar 

  • Dumic, J., Dabelic, S., & Flogel, M. (2006). Galectin-3: An open-ended story. Biochimica Biophysica Acta, 1760, 616–635.

    CAS  Google Scholar 

  • Gao, H. M., & Hong, J. S. (2008). Why neurodegenerative diseases are progressive: Uncontrolled inflammation drives disease progression. Trends in Immunology, 29, 357–365.

    Article  PubMed  CAS  Google Scholar 

  • Griffin, J. W., George, R., Lobato, C., Tyor, W. R., Yan, L. C., & Glass, J. D. (1992). Macrophage responses and myelin clearance during Wallerian degeneration: Relevance to immune-mediated demyelination. Journal of Neuroimmunology, 40, 153–165.

    Article  PubMed  CAS  Google Scholar 

  • Hanisch, U. K., & Kettenmann, H. (2007). Microglia: Active sensor and versatile effector cells in the normal and pathologic brain. Nature Neuroscience, 10, 1387–1394.

    Article  PubMed  CAS  Google Scholar 

  • Hannila, S. S., Siddiq, M. M., & Filbin, M. T. (2007). Therapeutic approaches to promoting axonal regeneration in the adult mammalian spinal cord. International Review of Neurobiology, 77, 57–105.

    Article  PubMed  CAS  Google Scholar 

  • Ho, M. K., & Springer, T. A. (1982). Mac-2, a novel 32,000 Mr mouse macrophage subpopulation-specific antigen defined by monoclonal antibodies. Journal of Immunology, 128, 1221–1228.

    CAS  Google Scholar 

  • Kotter, M. R., Li, W. W., Zhao, C., & Franklin, R. J. M. (2006). Myelin impairs CNS remyelination by inhibiting oligodendrocyte precursor cell differentiation. Journal of Neuroscience, 26, 328–332.

    Article  PubMed  CAS  Google Scholar 

  • Kreutzberg, G. W. (1996). Microglia: A sensor for pathological events in the CNS. Trends in Neurosciences, 19, 312–318.

    Article  PubMed  CAS  Google Scholar 

  • Makranz, C., Cohen, G., Baron, A., Levidor, L., Kodama, T., Reichert, F., et al. (2004). Phosphatidylinositol 3-kinase, phosphoinositide-specific phospholipase-Cgamma and protein kinase-C signal myelin phagocytosis mediated by complement receptor-3 alone and combined with scavenger receptor-AI/II in macrophages. Neurobiology of Disease, 15, 279–286.

    Article  PubMed  CAS  Google Scholar 

  • McKerracher, L., & David, S. (2004). Easing the brakes on spinal cord repair. Natural Medicines, 10, 1052–1053.

    Article  CAS  Google Scholar 

  • Mead, R. J., Singhrao, S. K., Neal, J. W., Lassmann, H., & Morgan, B. P. (2002). The membrane attack complex of complement causes severe demyelination associated with acute axonal injury. Journal of Immunology, 168, 458–465.

    CAS  Google Scholar 

  • Mildner, A., Schmidt, H., Nitsche, M., Merkler, D., Hanisch, U. K., Mack, M., et al. (2007). Microglia in the adult brain arise from Ly6ChiCCR2+ monocytes only under defined host conditions. Nature Neuroscience, 10, 1544–1553.

    Article  PubMed  CAS  Google Scholar 

  • Perry, V. H., Brown, M. C., & Gordon, S. (1987). The macrophage response to central and peripheral nerve injury. A possible role for macrophages in regeneration. Journal of Experimental Medicine, 165, 1218–1223.

    Article  PubMed  CAS  Google Scholar 

  • Reichert, F., & Rotshenker, S. (1996). Deficient activation of microglia during optic nerve degeneration. Journal of Neuroimmunology, 70, 153–161.

    Article  PubMed  CAS  Google Scholar 

  • Reichert, F., & Rotshenker, S. (1999). Galectin-3/MAC-2 in experimental allergic encephalomyelitis. Experimental Neurology, 160, 508–514.

    Article  PubMed  CAS  Google Scholar 

  • Reichert, F., & Rotshenker, S. (2003). Complement-receptor-3 and scavenger-receptor-AI/II mediated myelin phagocytosis in microglia and macrophages. Neurobiology of Disease, 12, 65–72.

    Article  PubMed  CAS  Google Scholar 

  • Reichert, F., Saada, A., & Rotshenker, S. (1994). Peripheral nerve injury induces Schwann cells to express two macrophage phenotypes: Phagocytosis and the galactose-specific lectin MAC-2. Journal of Neuroscience, 14, 3231–3245.

    PubMed  CAS  Google Scholar 

  • Reichert, F., Slobodov, U., Makranz, C., & Rotshenker, S. (2001). Modulation (inhibition and augmentation) of complement receptor-3-mediated myelin phagocytosis. Neurobiology of Disease, 8, 504–512.

    Article  PubMed  CAS  Google Scholar 

  • Rinner, W. A., Bauer, J., Schmidts, M., Lassmann, H., & Hickey, W. F. (1995). Resident microglia and hematogenous macrophages as phagocytes in adoptively transferred experimental autoimmune encephalomyelitis: An investigation using rat radiation bone marrow chimeras. Glia, 14, 257–266.

    Article  PubMed  CAS  Google Scholar 

  • Rio-Hortega, P. d. (1932). Microglia. In W. Penfield (Ed.), Cytology and cellular pathology of the nervous system (pp. 481–534). New York: Hafner.

    Google Scholar 

  • Rotshenker, S. (2003). Microglia and macrophage activation and the regulation of complement-receptor-3 (CR3/MAC-1)-mediated myelin phagocytosis in injury and disease. Journal of Molecular Neuroscience, 21, 65–72.

    Article  PubMed  CAS  Google Scholar 

  • Rotshenker, S., Reichert, F., Gitik, M., Haklai, R., Elad-Sfadia, G., & Kloog, Y. (2008). Galectin3/MAC-2, Ras and PI3K activate complement receptor-3 and scavenger receptor-AI/II mediated myelin phagocytosis in microglia. Glia, 56, 1607–1613.

    Article  PubMed  Google Scholar 

  • Saada, A., Reichert, F., & Rotshenker, S. (1996). Granulocyte macrophage colony stimulating factor produced in lesioned peripheral nerves induces the up-regulation of cell surface expression of MAC-2 by macrophages and Schwann cells. Journal of Cell Biology, 133, 159–167.

    Article  PubMed  CAS  Google Scholar 

  • Silverman, B. A., Carney, D. F., Johnston, C. A., Vanguri, P., & Shin, M. L. (1984). Isolation of membrane attack complex of complement from myelin membranes treated with serum complement. Journal of Neurochemistry, 42, 1024–1029.

    Article  PubMed  CAS  Google Scholar 

  • Skaper, S. D. (2007). The brain as a target for inflammatory processes and neuroprotective strategies. Annals of the New York Academy of Sciences, 1122, 23–34.

    Article  PubMed  CAS  Google Scholar 

  • Slobodov, U., Reichert, F., Mirski, R., & Rotshenker, S. (2001). Distinct inflammatory stimuli induce different patterns of myelin phagocytosis and degradation in recruited macrophages. Experimental Neurology, 167, 401–409.

    Article  PubMed  CAS  Google Scholar 

  • Smith, M. E. (2001). Phagocytic properties of microglia in vitro: Implications for a role in multiple sclerosis and EAE. Microscopy Research and Technique, 54, 81–94.

    Article  PubMed  CAS  Google Scholar 

  • Stoll, G., Jander, S., & Myers, R. R. (2002). Degeneration and regeneration of the peripheral nervous system: From Augustus Waller’s observations to neuroinflammation. Journal of the Peripheral Nervous System, 7, 13–27.

    Article  PubMed  Google Scholar 

  • Yang, R. Y., Rabinovich, G. A., & Liu, F. T. (2008). Galectins: Structure, function and therapeutic potential. Expert Reviews in Molecular Medicine, 10, e17.

    Article  PubMed  Google Scholar 

  • Yiu, G., & He, Z. (2006). Glial inhibition of CNS axon regeneration. Nature Reviews Neuroscience, 7, 617–627.

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

Studies related to the involvement of Galecrin-3/MAC-2 in the signaling of myelin phagocytosis were supported by the Israel Science Foundation (grant No. 11/06 to S. Rotshenker).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shlomo Rotshenker.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Rotshenker, S. The Role of Galectin-3/MAC-2 in the Activation of the Innate-Immune Function of Phagocytosis in Microglia in Injury and Disease. J Mol Neurosci 39, 99–103 (2009). https://doi.org/10.1007/s12031-009-9186-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12031-009-9186-7

Keywords

Navigation