Skip to main content
Log in

Overexpression of EphA2 correlates with epithelial–mesenchymal transition-related proteins in gastric cancer and their prognostic importance for postoperative patients

  • Original Paper
  • Published:
Medical Oncology Aims and scope Submit manuscript

Abstract

The expression of EphA2 and three epithelial–mesenchymal transition-related proteins (E-cadherin, β-catenin and vimentin) was detected by immunohistochemistry in human gastric cancer and normal gastric mucosa. The expression of EphA2 and vimentin was significantly higher in gastric cancer tissues than in normal gastric mucosa tissues, and similar results were found for negative E-cadherin expression and ectopic β-catenin expression. Further analysis showed that the expression of EphA2 was closely correlated with the depth of tumor invasion, tumor–node–metastasis (TNM) stages and lymph node metastasis. Down-regulated expression of the epithelial protein E-cadherin, overexpression of the mesenchymal protein vimentin and ectopic expression of β-catenin were associated with the depth of tumor invasion, tumor differentiation, TNM stages and lymph node metastasis. The Spearman rank test indicated that the positive expression of EphA2 was negatively associated with E-cadherin expression and was positively correlated with β-catenin ectopic expression and vimentin expression. In addition, the Kaplan–Meier survival analysis showed that the overexpression of EphA2 and vimentin, ectopic expression of β-catenin and down-regulation of E-cadherin indicate a poor outcome. Moreover, multivariate Cox analysis showed that TNM stages, lymph node metastasis, EphA2 expression, E-cadherin expression and β-catenin ectopic expression were independent prognostic factors for postoperative gastric cancer. These findings indicate that the overexpression of EphA2 correlates with the loss of epithelial proteins and the appearance of mesenchymal proteins. Therefore, EphA2 may play a role in epithelial–mesenchymal transition in gastric cancer.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Hohenberger P, Gretschel S. Gastric cancer. Lancet. 2003;362:305–15.

    Article  PubMed  Google Scholar 

  2. Dicken BJ, Bigam DL, Cass C, et al. Gastric adenocarcinoma: review and considerations for future directions. Ann Surg. 2005;241:27–39.

    PubMed  Google Scholar 

  3. Hess AR, Seftor EA, Gardner LM, et al. Molecular regulation of tumor cell vasculogenic mimicry by tyrosine phosphorylation: role of epithelial cell kinase (Eck/EphA2). Cancer Res. 2001;61:3250–5.

    PubMed  CAS  Google Scholar 

  4. Ireton RC. Chen J: EphA2 receptor tyrosine kinase as a promising target for cancer therapeutics. Curr Cancer Drug Targets. 2005;5:149–57.

    Article  PubMed  CAS  Google Scholar 

  5. Lu C, Shahzad MM, Wang H, et al. EphA2 overexpression promotes ovarian cancer growth. Cancer Biol Ther. 2008;7:1098–103.

    Article  PubMed  CAS  Google Scholar 

  6. Yuan W, Chen Z, Wu S, et al. Expression of EphA2 and E-cadherin in gastric cancer: correlated with tumor progression and lymphogenous metastasis. Pathol Oncol Res. 2009;15:473–8.

    Article  PubMed  CAS  Google Scholar 

  7. Thiery JP, Acloque H, Huang RY, et al. Epithelial–mesenchymal transitions in development and disease. Cell. 2009;139:871–90.

    Article  PubMed  CAS  Google Scholar 

  8. Micalizzi DS, Farabaugh SM, Ford HL. Epithelial–mesenchymal transition in cancer: parallels between normal development and tumor progression. J Mammary Gland Biol Neoplasia. 2010;15:117–34.

    Article  PubMed  Google Scholar 

  9. Tomita K, van Bokhoven A, van Leenders GJ, et al. Cadherin switching in human prostate cancer progression. Cancer Res. 2000;60:3650–4.

    PubMed  CAS  Google Scholar 

  10. Schmalhofer O, Brabletz S, Brabletz T. E-cadherin beta-catenin and ZEB1 in malignant progression of cancer. Cancer Metastasis Rev. 2009;28:151–66.

    Article  PubMed  CAS  Google Scholar 

  11. Benjamin JM, Kwiatkowski AV, Yang C, et al. AlphaE-catenin regulates actin dynamics independently of cadherin-mediated cell–cell adhesion. J Cell Biol. 2010;189:339–52.

    Article  PubMed  CAS  Google Scholar 

  12. Micalizzi DS, Farabaugh SM, Ford HL. Epithelial-Mesenchymal Transition in Cancer: Parallels Between Normal Development and Tumor Progression. J Mammary Gland Biol Neoplasia. 2010;15:117–34.

    Article  PubMed  Google Scholar 

  13. Huber MA, Kraut N, Beug H. Molecular requirements for epithelial-mesenchymal transition during tumor progression. Curr Opin Cell Biol. 2005;17:548–58.

    Article  PubMed  CAS  Google Scholar 

  14. Thaker PH, Deavers M, Celestino J, et al. EphA2 expression is associated with aggressive features in ovarian carcinoma. Clin Cancer Res. 2004;10:5145–50.

    Article  PubMed  CAS  Google Scholar 

  15. Lin YG, Han LY, Kamat AA, et al. EphA2 overexpression is associated with angiogenesis in ovarian cancer. Cancer. 2007;109:332–40.

    Article  PubMed  CAS  Google Scholar 

  16. Jawhari A, Jordan S, Poole S, et al. Abnormal immunoreactivity of the E-cadherin-catenin complex in gastric carcinoma: relationship with patient survival. Gastroenterology. 1997;112:46–54.

    Article  PubMed  CAS  Google Scholar 

  17. Zhou Y, Ran J, Tang C. Effect of celecoxib on E-cadherin, VEGF. Microvessel density and apoptosis in gastric cancer. Cancer Biol Ther. 2007;6:269–75.

    PubMed  Google Scholar 

  18. Prudkin L, Liu DD, Ozburn NC, et al. Epithelial–mesenchymal transition in the development and progression of adenocarcinoma and squamous cell carcinoma of the lung. Mod Pathol. 2009;22:668–78.

    Article  PubMed  CAS  Google Scholar 

  19. Yang P, Yuan W, He J, et al. Overexpression of EphA2, MMP-9 and MVD-CD34 in hepatocellular carcinoma: implications for tumor progression and prognosis. Heptol Res. 2009;39:1169–77.

    Article  Google Scholar 

  20. Cui XD, Lee MJ, Yu GR, et al. EFNA1 ligand and its receptor EphA2: potential biomarkers for hepatocellular carcinoma. Int J Cancer. 2010;126:940–9.

    PubMed  CAS  Google Scholar 

  21. Brannan JM, Dong W, Prudkin L, et al. Expression of the receptor tyrosine kinase EphA2 is increased in smokers and predicts poor survival in non-small cell lung cancer. Clin Cancer Res. 2009;15:4423–30.

    Article  PubMed  CAS  Google Scholar 

  22. Wang LF, Fokas E, Bieker M, et al. Increased expression of EphA2 correlates with adverse outcome in primary and recurrent glioblastoma multiforme patients. Oncol Rep. 2008;19:151–6.

    PubMed  Google Scholar 

  23. Kamat AA, Coffey D, Merritt WM, et al. EphA2 overexpression is associated with lack of hormone receptor expression and poor outcome in endometrial cancer. Cancer. 2009;115:2684–92.

    Article  PubMed  Google Scholar 

  24. Merrit WM, Thaker PH, Landen CN Jr, et al. Analysis of EphA2 expression and mutant p53 in ovarian carcinoma. Cancer Biol Ther. 2006;5:1357–60.

    Article  Google Scholar 

  25. Kataoka H, Igarashi H, Kanamori M, et al. Correlation of EPHA2 overexpression with high microvessel count in human primary colorectal cancer. Cancer Sci. 2004;95:136–41.

    Article  PubMed  CAS  Google Scholar 

  26. Guarino M, Rubino B, Ballabio G. The role of epithelial-mesenchymal transition in cancer pathology. Pathology. 2007;39:305–18.

    Article  PubMed  CAS  Google Scholar 

  27. Thiery JP. Epithelial-mesenchymal transition in tumor progression. Nat Rev Cancer. 2002;2:442–54.

    Article  PubMed  CAS  Google Scholar 

  28. Nieto MA. Epithelial–mesenchymal transitions in development and disease: old views and new perspectives. Int J Dev Biol. 2009;53:1541–7.

    Article  PubMed  Google Scholar 

  29. Yilmaz M, Christofori G. EMT, the cytoskeleton, and cancer cell invasion. Cancer Metastasis Rev. 2009;28:15–33.

    Article  PubMed  Google Scholar 

  30. Almeida PR, Ferreira VA, Santos CC, et al. E-cadherin immunoexpression patterns in the characterisation of gastric carcinoma histotypes. J Clin Pathol. 2010;63:635–9.

    Article  PubMed  CAS  Google Scholar 

  31. Zhou Y, Li G, Wu J, et al. Clinicopathological significance of E-cadherin, VEGF, and MMPs in gastric cancer. Tumour Biol. 2010;31:549–58.

    Article  PubMed  CAS  Google Scholar 

  32. Guarino M, Rubino B, Ballabio G. The role of epithelial–mesenchymal transition in cancer pathology. Pathology. 2007;39:305–18.

    Article  PubMed  CAS  Google Scholar 

  33. MacDonald BT, Tamai K, He X. Wnt/beta-catenin signaling: components, mechanisms, and diseases. Dev Cell. 2009;17:9–26.

    Article  PubMed  CAS  Google Scholar 

  34. Liu C, Li Y, Semenov M, et al. Control of beta-catenin phosphorylation/degradation by a dual-kinase mechanism. Cell. 2002;108:837–47.

    Article  PubMed  CAS  Google Scholar 

  35. Song S, Mazurek N, Liu C, et al. Galectin-3 mediates nuclear beta-catenin accumulation and Wnt signaling in human colon cancer cells by regulation of glycogen synthase kinase-3beta activity. Cancer Res. 2009;69:1343–9.

    Article  PubMed  CAS  Google Scholar 

  36. Fukuyama R, Niculaita R, Ng KP, et al. Mutated in colorectal cancer, a putative tumor suppressor for serrated colorectal cancer, selectively represses beta-catenin-dependent transcription. Oncogene. 2008;27:6044–55.

    Article  PubMed  CAS  Google Scholar 

  37. Lovatt M, Bijlmakers MJ. Stabilisation of β-catenin downstream of T cell receptor signaling. PLoS One. 2010;5:e12794.

    Article  PubMed  Google Scholar 

  38. Wang Q, Sun ZX, Allgayer H, et al. Downregulation of E-cadherin is an essential event in activating beta-catenin/Tcf-dependent transcription and expression of its target genes in Pdcd4 knockdown cells. Oncogene. 2010;29:128–38.

    Article  PubMed  Google Scholar 

  39. Miyazawa K, Iwaya K, Kroda M, et al. Nuclear accumulation of beta-catenin in intestinal-type gastric carcinoma: correlation with early tumor invasion. Virchows Arch. 2000;437:508–13.

    Article  PubMed  CAS  Google Scholar 

  40. Zhou YN, Xu CP, Han B, et al. Expression of E-cadherin and beta-catenin in gastric carcinoma and its correlation with the clinicopathological features and patient survival. World J Gastroenterol. 2002;8:987–93.

    PubMed  CAS  Google Scholar 

  41. Wong SC, Lo ES, Lee KC, et al. Prognostic and diagnostic significance of beta-catenin nuclear immunostaining in colorectal cancer. Clin Cancer Res. 2004;10:1401–8.

    Article  PubMed  CAS  Google Scholar 

  42. Hsu HP, Shan YS, Jin YT, et al. Loss of E-cadherin and beta-catenin is correlated with poor prognosis of ampullary neoplasms. J Surg Oncol. 2010;101:356–62.

    PubMed  Google Scholar 

  43. Kim MA, Lee HS, Lee HE, et al. Prognostic importance of epithelial-mesenchymal transition-related protein expression in gastric carcinoma. Histopathology. 2009;54:442–51.

    Article  PubMed  Google Scholar 

  44. Fuyuhiro Y, Yashiro M, Noda S, et al. Clinical significance of vimentin-positive gastric cancer cells. Anticancer Res. 2010;30:5239–43.

    PubMed  Google Scholar 

  45. Polette M, Gilles C, de Bentzmann S, et al. Association of fibroblastoid features with the invasive phenotype in human bronchial cancer cell lines. Clin Exp Metastasis. 1998;16:105–12.

    Article  PubMed  CAS  Google Scholar 

  46. Gilles C, Polette M, Mestdagt M, et al. Transactivation of vimentin by beta-catenin in human breast cancer cells. Cancer Res. 2003;63:2658–64.

    PubMed  CAS  Google Scholar 

  47. Fang WB, Ireton RC, Zhuang G, et al. Overexpression of EPHA2 receptor destabilizes adherens junctions via a RhoA-dependent mechanism. J Cell Sci. 2008;121:358–68.

    Article  PubMed  CAS  Google Scholar 

  48. Hess AR, Seftor EA, Gruman LM, et al. VE-cadherin regulates EphA2 in aggressive melanoma cells through a novel signaling pathway: implications for vasculogenic mimicry. Cancer Biol Ther. 2006;5:228–33.

    Article  PubMed  CAS  Google Scholar 

  49. Yuan WJ, Ge J, Chen ZK, et al. Over-expression of EphA2 and EphrinA-1 in human gastric adenocarcinoma and its prognostic value for postoperative patients. Dig Dis Sci. 2009;54:2410–7.

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This study was supported by the National Nature Foundation of China (No. 81172297).

Conflict of interest

None.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zihua Chen.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hou, F., Yuan, W., Huang, J. et al. Overexpression of EphA2 correlates with epithelial–mesenchymal transition-related proteins in gastric cancer and their prognostic importance for postoperative patients. Med Oncol 29, 2691–2700 (2012). https://doi.org/10.1007/s12032-011-0127-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12032-011-0127-2

Keywords

Navigation