Skip to main content
Log in

A New Positive/Negative Selection Scheme for Precise BAC Recombineering

  • Research
  • Published:
Molecular Biotechnology Aims and scope Submit manuscript

Abstract

Recombineering technology allows the modification of large DNA constructs without using restriction enzymes, enabling the use of bacterial artificial chromosomes (BACs) in genetic engineering of animals and plants as well as in the studies of structures and functions of chromosomal elements in DNA replication and transcription. Here, we report a new selection scheme of BAC recombineering. A dual kanamycin and streptomycin selection marker was constructed using the kanamycin resistance gene and bacterial rpsL + gene. Recombination cassettes generated using this dual marker was used to make precise modifications in BAC constructs in a two-step procedure without leaving behind any unwanted sequences. The dual marker was first inserted into the site of modifications by positive selection of kanamycin resistance. In the second step, the counter-selection of streptomycin sensitivity resulted in the replacement of the dual marker with intended modified sequences. This method of BAC modification worked as efficiently as the previously reported galK method and provided a faster and more cost-effective alternative to the galK method.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Heintz, N. (2001). BAC to the future: The use of bac transgenic mice for neuroscience research. Nature Reviews. Neuroscience, 2(12), 861–870. doi:10.1038/35104049.

    Article  CAS  Google Scholar 

  2. Muyrers, J. P., Zhang, Y., & Stewart, A. F. (2001). Techniques: Recombinogenic engineering—New options for cloning and manipulating DNA. Trends in Biochemical Sciences, 26(5), 325–331. doi:10.1016/S0968-0004(00)01757-6.

    Article  CAS  Google Scholar 

  3. Tsyrulnyk, A., & Moriggl, R. (2008). A detailed protocol for bacterial artificial chromosome recombineering to study essential genes in stem cells. Methods in Molecular Biology (Clifton, N.J.), 430, 269–293. doi:10.1007/978-1-59745-182-6-19.

    Article  CAS  Google Scholar 

  4. Poser, I., Sarov, M., Hutchins, J. R., Heriche, J. K., Toyoda, Y., Pozniakovsky, A., et al. (2008). BAC TransgeneOmics: A high-throughput method for exploration of protein function in mammals. Nature Methods, 5(5), 409–415. doi:10.1038/nmeth.1199.

    Article  CAS  Google Scholar 

  5. Zhang, Y., Buchholz, F., Muyrers, J. P., & Stewart, A. F. (1998). A new logic for DNA engineering using recombination in Escherichia coli. Nature Genetics, 20(2), 123–128. doi:10.1038/2417.

    Article  CAS  Google Scholar 

  6. Copeland, N. G., Jenkins, N. A., & Court, D. L. (2001). Recombineering: A powerful new tool for mouse functional genomics. Nature Reviews. Genetics, 2(10), 769–779. doi:10.1038/35093556.

    Article  CAS  Google Scholar 

  7. Muyrers, J. P., Zhang, Y., Benes, V., Testa, G., Ansorge, W., & Stewart, A. F. (2000). Point mutation of bacterial artificial chromosomes by ET recombination. EMBO Reports, 1(3), 239–243. doi:10.1093/embo-reports/kvd049.

    Article  CAS  Google Scholar 

  8. Lee, E. C., Yu, D., Martinez de Velasco, J., Tessarollo, L., Swing, D. A., Court, D. L., et al. (2001). A highly efficient Escherichia coli-based chromosome engineering system adapted for recombinogenic targeting and subcloning of BAC DNA. Genomics, 73(1), 56–65. doi:10.1006/geno.2000.6451.

    Article  CAS  Google Scholar 

  9. Yu, D., Ellis, H. M., Lee, E. C., Jenkins, N. A., Copeland, N. G., & Court, D. L. (2000). An efficient recombination system for chromosome engineering in Escherichia coli. Proceedings of the National Academy of Sciences of the United States of America, 97(11), 5978–5983. doi:10.1073/pnas.100127597.

    Article  CAS  Google Scholar 

  10. Hegde, S., & Paulson, R. F. (2004). Co-targeting a selectable marker to the Escherichia coli chromosome improves the recovery rate for mutations induced in BAC clones by homologous recombination. BioTechniques, 936–938(6), 940.

    Google Scholar 

  11. Sopher, B. L., & La Spada, A. R. (2006). Efficient recombination-based methods for bacterial artificial chromosome fusion and mutagenesis. Gene, 371(1), 136–143. doi:10.1016/j.gene.2005.11.034.

    Article  CAS  Google Scholar 

  12. Rivero-Muller, A., Lajic, S., & Huhtaniemi, I. (2007). Assisted large fragment insertion by Red/ET-recombination (ALFIRE)—An alternative and enhanced method for large fragment recombineering. Nucleic Acids Research, 35(10), e78. doi:10.1093/nar/gkm250.

    Article  Google Scholar 

  13. Warming, S., Costantino, N., Court, D. L., Jenkins, N. A., & Copeland, N. G. (2005). Simple and highly efficient BAC recombineering using galK selection. Nucleic Acids Research, 33(4), e36. doi:10.1093/nar/gni035.

    Article  Google Scholar 

  14. Sambrook, J., & Russell, D. W. (2001). Molecular cloning, a laboratory manual (3rd ed.). Cold Spring Harbor, New York: Cold Spring Harbor Laboratory Press.

    Google Scholar 

  15. Stavropoulos, T. A., & Strathdee, C. A. (2001). Synergy between tetA and rpsL provides high-stringency positive and negative selection in bacterial artificial chromosome vectors. Genomics, 72(1), 99–104. doi:10.1006/geno.2000.6481.

    Article  CAS  Google Scholar 

  16. Wang, S., Hu, C., & Zhu, J. (2007). Transcriptional silencing of a novel hTERT reporter locus during in vitro differentiation of mouse embryonic stem cells. Molecular Biology of the Cell, 18(2), 669–677. doi:10.1091/mbc.E06-09-0840.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

DY380 recombineering system was kindly provided by the Copeland laboratory at National Cancer Institute, Frederick, MD. We thank Dr. Renjith Mathew for critical review of the manuscript. The study was supported in part by NIH grant GM071725. JZ is a Research Scholar of American Cancer Society. The authors declare no competing interests.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jiyue Zhu.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wang, S., Zhao, Y., Leiby, M. et al. A New Positive/Negative Selection Scheme for Precise BAC Recombineering. Mol Biotechnol 42, 110–116 (2009). https://doi.org/10.1007/s12033-009-9142-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12033-009-9142-3

Keywords

Navigation