Skip to main content

Advertisement

Log in

Mitochondrial DNA Mutation-Elicited Oxidative Stress, Oxidative Damage, and Altered Gene Expression in Cultured Cells of Patients with MERRF Syndrome

  • Published:
Molecular Neurobiology Aims and scope Submit manuscript

Abstract

Myoclonic epilepsy and ragged-red fibers (MERRF) syndrome is a rare disorder characterized by myoclonus, muscle weakness, cerebellar ataxia, heart conduction block, and dementia. It has been documented that 80–90% of the patients with MERRF syndrome are caused by the A8344G mutation in the tRNALys gene of mitochondrial DNA (mtDNA). We and other investigators have reported that the mtDNA mutation results in not only inefficient generation of adenosine triphosphate but also increased production of reactive oxygen species (ROS) in cultured cells harboring A8344G mutation of mtDNA. In addition, we found an imbalance in the gene expression of antioxidant enzymes in the skin fibroblasts of MERRF patients. The mRNA, protein, and enzyme activity levels of manganese-superoxide dismutase were increased, but those of Cu,Zn-SOD, catalase, and glutathione peroxidase did not show significant changes. Recently, we showed that the excess ROS could damage voltage-dependent anion channel, prohibitin, Lon protease, and aconitase in the MERRF cells. Moreover, there was a dramatic increase in the gene expression and activity of matrix metalloproteinase 1, which may contribute to the cytoskeleton remodeling involved in the weakness and atrophy of muscle commonly seen in MERRF patients. Taken together, we suggest that mtDNA mutation-elicited oxidative stress, oxidative damage, and altered gene expression are involved in the pathogenesis and progression of MERRF syndrome.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Wallace DC (1999) Mitochondrial diseases in man and mouse. Science 283:1482–1488

    Article  CAS  PubMed  Google Scholar 

  2. Schapira AH (2006) Mitochondrial disease. Lancet 368:70–82

    Article  CAS  PubMed  Google Scholar 

  3. Morgan-Hughes JA, Hanna MG (1999) Mitochondrial encephalomyopathies: the enigma of genotype versus phenotype. Biochim Biophys Acta 1410:125–145

    Article  CAS  PubMed  Google Scholar 

  4. Wei YH, Lee HC (2003) Mitochondrial DNA mutations and oxidative stress in mitochondrial diseases. Adv Clin Chem 37:83–128

    Article  CAS  PubMed  Google Scholar 

  5. Zeviani M, Spinazzola A (2003) Mitochondrial disorders. Curr Neurol Neurosci Rep 3:423–432

    Article  PubMed  Google Scholar 

  6. Ozawa T (1995) Mitochondrial DNA mutations associated with aging and degenerative diseases. Exp Gerontol 130:269–290

    Article  Google Scholar 

  7. James AM, Wei YH, Pang CY, Murphy MP (1996) Altered mitochondrial function in fibroblasts containing MELAS or MERRF mitochondrial DNA mutations. Biochem J 318:401–407

    CAS  PubMed  Google Scholar 

  8. James AM, Sheard PW, Wei YH, Murphy MP (1999) Decreased ATP synthesis is phenotypically expressed during increased energy demand in fibroblasts containing mitochondrial tRNA mutations. Eur J Biochem 259:462–469

    Article  CAS  PubMed  Google Scholar 

  9. Shoffner JM, Lott MT, Lezza AM, Seibel P, Ballinger SW, Wallace DC (1990) Myoclonic epilepsy and ragged-red fiber disease (MERRF) is associated with a mitochondrial DNA tRNALys mutation. Cell 61:931–937

    Article  CAS  PubMed  Google Scholar 

  10. Wallace DC, Zheng XX, Lott MT, Shoffner JM, Hodge JA, Kelley RI, Epstein CM, Hopkins LC (1988) Familial mitochondrial encephalomyopathy (MERRF): genetic, pathophysiological, and biochemical characterization of a mitochondrial DNA disease. Cell 55:601–610

    Article  CAS  PubMed  Google Scholar 

  11. Erol I, Alehan F, Horvath R, Schneiderat P, Talim B (2009) Demyelinating disease of central and peripheral nervous systems associated with a A8344G mutation in tRNALys. Neuromuscul Disord 19:275–278

    Article  CAS  PubMed  Google Scholar 

  12. Ozawa M, Goto Y, Sakuta R, Tanno Y, Tsuji S, Nonaka I (1995) The 8,344 mutation in mitochondrial DNA: a comparison between the proportion of mutant DNA and clinico-pathologic findings. Neuromuscul Disord 5:483–488

    Article  CAS  PubMed  Google Scholar 

  13. Virgilio R, Ronchi D, Bordoni A, Fassone E, Bonato S, Donadoni C, Torgano G, Moggio M, Corti S, Bresolin N, Comi GP (2009) Mitochondrial DNA G8363A mutation in the tRNALys gene: clinical, biochemical and pathological study. J Neurol Sci 281:85–92, Review

    Article  CAS  PubMed  Google Scholar 

  14. Blakely EL, Trip SA, Swalwell H, He L, Wren DR, Rich P, Turnbull DM, Omer SE, Taylor RW (2009) A new mitochondrial transfer RNAPro gene mutation associated with myoclonic epilepsy with ragged-red fibers and other neurological features. Arch Neurol 66:399–402

    Article  PubMed  Google Scholar 

  15. Ma YS, Chen YC, Lu CY, Liu CY, Wei YH (2005) Upregulation of matrix metalloproteinase 1 and disruption of mitochondrial network in skin fibroblasts of patients with MERRF syndrome. Ann NY Acad Sci 1042:55–63

    Article  CAS  PubMed  Google Scholar 

  16. Barghuti F, Elian K, Gomori JM, Shaag A, Edvardson S, Saada A, Elpeleg O (2008) The unique neuroradiology of complex I deficiency due to NDUFA12L defect. Mol Genet Meta 94:78–82

    Article  CAS  Google Scholar 

  17. Mancuso M, Orsucci D, Logerfo A, Rocchi A, Petrozzi L, Nesti C, Galetta F, Santoro G, Murri L, Siciliano G (2010) Oxidative stress biomarkers in mitochondrial myopathies, basally and after cysteine donor supplementation. J Neurol (in press)

  18. Katayama Y, Maeda K, Iizuka T, Hayashi M, Hashizume Y, Sanada M, Kawai H, Kashiwagi A (2009) Accumulation of oxidative stress around the stroke-like lesions of MELAS patients. Mitochondrion 9:306–313

    Article  CAS  PubMed  Google Scholar 

  19. Nohl H, Hegner D (1978) Do mitochondria produce oxygen radicals in vivo? Eur J Biochem 82:563–567

    Article  CAS  PubMed  Google Scholar 

  20. Richter C, Gogvadze V, Laffranchi R, Schlapbach R, Schweizer M, Suter M, Walter P, Yaffee M (1995) Oxidants in mitochondria: from physiology to diseases. Biochim Biophys Acta 1271:67–74

    PubMed  Google Scholar 

  21. Fridovich I (1997) Superoxide anion radicals, superoxide dismutases, and related matters. J Biol Chem 272:18515–18517

    Article  CAS  PubMed  Google Scholar 

  22. Piccolo G, Banfi P, Azan G, Rizzuto R, Bisson R, Sandona D, Bellomo G (1991) Biological markers of oxidative stress in mitochondrial myopathies with progressive external ophthalmoplegia. J Neurol Sci 105:57–60

    Article  CAS  PubMed  Google Scholar 

  23. Smits P, Mattijssen S, Morava E, van den Brand M, van den Brandt F, Wijburg F, Pruijn G, Smeitink J, Nijtmans L, Rodenburg R, van den Heuvel L (2010) Functional consequences of mitochondrial tRNATrp and tRNAArg mutations causing combined OXPHOS defects. Eur J Hum Genet 18:324–329

    Article  CAS  PubMed  Google Scholar 

  24. Mahata B, Mukherjee S, Mishra S, Bandyopadhyay A, Adhya S (2006) Functional delivery of a cytosolic tRNA into mutant mitochondria of human cells. Science 314:471–474

    Article  CAS  PubMed  Google Scholar 

  25. Chevallet M, Lescuyer P, Diemer H, van Dorsselaer A, Leize-Wagner E, Rabilloud T (2006) Alterations of the mitochondrial proteome caused by the absence of mitochondrial DNA: a proteomic view. Electrophoresis 27:1574–1583

    Article  CAS  PubMed  Google Scholar 

  26. Bacman SR, Atencio DP, Moraes CT (2003) Decreased mitochondrial tRNALys steady-state levels and aminoacylation are associated with the pathogenic G8313A mitochondrial DNA mutation. Biochem J 15:131–136

    Article  Google Scholar 

  27. Murata T, Ohtsuka C, Terayama Y (2008) Increased mitochondrial oxidative damage and oxidative DNA damage contributes to the neurodegenerative process in sporadic amyotrophic lateral sclerosis. Free Radic Res 42:221–225

    Article  CAS  PubMed  Google Scholar 

  28. Masucci JP, Schon EA, King MP (1997) Point mutations in the mitochondrial tRNALys gene: implications for pathogenesis and mechanism. Mol Cell Biochem 174:215–219

    Article  CAS  PubMed  Google Scholar 

  29. Danielson SR, Wong A, Carelli V, Martinuzzi A, Schapira AH, Cortopassi GA (2002) Cells bearing mutations causing Leber's hereditary optic neuropathy are sensitized to Fas-induced apoptosis. J Biol Chem 277:5810–5815

    Article  CAS  PubMed  Google Scholar 

  30. Liu CY, Lee CF, Wei YH (2009) Activation of PKCdelta and ERK1/2 in the sensitivity to UV-induced apoptosis of human cells harboring 4977 bp deletion of mitochondrial DNA. Biochim Biophys Acta 1792:783–790

    CAS  PubMed  Google Scholar 

  31. Liu CY, Lee CF, Wei YH (2007) Quantitative effect of 4977 bp deletion of mitochondrial DNA on the susceptibility of human cells to UV-induced apoptosis. Mitochondrion 7:89–95

    Article  CAS  PubMed  Google Scholar 

  32. Plecitá-Hlavatá L, Jezek J, Jezek P (2009) Pro-oxidant mitochondrial matrix-targeted ubiquinone MitoQ10 acts as anti-oxidant at retarded electron transport or proton pumping within complex I. Int J Biochem Cell Biol 41:1697–1707

    Article  PubMed  Google Scholar 

  33. Chen Y, McMillan-Ward E, Kong J, Israels SJ, Gibson SB (2007) Mitochondrial electron-transport-chain inhibitors of complexes I and II induce autophagic cell death mediated by reactive oxygen species. J Cell Sci 120:4155–4166

    Article  CAS  PubMed  Google Scholar 

  34. Indo HP, Davidson M, Yen HC, Suenaga S, Tomita K, Nishii T, Higuchi M, Koga Y, Ozawa T, Majima HJ (2007) Evidence of ROS generation by mitochondria in cells with impaired electron transport chain and mitochondrial DNA damage. Mitochondrion 7:106–118

    Article  CAS  PubMed  Google Scholar 

  35. Rusanen H, Majamaa K, Hassinen IE (2000) Increased activities of antioxidant enzymes and decreased ATP concentration in cultured myoblasts with the A3243G mutation in mitochondrial DNA. Biochim Biophys Acta 1500:10–16

    CAS  PubMed  Google Scholar 

  36. Wani AA, Rangrez AY, Kumar H, Bapat SA, Suresh CG, Barnabas S, Patole MS, Shouche YS (2008) Analysis of reactive oxygen species and antioxidant defenses in complex I deficient patients revealed a specific increase in superoxide dismutase activity. Free Radic Res 42:415–427

    Article  CAS  PubMed  Google Scholar 

  37. Babu GN, Kumar A, Chandra R, Puri SK, Singh RL, Kalita J, Misra UK (2008) Oxidant–antioxidant imbalance in the erythrocytes of sporadic amyotrophic lateral sclerosis patients correlates with the progression of disease. Neurochem Int 52:1284–1289

    Article  CAS  PubMed  Google Scholar 

  38. Nikolić-Kokić A, Stević Z, Blagojević D, Davidović B, Jones DR, Spasić MB (2006) Alterations in anti-oxidative defence enzymes in erythrocytes from sporadic amyotrophic lateral sclerosis (SALS) and familial ALS patients. Clin Chem Lab Med 44:589–593

    Article  PubMed  Google Scholar 

  39. Lu CY, Wang EK, Lee HC, Tsay HJ, Wei YH (2003) Increased expression of manganese-superoxide dismutase in fibroblasts of patients with CPEO syndrome. Mol Genet Metab 80:321–329

    Article  CAS  PubMed  Google Scholar 

  40. Kunishige M, Mitsui T, Akaike M, Kawajiri M, Shono M, Kawai H, Matsumoto T (2003) Overexpressions of myoglobin and antioxidant enzymes in ragged-red fibers of skeletal muscle from patients with mitochondrial encephalomyopathy. Muscle Nerve 28:484–492

    Article  CAS  PubMed  Google Scholar 

  41. Tretter L, Adam-Vizi V (2000) Inhibition of Krebs cycle enzymes by hydrogen peroxide: a key role of α-ketoglutarate dehydrogenase in limiting NADH production under oxidative stress. J Neurosci 20:8972–8979

    CAS  PubMed  Google Scholar 

  42. Conrad CC, Choi J, Malakowsky CA, Talent JM, Dai R, Marshall P, Gracy RW (2001) Identification of protein carbonyls after two-dimensional electrophoresis. Proteomics 1:829–834

    Article  CAS  PubMed  Google Scholar 

  43. Korolainen MA, Goldsteins G, Nyman TA, Alafuzoff I, Koistinaho J, Pirttilä T (2006) Oxidative modification of proteins in the frontal cortex of Alzheimer's disease brain. Neurobiol Aging 27:42–53

    Article  CAS  PubMed  Google Scholar 

  44. Rustin P, Bourgeron T, Parfait B, Chretien D, Munnich A, Rötig A (1997) Inborn errors of the Krebs cycle: a group of unusual mitochondrial diseases in human. Biochim Biophys Acta 136:185–197, Review

    Google Scholar 

  45. Faff-Michalak L, Albrecht J (1993) Hyperammonemia and hepatic encephalopathy stimulate rat cerebral synaptic mitochondrial glutamate dehydrogenase activity specifically in the direction of glutamate oxidation. Brain Res 618:299–302

    Article  CAS  PubMed  Google Scholar 

  46. McKenna MC, Stevenson JH, Huang X, Hopkins IB (2000) Differential distribution of the enzymes glutamate dehydrogenase and aspartate aminotransferase in cortical synaptic mitochondria contributes to metabolic compartmentation in cortical synaptic terminals. Neurochem Int 37:229–241, Review

    Article  CAS  PubMed  Google Scholar 

  47. Opii WO, Nukala VN, Sultana R, Pandya JD, Day KM, Merchant ML, Klein JB, Sullivan PG, Butterfield DA (2007) Proteomic identification of oxidized mitochondrial proteins following experimental traumatic brain injury. J Neurotrauma 24:772–789

    Article  PubMed  Google Scholar 

  48. Tabatabaie T, Potts JD, Floyd RA (1996) Reactive oxygen species-mediated inactivation of pyruvate dehydrogenase. Arch Biochem Biophys 336:290–296

    Article  CAS  PubMed  Google Scholar 

  49. Matthews PM, Brown RM, Otero LJ, Marchington DR, LeGris M, Howes R, Meadows LS, Shevell M, Scriver CR, Brown GK (1994) Pyruvate dehydrogenase deficiency: clinical presentation and molecular genetic characterization of five new patients. Brain 117:435–443

    Article  PubMed  Google Scholar 

  50. Quintana E, Mayr JA, García Silva MT, Font A, Tortoledo MA, Moliner S, Ozaez L, Lluch M, Cabello A, Ricoy JR, Koch J, Ribes A, Sperl W, Briones P (2010) PDH-E(1)beta deficiency with novel mutations in two patients with Leigh syndrome. J Inherit Metab Dis (in press)

  51. Ferrer I (2009) Altered mitochondria, energy metabolism, voltage-dependent anion channel, and lipid rafts converge to exhaust neurons in Alzheimer's disease. J Bioenerg Biomembr 41:425–431

    Article  CAS  PubMed  Google Scholar 

  52. Nijtmans LG, Artal SM, Grivell LA, Coates PJ (2002) The mitochondrial PHB complex: roles in mitochondrial respiratory complex assembly, ageing and degenerative disease. Cell Mol Life Sci 59:143–155

    Article  CAS  PubMed  Google Scholar 

  53. Osman C, Merkwirth C, Langer T (2009) Prohibitins and the functional compartmentalization of mitochondrial membranes. J Cell Sci 122:3823–3830

    Article  CAS  PubMed  Google Scholar 

  54. Schleicher M, Shepherd BR, Suarez Y, Fernandez-Hernando C, Yu J, Pan Y, Acevedo LM, Shadel GS, Sessa WC (2008) Prohibitin-1 maintains the angiogenic capacity of endothelial cells by regulating mitochondrial function and senescence. J Cell Biol 180:101–112

    Article  CAS  PubMed  Google Scholar 

  55. Lill R (2009) Function and biogenesis of iron–sulphur proteins. Nature 460:831–838, Review

    Article  CAS  PubMed  Google Scholar 

  56. Ma YS, Wu SB, Lee WY, Cheng JS, Wei YH (2009) Response to the increase of oxidative stress and mutation of mitochondrial DNA in aging. Biochim Biophys Acta 1790:1021–1029

    CAS  PubMed  Google Scholar 

  57. Gardner PR (1997) Superoxide-driven aconitase Fe–S center cycling. Biosci Rep 17:33–42

    Article  CAS  PubMed  Google Scholar 

  58. Cantu D, Schaack J, Patel M (2009) Oxidative inactivation of mitochondrial aconitase results in iron and H2O2-mediated neurotoxicity in rat primary mesencephalic cultures. PLoS One 4:e7095

    Article  PubMed  Google Scholar 

  59. Sorolla MA, Reverter-Branchat G, Tamarit J, Ferrer I, Ros J, Cabiscol E (2008) Proteomic and oxidative stress analysis in human brain samples of Huntington disease. Free Radic Biol Med 45:667–678

    Article  CAS  PubMed  Google Scholar 

  60. Stanyer L, Jorgensen W, Hori O, Clark JB, Heales SJ (2008) Inactivation of brain mitochondrial Lon protease by peroxynitrite precedes electron transport chain dysfunction. Neurochem Int 53:95–101

    Article  CAS  PubMed  Google Scholar 

  61. Li K, Besse EK, Ha D, Kovtunovych G, Rouault TA (2008) Iron-dependent regulation of frataxin expression: implications for treatment of Friedreich ataxia. Hum Mol Genet 17:2265–2273

    Article  CAS  PubMed  Google Scholar 

  62. Tong WH, Rouault TA (2006) Functions of mitochondrial ISCU and cytosolic ISCU in mammalian iron–sulfur cluster biogenesis and iron homeostasis. Cell Metab 3:199–210

    Article  CAS  PubMed  Google Scholar 

  63. Castegna A, Aksenov M, Thongboonkerd V, Klein JB, Pierce WM, Booze R, Markesbery WR, Butterfield DA (2002) Proteomic identification of oxidatively modified proteins in Alzheimer's disease brain. Part II: dihydropyrimidinase-related protein 2, alpha-enolase and heat shock cognate 71. J Neurochem 82:1524–1532

    Article  CAS  PubMed  Google Scholar 

  64. Díez-Vives C, Gay M, García-Matas S, Comellas F, Carrascal M, Abian J, Ortega-Aznar A, Cristòfol R, Sanfeliu C (2009) Proteomic study of neuron and astrocyte cultures from senescence-accelerated mouse SAMP8 reveals degenerative changes. J Neurochem 111(4):945–955

    Article  PubMed  Google Scholar 

  65. Dukes AA, Van Laar VS, Cascio M, Hastings TG (2008) Changes in endoplasmic reticulum stress proteins and aldolase A in cells exposed to dopamine. J Neurochem 106:333–346

    Article  CAS  PubMed  Google Scholar 

  66. Basso M, Giraudo S, Corpillo D, Bergamasco B, Lopiano L, Fasano M (2004) Proteome analysis of human substantia nigra in Parkinson's disease. Proteomics 4:3943–3952

    Article  CAS  PubMed  Google Scholar 

  67. Bota DA, Davies KJ (2002) Lon protease preferentially degrades oxidized mitochondrial aconitase by an ATP-stimulated mechanism. Nat Cell Biol 4:674–680

    Article  CAS  PubMed  Google Scholar 

  68. Guillon B, Bulteau AL, Wattenhofer-Donzé M, Schmucker S, Friguet B, Puccio H, Drapier JC, Bouton C (2009) Frataxin deficiency causes upregulation of mitochondrial Lon and ClpP proteases and severe loss of mitochondrial Fe–S proteins. FEBS J 276:1036–1047

    Article  CAS  PubMed  Google Scholar 

  69. Ngo JK, Davies KJ (2009) Mitochondrial Lon protease is a human stress protein. Free Radic Biol Med 46:1042–1048

    Article  CAS  PubMed  Google Scholar 

  70. Bulteau AL, Lundberg KC, Ikeda-Saito M, Isaya G, Szweda LI (2005) Reversible redox-dependent modulation of mitochondrial aconitase and proteolytic activity during in vivo cardiac ischemia/reperfusion. Proc Natl Acad Sci USA 102:5987–5991

    Article  CAS  PubMed  Google Scholar 

  71. Groenendyk J, Michalak M (2005) Endoplasmic reticulum quality control and apoptosis. Acta Biochim Pol 52:381–395, Review

    CAS  PubMed  Google Scholar 

  72. Ferrari DM, Van Nguyen P, Kratzin HD, Söling HD (1998) ERp28, a human endoplasmic-reticulum-lumenal protein, is a member of the protein disulfide isomerase family but lacks a CXXC thioredoxin-box motif. Eur J Biochem 255(3):570–579

    Article  CAS  PubMed  Google Scholar 

  73. Ikeda J, Kaneda S, Kuwabara K, Ogawa S, Kobayashi T, Matsumoto M, Yura T, Yanagi H (1997) Cloning and expression of cDNA encoding the human 150 kDa oxygen-regulated protein, ORP150. Biochem Biophys Res Commun 230:94–99

    Article  CAS  PubMed  Google Scholar 

  74. Liu J, Roughley PJ, Mort JS (1991) Identification of human intervertebral disc stromelysin and its involvement in matrix degradation. J Orthop Res 9:568–575

    Article  CAS  PubMed  Google Scholar 

  75. Rosenberg GA (2009) Matrix metalloproteinases and their multiple roles in neurodegenerative diseases. Lancet Neurol 8:205–216

    Article  CAS  PubMed  Google Scholar 

  76. Brenneisen P, Briviba K, Wlaschek M, Wenk J, Scharffetter-Kochanek K (1997) Hydrogen peroxide increases the steady-state mRNA levels of collagenase/MMP-1 in human dermal fibroblasts. Free Radic Biol Med 22:515–524

    Article  CAS  PubMed  Google Scholar 

  77. Svineng G, Ravuri C, Rikardsen O, Huseby NE, Winberg JO (2008) The role of reactive oxygen species in integrin and matrix metalloproteinase expression and function. Connect Tissue Res 49:197–202

    Article  CAS  PubMed  Google Scholar 

  78. Lijnen P, Petrov V, van Pelt J, Fagard R (2008) Inhibition of superoxide dismutase induces collagen production in cardiac fibroblasts. Am J Hypertens 221:1129–1136

    Article  Google Scholar 

  79. Nelson KK, Melendez JA (2004) Mitochondrial redox control of matrix metalloproteinases. Free Radic Biol Med 37:768–784

    Article  CAS  PubMed  Google Scholar 

  80. Calabrese V, Guagliano E, Sapienza M, Panebianco M, Calafato S, Puleo E, Pennisi G, Mancuso C, Butterfield DA, Stella AG (2007) Redox regulation of cellular stress response in aging and neurodegenerative disorders: role of vitagenes. Neurochem Res 32:757–773

    Article  CAS  PubMed  Google Scholar 

  81. Antonická H, Floryk D, Klement P, Stratilová L, Hermanská J, Houstková H, Kalous M, Drahota Z, Zeman J, Houstek J (1999) Defective kinetics of cytochrome c oxidase and alteration of mitochondrial membrane potential in fibroblasts and cytoplasmic hybrid cells with the mutation for myoclonus epilepsy with ragged-red fibres (MERRF) at position 8344 nt. Biochem J 3:537–544

    Article  Google Scholar 

  82. Wei YH, Lu CY, Wei CY, Ma YS, Lee HC (2001) Oxidative stress in human aging and mitochondrial disease—consequences of defective mitochondrial respiration and impaired antioxidant enzyme system. Chin J Physiol 44:1–11

    CAS  PubMed  Google Scholar 

  83. Liu CY, Lee CF, Wei YH (2009) Role of reactive oxygen species-elicited apoptosis in the pathophysiology of mitochondrial and neurodegenerative diseases associated with mitochondrial DNA mutations. J Formos Med Assoc 108:599–611

    Article  CAS  PubMed  Google Scholar 

  84. Lu B, Yadav S, Shah PG, Liu T, Tian B, Pukszta S, Villaluna N, Kutejová E, Newlon CS, Santos JH, Suzuki CK (2007) Roles for the human ATP-dependent Lon protease in mitochondrial DNA maintenance. J Biol Chem 282:17363–17374

    Article  CAS  PubMed  Google Scholar 

  85. Luce K, Osiewacz HD (2009) Increasing organismal healthspan by enhancing mitochondrial protein quality control. Nat Cell Biol 211:852–888

    Article  Google Scholar 

  86. Nelson KK, Subbaram S, Connor KM, Dasgupta J, Ha XF, Meng TC, Tonks NK, Melendez JA (2006) Redox-dependent matrix metalloproteinase-1 expression is regulated by JNK through Ets and AP-1 promoter motifs. J Biol Chem 281:14100–14110

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

The data reported in this article are the results of studies supported by research grants from the National Science Council (NSC96-2320-B-010-006 and NSC97-2320 -B-010-013-MY3), Executive Yuan, Taiwan. We wish to thank the Nation Science Council of Taiwan for long-term support of the studies on mitochondrial dysfunction and mtDNA mutations in the pathophysiology of mitochondrial diseases.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yau-Huei Wei.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wu, SB., Ma, YS., Wu, YT. et al. Mitochondrial DNA Mutation-Elicited Oxidative Stress, Oxidative Damage, and Altered Gene Expression in Cultured Cells of Patients with MERRF Syndrome. Mol Neurobiol 41, 256–266 (2010). https://doi.org/10.1007/s12035-010-8123-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12035-010-8123-7

Keyword

Navigation