Skip to main content

Advertisement

Log in

The Ubiquitin-Proteasome System and Molecular Chaperone Deregulation in Alzheimer’s Disease

  • Published:
Molecular Neurobiology Aims and scope Submit manuscript

Abstract

One of the shared hallmarks of neurodegenerative diseases is the accumulation of misfolded proteins. Therefore, it is suspected that normal proteostasis is crucial for neuronal survival in the brain and that the malfunction of this mechanism may be the underlying cause of neurodegenerative diseases. The accumulation of amyloid plaques (APs) composed of amyloid-beta peptide (Aβ) aggregates and neurofibrillary tangles (NFTs) composed of misfolded Tau proteins are the defining pathological markers of Alzheimer’s disease (AD). The accumulation of these proteins indicates a faulty protein quality control in the AD brain. An impaired ubiquitin-proteasome system (UPS) could lead to negative consequences for protein regulation, including loss of function. Another pivotal mechanism for the prevention of misfolded protein accumulation is the utilization of molecular chaperones. Molecular chaperones, such as heat shock proteins (HSPs) and FK506-binding proteins (FKBPs), are highly involved in protein regulation to ensure proper folding and normal function. In this review, we elaborate on the molecular basis of AD pathophysiology using recent data, with a particular focus on the role of the UPS and molecular chaperones as the defensive mechanism against misfolded proteins that have prion-like properties. In addition, we propose a rational therapy approach based on this mechanism.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Abbreviations

aa:

Amino acid

AD:

Alzheimer’s disease

ADAM:

A disintegrin and metalloproteinase

AFT:

AICD-FE65-TIP60

AICD:

APP intracellular c-terminal domain

ALS:

Amyotrophic lateral sclerosis

AMPK:

AMP-activated kinase

AP:

Amyloid plaque

APH1:

Anterior pharynx-defective 1

APOE4:

Apolipoprotein E4

APP:

Amyloid precursor protein

Aβ:

Amyloid-beta peptide

BACE1:

Beta-site APP cleaving enzyme 1

CaMK:

Calcium/calmodulin-dependent protein kinase II

CDK5:

Cyclin-dependent kinase 5

CHIP:

Carboxyl terminus of HSP70-interacting protein

chr:

Chromosome

CJD:

Creutzfeldt-Jakob disease

CKII:

Casein kinase II

CNS:

Central nervous system

CSF:

Cerebrospinal fluid

CUBD:

Cu(II)-binding domain

DLB:

Dementia with Lewy bodies

Dyrk1A:

Dual-specificity tyrosine-regulated kinase 1A

EGFR:

Epidermal growth factor receptor

EOAD:

Early-onset AD

ER:

Endoplasmic reticulum

FKBD:

FK506-binding domain

FKBP:

FK506-binding protein

FTDP-17:

Frontotemporal dementia related to chr 17

HBD:

Heparin-binding domain

HD:

Huntington’s disease

HSP:

Heat shock protein

IDP:

Intrinsically disordered protein

KPI:

Kunitz-type serine protease inhibitor

LOAD:

Late-onset AD

LRP1:

Lipoprotein receptor-related protein 1

LTP:

Long-term potentiation

MAP:

Microtubule-associated protein

MAPK:

Mitogen-activated protein kinase

MAPT:

Microtubule-associated protein Tau

MARK:

MAP/microtubule-affinity-regulating kinases

MRI:

Magnetic resonance imaging

NFT:

Neurofibrillary tangle

NICD:

Notch intracellular domain

NPC:

Neural precursor cell

PD:

Parkinson’s disease

PEN2:

Presenilin enhancer 2

PHF:

Paired helical filament

PIN1:

Peptidyl-prolyl cis/trans isomerase NIMA-interacting 1

PKA:

Protein kinase A

PKC:

Protein kinase C

PrP:

Prion protein

PS1/2:

Presenilin-1/Presenilin-2

RIP:

Regulated intramembrane proteolysis

RTN:

Reticulon family protein

SOD1:

Superoxide dismutase 1

SVZ:

Subventricular zone

TACE:

Tumor necrosis factor-α converting enzyme

TAG1:

Transient axonal glycoprotein

TAI:

Tau aggregation inhibitor

TDP-43:

TAR DNA-binding protein-43

TGN:

Trans-Golgi network

TRIM:

Tripartite motif

UBB:

Ubiquitin B

UBC:

Ubiquitin C

UPS:

Ubiquitin-proteasome system

References

  1. Graeber MB, Kösel S, Egensperger R, Banati RB, Müller U, Bise K, Hoff P, Möller HJ, Fujisawa K, Mehraein P (1997) Rediscovery of the case described by Alois Alzheimer in 1911: historical, histological and molecular genetic analysis. Neurogenetics 1(1):73–80. doi:10.1007/s100480050011

    Article  PubMed  CAS  Google Scholar 

  2. Selkoe DJ (2001) Alzheimer’s disease: genes, proteins, and therapy. Physiol Rev 81(2):741–766

    PubMed  CAS  Google Scholar 

  3. Hebert LE, Weuve J, Scherr PA, Evans DA (2013) Alzheimer disease in the United States (2010–2050) estimated using the 2010 census. Neurology 80(19):1778–1783. doi:10.1212/WNL.0b013e31828726f5

    Article  PubMed Central  PubMed  Google Scholar 

  4. Thies W, Bleiler L (2013) 2013 Alzheimer’s disease facts and figures. Alzheimers Dement 9(2):208–245. doi:10.1016/j.jalz.2013.02.003

    Article  Google Scholar 

  5. Castello MA, Soriano S (2014) On the origin of Alzheimer’s disease. Trials and tribulations of the amyloid hypothesis. Ageing Res Rev 13:10–12. doi:10.1016/j.arr.2013.10.001

    Article  PubMed  CAS  Google Scholar 

  6. Cummings J, Morstorf T, Zhong K (2014) Alzheimer’s disease drug-development pipeline: few candidates, frequent failures. Alzheimers Res Ther 6(4):37

    Article  PubMed Central  PubMed  Google Scholar 

  7. Taylor JP, Hardy J, Fischbeck KH (2002) Toxic proteins in neurodegenerative disease. Science 296(5575):1991–1995. doi:10.1126/science.1067122

    Article  PubMed  CAS  Google Scholar 

  8. Benowitz LI, Rodriguez W, Paskevich P, Mufson EJ, Schenk D, Neve RL (1989) The amyloid precursor protein is concentrated in neuronal lysosomes in normal and Alzheimer disease subjects. Exp Neurol 106(3):237–250

    Article  PubMed  CAS  Google Scholar 

  9. Thal DR, Rüb U, Orantes M, Braak H (2002) Phases of Aβ-deposition in the human brain and its relevance for the development of AD. Neurology 58(12):1791–1800. doi:10.1212/wnl.58.12.1791

    Article  PubMed  Google Scholar 

  10. Braak H, Braak E (1991) Neuropathological stageing of Alzheimer-related changes. Acta Neuropathol 82(4):239–259

    Article  PubMed  CAS  Google Scholar 

  11. Delacourte A, David JP, Sergeant N, Buee L, Wattez A, Vermersch P, Ghozali F, Fallet-Bianco C, Pasquier F, Lebert F, Petit H, Di Menza C (1999) The biochemical pathway of neurofibrillary degeneration in aging and Alzheimer’s disease. Neurology 52(6):1158–1165

    Article  PubMed  CAS  Google Scholar 

  12. Johnson KA, Fox NC, Sperling RA, Klunk WE (2012) Brain imaging in Alzheimer disease. Cold Spring Harb Perspect Med 2(4):a006213. doi:10.1101/cshperspect.a006213

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  13. Scahill RI, Schott JM, Stevens JM, Rossor MN, Fox NC (2002) Mapping the evolution of regional atrophy in Alzheimer’s disease: unbiased analysis of fluid-registered serial MRI. Proc Natl Acad Sci U S A 99(7):4703–4707. doi:10.1073/pnas.052587399

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  14. Smith AD (2002) Imaging the progression of Alzheimer pathology through the brain. Proc Natl Acad Sci U S A 99(7):4135–4137. doi:10.1073/pnas.082107399

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  15. Frost B, Diamond MI (2010) Prion-like mechanisms in neurodegenerative diseases. Nat Rev Neurosci 11(3):155–159. doi:10.1038/nrn2786

    PubMed Central  PubMed  CAS  Google Scholar 

  16. Tanzi RE (2012) The genetics of Alzheimer disease. Cold Spring Harb Perspect Med 2(10):a006296. doi:10.1101/cshperspect.a006296

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  17. Bekris LM, Yu C-E, Bird TD, Tsuang DW (2010) Review article: genetics of Alzheimer disease. J Geriatr Psychiatry Neurol 23(4):213–227. doi:10.1177/0891988710383571

    Article  PubMed Central  PubMed  Google Scholar 

  18. Tanzi RE, Bertram L (2001) New frontiers in Alzheimer’s disease genetics. Neuron 32(2):181–184. doi:10.1016/S0896-6273(01)00476-7

    Article  PubMed  CAS  Google Scholar 

  19. Lindsay J, Laurin D, Verreault R, Hébert R, Helliwell B, Hill GB, McDowell I (2002) Risk factors for Alzheimer’s disease: a prospective analysis from the Canadian study of health and aging. Am J Epidemiol 156(5):445–453. doi:10.1093/aje/kwf074

    Article  PubMed  Google Scholar 

  20. Mayeux R, Stern Y (2012) Epidemiology of Alzheimer disease. Cold Spring Harb Perspect Med 2(8):a006239. doi:10.1101/cshperspect.a006239

    Article  PubMed Central  PubMed  Google Scholar 

  21. Ihara Y, Morishima-Kawashima M, Nixon R (2012) The ubiquitin–proteasome system and the autophagic–lysosomal system in Alzheimer disease. Cold Spring Harb Perspect Med 2(8):a006361. doi:10.1101/cshperspect.a006361

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  22. Troen BR (2003) The biology of aging. Mt Sinai J Med 70(1):3–22

    PubMed  Google Scholar 

  23. Kang J, Lemaire H-G, Unterbeck A, Salbaum JM, Masters CL, Grzeschik K-H, Multhaup G, Beyreuther K, Muller-Hill B (1987) The precursor of Alzheimer’s disease amyloid A4 protein resembles a cell-surface receptor. Nature 325(6106):733–736

    Article  PubMed  CAS  Google Scholar 

  24. Ghiso J, Tagliavini F, Timmers WF, Frangione B (1989) Alzheimer’s disease amyloid precursor protein is present in senile plaques and cerebrospinal fluid: immunohistochemical and biochemical characterization. Biochem Biophys Res Commun 163(1):430–437

    Article  PubMed  CAS  Google Scholar 

  25. Autilio-Gambetti L, Morandi A, Tabaton M, Schaetzle B, Kovacs D, Perry G, Sharma S, Cornette J, Greenberg B, Gambetti P (1988) The amyloid percursor protein of Alzheimer disease is expressed as a 130 kDa polypeptide in various cultured cell types. FEBS Lett 241(1–2):94–98

    Article  PubMed  CAS  Google Scholar 

  26. Clark AW, Krekoski CA, Parhad IM, Liston D, Julien JP, Hoar DI (1989) Altered expression of genes for amyloid and cytoskeletal proteins in Alzheimer cortex. Ann Neurol 25(4):331–339. doi:10.1002/ana.410250404

    Article  PubMed  CAS  Google Scholar 

  27. Masters CL, Simms G, Weinman NA, Multhaup G, McDonald BL, Beyreuther K (1985) Amyloid plaque core protein in Alzheimer disease and Down syndrome. Proc Natl Acad Sci U S A 82(12):4245–4249

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  28. Glenner GG, Wong CW (1984) Alzheimer’s disease and Down’s syndrome: sharing of a unique cerebrovascular amyloid fibril protein. Biochem Biophys Res Commun 122(3):1131–1135

    Article  PubMed  CAS  Google Scholar 

  29. Glenner GG, Wong CW (1984) Alzheimer’s disease: initial report of the purification and characterization of a novel cerebrovascular amyloid protein. Biochem Biophys Res Commun 120(3):885–890. doi:10.1016/S0006-291X(84)80190-4

    Article  PubMed  CAS  Google Scholar 

  30. Tanzi R, Gusella J, Watkins P, Bruns G, St George-Hyslop P, Van Keuren M, Patterson D, Pagan S, Kurnit D, Neve R (1987) Amyloid beta protein gene: cDNA, mRNA distribution, and genetic linkage near the Alzheimer locus. Science 235(4791):880–884. doi:10.1126/science.2949367

    Article  PubMed  CAS  Google Scholar 

  31. Korenberg JR, Pulst SM, Neve RL, West R (1989) The Alzheimer amyloid precursor protein maps to human chromosome 21 bands q21.105-q21.05. Genomics 5(1):124–127

    Article  PubMed  CAS  Google Scholar 

  32. Tokuda T, Fukushima T, Ikeda S, Sekijima Y, Shoji S, Yanagisawa N, Tamaoka A (1997) Plasma levels of amyloid beta proteins Abeta1-40 and Abeta1-42(43) are elevated in Down’s syndrome. Ann Neurol 41(2):271–273. doi:10.1002/ana.410410220

    Article  PubMed  CAS  Google Scholar 

  33. Mehta PD, Capone G, Jewell A, Freedland RL (2007) Increased amyloid β protein levels in children and adolescents with Down syndrome. J Neurol Sci 254(1):22–27

    Article  PubMed  CAS  Google Scholar 

  34. Goate A, Chartier-Harlin M-C, Mullan M, Brown J, Crawford F, Fidani L, Giuffra L, Haynes A, Irving N, James L, Mant R, Newton P, Rooke K, Roques P, Talbot C, Pericak-Vance M, Roses A, Williamson R, Rossor M, Owen M, Hardy J (1991) Segregation of a missense mutation in the amyloid precursor protein gene with familial Alzheimer’s disease. Nature 349(6311):704–706

    Article  PubMed  CAS  Google Scholar 

  35. Murrell J, Farlow M, Ghetti B, Benson M (1991) A mutation in the amyloid precursor protein associated with hereditary Alzheimer’s disease. Science 254(5028):97–99. doi:10.1126/science.1925564

    Article  PubMed  CAS  Google Scholar 

  36. Suzuki N, Cheung T, Cai X, Odaka A, Otvos L, Eckman C, Golde T, Younkin S (1994) An increased percentage of long amyloid beta protein secreted by familial amyloid beta protein precursor (beta APP717) mutants. Science 264(5163):1336–1340. doi:10.1126/science.8191290

    Article  PubMed  CAS  Google Scholar 

  37. Murrell JR, Hake AM, Quaid KA, Farlow MR, Ghetti B (2000) Early-onset Alzheimer disease caused by a new mutation (V717L) in the amyloid precursor protein gene. Arch Neurol 57(6):885–887. doi:10.1001/archneur.57.6.885

    Article  PubMed  CAS  Google Scholar 

  38. Kwok JBJ, Li QX, Hallupp M, Whyte S, Ames D, Beyreuther K, Masters CL, Schofield PR (2000) Novel Leu723Pro amyloid precursor protein mutation increases amyloid beta 42(43) peptide levels and induces apoptosis. Ann Neurol 47(2):249–253. doi:10.1002/1531-8249(200002)47:2<249::aid-ana18>3.0.co;2-8

    Article  PubMed  CAS  Google Scholar 

  39. Kumar-Singh S, De Jonghe C, Cruts M, Kleinert R, Wang R, Mercken M, De Strooper B, Vanderstichele H, Löfgren A, Vanderhoeven I, Backhovens H, Vanmechelen E, Kroisel PM, Van Broeckhoven C (2000) Nonfibrillar diffuse amyloid deposition due to a γ 42‐secretase site mutation points to an essential role for N‐truncated Aβ42 in Alzheimer’s disease. Hum Mol Genet 9(18):2589–2598. doi:10.1093/hmg/9.18.2589

    Article  PubMed  CAS  Google Scholar 

  40. Ancolio K, Dumanchin C, Barelli H, Warter JM, Brice A, Campion D, Frébourg T, Checler F (1999) Unusual phenotypic alteration of β amyloid precursor protein (βAPP) maturation by a new Val-715 → Met βAPP-770 mutation responsible for probable early-onset Alzheimer’s disease. Proc Natl Acad Sci U S A 96(7):4119–4124. doi:10.1073/pnas.96.7.4119

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  41. Eckman CB, Mehta ND, Crook R, Perez-tur J, Prihar G, Pfeiffer E, Graff-Radford N, Hinder P, Yager D, Zenk B, Refolo LM, Mihail Prada C, Younkin SG, Hutton M, Hardy J (1997) A new pathogenic mutation in the APP gene (I716V) increases the relative proportion of Aβ42(43). Hum Mol Genet 6(12):2087–2089. doi:10.1093/hmg/6.12.2087

    Article  PubMed  CAS  Google Scholar 

  42. Mullan M, Crawford F, Axelman K, Houlden H, Lilius L, Winblad B, Lannfelt L (1992) A pathogenic mutation for probable Alzheimer’s disease in the APP gene at the N-terminus of beta-amyloid. Nat Genet 1(5):345–347. doi:10.1038/ng0892-345

    Article  PubMed  CAS  Google Scholar 

  43. Hendriks L, Vanduijn CM, Cras P, Cruts M, Vanhul W, Vanharskamp F, Warren A, McInnis MG, Antonarakis SE, Martin JJ, Hofman A, Vanbroeckhoven C (1992) Presenile-dementia and cerebral-hemorrhage linked to a mutation at codon-692 of the beta-amyloid precursor protein gene. Nat Genet 1(3):218–221. doi:10.1038/ng0692-218

    Article  PubMed  CAS  Google Scholar 

  44. Lan M-Y, Liu J-S, Wu Y-S, Peng C-H, Chang Y-Y (2014) A novel APP mutation (D678H) in a Taiwanese patient exhibiting dementia and cerebral microvasculopathy. J Clin Neurosci 21(3):513–515. doi:10.1016/j.jocn.2013.03.038

    Article  PubMed  CAS  Google Scholar 

  45. Kero M, Paetau A, Polvikoski T, Tanskanen M, Sulkava R, Jansson L, Myllykangas L, Tienari PJ (2013) Amyloid precursor protein (APP) A673T mutation in the elderly Finnish population. Neurobiol Aging 34(5):1518.e1–1518.e3. doi:10.1016/j.neurobiolaging.2012.09.017

  46. Suárez-Calvet M, Belbin O, Pera M, Badiola N, Magrané J, Guardia-Laguarta C, Muñoz L, Colom-Cadena M, Clarimón J, Lleó A (2014) Autosomal-dominant Alzheimer’s disease mutations at the same codon of amyloid precursor protein differentially alter Aβ production. J Neurochem 128(2):330–339. doi:10.1111/jnc.12466

    Article  PubMed  CAS  Google Scholar 

  47. De Jonghe C, Esselens C, Kumar-Singh S, Craessaerts K, Serneels S, Checler F, Annaert W, Van Broeckhoven C, De Strooper B (2001) Pathogenic APP mutations near the γ-secretase cleavage site differentially affect Aβ secretion and APP C-terminal fragment stability. Hum Mol Genet 10(16):1665–1671. doi:10.1093/hmg/10.16.1665

    Article  PubMed  Google Scholar 

  48. Russo C, Schettini G, Saido TC, Hulette C, Lippa C, Lannfelt L, Ghetti B, Gambetti P, Tabaton M, Teller JK (2000) Neurobiology: presenilin-1 mutations in Alzheimer’s disease. Nature 405(6786):531–532. doi:10.1038/35014735

    Article  PubMed  CAS  Google Scholar 

  49. Tanzi RE, George-Hyslop PHS, Haines JL, Polinsky RJ, Nee L, Foncin J-F, Neve RL, McClatchey AI, Conneally PM, Gusella JF (1987) The genetic defect in familial Alzheimer’s disease is not tightly linked to the amyloid [beta]-protein gene. Nature 329(6135):156–157

    Article  PubMed  CAS  Google Scholar 

  50. Vitek MP, Rasool CG, de Sauvage F, Vitek SM, Bartus RT, Beer B, Ashton RA, Macq AF, Maloteaux JM, Blume AJ et al (1988) Absence of mutation in the beta-amyloid cDNAs cloned from the brains of three patients with sporadic Alzheimer’s disease. Brain Res 464(2):121–131

    Article  PubMed  CAS  Google Scholar 

  51. Borchelt DR, Thinakaran G, Eckman CB, Lee MK, Davenport F, Ratovitsky T, Prada C-M, Kim G, Seekins S, Yager D, Slunt HH, Wang R, Seeger M, Levey AI, Gandy SE, Copeland NG, Jenkins NA, Price DL, Younkin SG, Sisodia SS (1996) Familial Alzheimer’s disease–linked presenilin 1 variants elevate Aβ1–42/1–40 ratio in vitro and in vivo. Neuron 17(5):1005–1013. doi:10.1016/S0896-6273(00)80230-5

    Article  PubMed  CAS  Google Scholar 

  52. Lemere CA, Lopera F, Kosik KS, Lendon CL, Ossa J, Saido TC, Yamaguchi H, Ruiz A, Martinez A, Madrigal L (1996) The E280A presenilin 1 Alzheimer mutation produces increased Aβ42 deposition and severe cerebellar pathology. Nat Med 2(10):1146–1150

    Article  PubMed  CAS  Google Scholar 

  53. Hardy J (1997) Amyloid, the presenilins and Alzheimer’s disease. Trends Neurosci 20(4):154–159. doi:10.1016/S0166-2236(96)01030-2

    Article  PubMed  CAS  Google Scholar 

  54. Saunders AM, Strittmatter WJ, Schmechel D, George-Hyslop PH, Pericak-Vance MA, Joo SH, Rosi BL, Gusella JF, Crapper-MacLachlan DR, Alberts MJ, Hulette C, Crain B, Goldgaber D, Roses AD (1993) Association of apolipoprotein E allele ∈4 with late-onset familial and sporadic Alzheimer’s disease. Neurology 43(8):1467–1472

    Article  PubMed  CAS  Google Scholar 

  55. Corder EH, Saunders AM, Strittmatter WJ, Schmechel DE, Gaskell PC, Small GW, Roses AD, Haines JL, Pericak-Vance MA (1993) Gene dose of apolipoprotein E type 4 allele and the risk of Alzheimer’s disease in late onset families. Science 261(5123):921–923

    Article  PubMed  CAS  Google Scholar 

  56. Strittmatter WJ, Roses AD (1996) Apolipoprotein E and Alzheimer’s disease. Annu Rev Neurosci 19(1):53–77. doi:10.1146/annurev.ne.19.030196.000413

    Article  PubMed  CAS  Google Scholar 

  57. Michaelson DM (2014) ApoE4: the most prevalent yet understudied risk factor for Alzheimer’s disease. Alzheimers Dement. doi:10.1016/j.jalz.2014.06.015

    PubMed  Google Scholar 

  58. Fergusson J, Landon M, Lowe J, Ward L, van Leeuwen FW, Mayer RJ (2000) Neurofibrillary tangles in progressive supranuclear palsy brains exhibit immunoreactivity to frameshift mutant ubiquitin-B protein. Neurosci Lett 279(2):69–72. doi:10.1016/S0304-3940(99)00917-9

    Article  PubMed  CAS  Google Scholar 

  59. van Leeuwen FW, de Kleijn DP, van den Hurk HH, Neubauer A, Sonnemans MA, Sluijs JA, Koycu S, Ramdjielal RD, Salehi A, Martens GJ, Grosveld FG, Peter J, Burbach H, Hol EM (1998) Frameshift mutants of beta amyloid precursor protein and ubiquitin-B in Alzheimer’s and Down patients. Science 279(5348):242–247

    Article  PubMed  Google Scholar 

  60. Yankner BA, Dawes LR, Fisher S, Villa-Komaroff L, Oster-Granite ML, Neve RL (1989) Neurotoxicity of a fragment of the amyloid precursor associated with Alzheimer’s disease. Science 245(4916):417–420

    Article  PubMed  CAS  Google Scholar 

  61. Selkoe DJ (2000) Toward a comprehensive theory for Alzheimer’s disease. Hypothesis: Alzheimer’s disease is caused by the cerebral accumulation and cytotoxicity of amyloid beta-protein. Ann N Y Acad Sci 924:17–25

    Article  PubMed  CAS  Google Scholar 

  62. Selkoe DJ (1998) The cell biology of beta-amyloid precursor protein and presenilin in Alzheimer’s disease. Trends Cell Biol 8(11):447–453. doi:10.1016/S0962-8924(98)01363-4

    Article  PubMed  CAS  Google Scholar 

  63. Wippold FJ, Cairns N, Vo K, Holtzman DM, Morris JC (2008) Neuropathology for the neuroradiologist: plaques and tangles. Am J Neuroradiol 29(1):18–22. doi:10.3174/ajnr.A0781

    Article  PubMed  Google Scholar 

  64. Masters CL, Selkoe DJ (2012) Biochemistry of amyloid β-protein and amyloid deposits in Alzheimer disease. Cold Spring Harb Perspect Med a006262. doi: 10.1101/cshperspect.a006262

  65. Joachim CL, Morris JH, Selkoe DJ (1989) Diffuse senile plaques occur commonly in the cerebellum in Alzheimer’s disease. Am J Pathol 135(2):309–319

    PubMed Central  PubMed  CAS  Google Scholar 

  66. Lord A, Philipson O, Klingstedt T, Westermark G, Hammarstrom P, Nilsson KP, Nilsson LN (2011) Observations in APP bitransgenic mice suggest that diffuse and compact plaques form via independent processes in Alzheimer’s disease. Am J Pathol 178(5):2286–2298. doi:10.1016/j.ajpath.2011.01.052

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  67. Ma QH, Futagawa T, Yang WL, Jiang XD, Zeng L, Takeda Y, Xu RX, Bagnard D, Schachner M, Furley AJ, Karagogeos D, Watanabe K, Dawe GS, Xiao ZC (2008) A TAG1-APP signalling pathway through Fe65 negatively modulates neurogenesis. Nat Cell Biol 10(3):283–294. doi:10.1038/ncb1690

    Article  PubMed  CAS  Google Scholar 

  68. Selkoe DJ, Podlisny MB, Joachim CL, Vickers EA, Lee G, Fritz LC, Oltersdorf T (1988) Beta-amyloid precursor protein of Alzheimer disease occurs as 110- to 135-kilodalton membrane-associated proteins in neural and nonneural tissues. Proc Natl Acad Sci U S A 85(19):7341–7345

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  69. Tanaka S, Shiojiri S, Takahashi Y, Kitaguchi N, Ito H, Kameyama M, Kimura J, Nakamura S, Ueda K (1989) Tissue-specific expression of three types of beta-protein precursor mRNA: enhancement of protease inhibitor-harboring types in Alzheimer’s disease brain. Biochem Biophys Res Commun 165(3):1406–1414

    Article  PubMed  CAS  Google Scholar 

  70. Johnson SA, Pasinetti GM, May PC, Ponte PA, Cordell B, Finch CE (1988) Selective reduction of mRNA for the β-amyloid precursor protein that lacks a Kunitz-type protease inhibitor motif in cortex from Alzheimer brains. Exp Neurol 102(2):264–268. doi:10.1016/0014-4886(88)90104-5

    Article  PubMed  CAS  Google Scholar 

  71. Johnson SA, Rogers J, Finch CE (1989) APP-695 transcript prevalence is selectively reduced during Alzheimer’s disease in cortex and hippocampus but not in cerebellum. Neurobiol Aging 10(6):755–760

    Article  PubMed  CAS  Google Scholar 

  72. Haass C, Hung AY, Selkoe DJ (1991) Processing of beta-amyloid precursor protein in microglia and astrocytes favors an internal localization over constitutive secretion. J Neurosci 11(12):3783–3793

    PubMed  CAS  Google Scholar 

  73. Tanzi RE, McClatchey AI, Lamperti ED, Villa-Komaroff L, Gusella JF, Neve RL (1988) Protease inhibitor domain encoded by an amyloid protein precursor mRNA associated with Alzheimer’s disease. Nature 331(6156):528–530

    Article  PubMed  CAS  Google Scholar 

  74. Kitaguchi N, Takahashi Y, Tokushima Y, Shiojiri S, Ito H (1988) Novel precursor of Alzheimer’s disease amyloid protein shows protease inhibitory activity. Nature 331(6156):530–532. doi:10.1038/331530a0

    Article  PubMed  CAS  Google Scholar 

  75. Small DH, Nurcombe V, Reed G, Clarris H, Moir R, Beyreuther K, Masters CL (1994) A heparin-binding domain in the amyloid protein precursor of Alzheimer’s disease is involved in the regulation of neurite outgrowth. J Neurosci 14(4):2117–2127

    PubMed  CAS  Google Scholar 

  76. Mok SS, Sberna G, Heffernan D, Cappai R, Galatis D, Clarris HJ, Sawyer WH, Beyreuther K, Masters CL, Small DH (1997) Expression and analysis of heparin-binding regions of the amyloid precursor protein of Alzheimer’s disease. FEBS Lett 415(3):303–307. doi:10.1016/S0014-5793(97)01146-0

    Article  PubMed  CAS  Google Scholar 

  77. Rossjohn J, Cappai R, Feil SC, Henry A, McKinstry WJ, Galatis D, Hesse L, Multhaup G, Beyreuther K, Masters CL, Parker MW (1999) Crystal structure of the N-terminal, growth factor-like domain of Alzheimer amyloid precursor protein. Nat Struct Biol 6(4):327–331

    Article  PubMed  CAS  Google Scholar 

  78. Barnham KJ, McKinstry WJ, Multhaup G, Galatis D, Morton CJ, Curtain CC, Williamson NA, White AR, Hinds MG, Norton RS, Beyreuther K, Masters CL, Parker MW, Cappai R (2003) Structure of the Alzheimer’s disease amyloid precursor protein copper binding domain: a regulator of neuronal copper homeostasis. J Biol Chem 278(19):17401–17407. doi:10.1074/jbc.M300629200

    Article  PubMed  CAS  Google Scholar 

  79. Ninomiya H, Roch JM, Sundsmo MP, Otero DAC, Saitoh T (1993) Amino acid sequence RERMS represents the active domain of amyloid β/A4 protein precursor that promotes fibroblast growth. J Cell Biol 121(4):879–886

    Article  PubMed  CAS  Google Scholar 

  80. Lazarov O, Demars MP (2012) All in the family: how the APPs regulate neurogenesis. Front Neurosci 6:81. doi:10.3389/fnins.2012.00081

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  81. O’Brien RJ, Wong PC (2011) Amyloid precursor protein processing and Alzheimer’s disease. Annu Rev Neurosci 34:185–204. doi:10.1146/annurev-neuro-061010-113613

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  82. Oh ES, Savonenko AV, King JF, Fangmark Tucker SM, Rudow GL, Xu G, Borchelt DR, Troncoso JC (2009) Amyloid precursor protein increases cortical neuron size in transgenic mice. Neurobiol Aging 30(8):1238–1244. doi:10.1016/j.neurobiolaging.2007.12.024

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  83. Dawkins E, Small DH (2014) Insights into the physiological function of the β-amyloid precursor protein: beyond Alzheimer’s disease. J Neurochem 756–769. doi: 10.1111/jnc.12675

  84. Perez RG, Zheng H, Van der Ploeg LHT, Koo EH (1997) The β-amyloid precursor protein of Alzheimer’s disease enhances neuron viability and modulates neuronal polarity. J Neurosci 17(24):9407–9414

    PubMed  CAS  Google Scholar 

  85. Corrigan F, Thornton E, Roisman LC, Leonard AV, Vink R, Blumbergs PC, van den Heuvel C, Cappai R (2014) The neuroprotective activity of the amyloid precursor protein against traumatic brain injury is mediated via the heparin binding site in residues 96-110. J Neurochem 128(1):196–204. doi:10.1111/jnc.12391

    Article  PubMed  CAS  Google Scholar 

  86. Greenfield JP, Tsai J, Gouras GK, Hai B, Thinakaran G, Checler F, Sisodia SS, Greengard P, Xu H (1999) Endoplasmic reticulum and trans-Golgi network generate distinct populations of Alzheimer β-amyloid peptides. Proc Natl Acad Sci U S A 96(2):742–747. doi:10.1073/pnas.96.2.742

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  87. Selkoe DJ, Yamazaki T, Citron M, Podlisny MB, Koo EH, Teplow DB, Haass C (1996) The role of APP processing and trafficking pathways in the formation of amyloid β-protein. Ann N Y Acad Sci 777(1):57–64. doi:10.1111/j.1749-6632.1996.tb34401.x

    Article  PubMed  CAS  Google Scholar 

  88. Parvathy S, Hussain I, Karran EH, Turner AJ, Hooper NM (1999) Cleavage of Alzheimer’s amyloid precursor protein by α-secretase occurs at the surface of neuronal cells. Biochemistry (Mosc) 38(30):9728–9734. doi:10.1021/bi9906827

    Article  CAS  Google Scholar 

  89. Skovronsky DM, Moore DB, Milla ME, Doms RW, Lee VM-Y (2000) Protein kinase C-dependent α-secretase competes with β-secretase for cleavage of amyloid-β precursor protein in the trans-Golgi network. J Biol Chem 275(4):2568–2575. doi:10.1074/jbc.275.4.2568

    Article  PubMed  CAS  Google Scholar 

  90. Palmert MR, Podlisny MB, Witker DS, Oltersdorf T, Younkin LH, Selkoe DJ, Younkin SG (1989) The beta-amyloid protein precursor of Alzheimer disease has soluble derivatives found in human brain and cerebrospinal fluid. Proc Natl Acad Sci U S A 86(16):6338–6342

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  91. Chasseigneaux S, Allinquant B (2012) Functions of Abeta, sAPPalpha and sAPPbeta: similarities and differences. J Neurochem 120(Suppl 1):99–108. doi:10.1111/j.1471-4159.2011.07584.x

    Article  PubMed  CAS  Google Scholar 

  92. Chasseigneaux S, Dinc L, Rose C, Chabret C, Coulpier F, Topilko P, Mauger G, Allinquant B (2011) Secreted amyloid precursor protein β and secreted amyloid precursor protein α induce axon outgrowth in vitro through Egr1 signaling pathway. PLoS ONE 6(1):e16301

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  93. Hartl D, Klatt S, Roch M, Konthur Z, Klose J, Willnow TE, Rohe M (2013) Soluble alpha-APP (sAPPalpha) regulates CDK5 expression and activity in neurons. PLoS ONE 8(6):e65920

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  94. Gakhar‐Koppole N, Hundeshagen P, Mandl C, Weyer SW, Allinquant B, Müller U, Ciccolini F (2008) Activity requires soluble amyloid precursor protein α to promote neurite outgrowth in neural stem cell‐derived neurons via activation of the MAPK pathway. Eur J Neurosci 28(5):871–882

    Article  PubMed  Google Scholar 

  95. Baratchi S, Evans J, Tate WP, Abraham WC, Connor B (2012) Secreted amyloid precursor proteins promote proliferation and glial differentiation of adult hippocampal neural progenitor cells. Hippocampus 22(7):1517–1527

    Article  PubMed  CAS  Google Scholar 

  96. Demars MP, Bartholomew A, Strakova Z, Lazarov O (2011) Soluble amyloid precursor protein: a novel proliferation factor of adult progenitor cells of ectodermal and mesodermal origin. Stem Cell Res Ther 2:36

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  97. Hasebe N, Fujita Y, Ueno M, Yoshimura K, Fujino Y, Yamashita T (2013) Soluble β-amyloid precursor protein alpha binds to p75 neurotrophin receptor to promote neurite outgrowth. PLoS ONE 8(12):e82321

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  98. Asai M, Hattori C, Szabó B, Sasagawa N, Maruyama K, S-i T, Ishiura S (2003) Putative function of ADAM9, ADAM10, and ADAM17 as APP α-secretase. Biochem Biophys Res Commun 301(1):231–235. doi:10.1016/S0006-291X(02)02999-6

    Article  PubMed  CAS  Google Scholar 

  99. Allinson TM, Parkin ET, Turner AJ, Hooper NM (2003) ADAMs family members as amyloid precursor protein alpha-secretases. J Neurosci Res 74(3):342–352. doi:10.1002/jnr.10737

    Article  PubMed  CAS  Google Scholar 

  100. Deuss M, Reiss K, Hartmann D (2008) Part-time-secretases: the functional biology of ADAM 9, 10 and 17. Curr Alzheimer Res 5(2):187–201

    Article  PubMed  CAS  Google Scholar 

  101. Liang J, Kong Q (2012) α-Cleavage of cellular prion protein. Prion 6(5):453–460

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  102. van der Vorst EP, Keijbeck AA, de Winther MP, Donners MM (2012) A disintegrin and metalloproteases: molecular scissors in angiogenesis, inflammation and atherosclerosis. Atherosclerosis 224(2):302–308

    Article  PubMed  CAS  Google Scholar 

  103. Yamamoto S, Higuchi Y, Yoshiyama K, Shimizu E, Kataoka M, Hijiya N, Matsuura K (1999) ADAM family proteins in the immune system. Immunol Today 20(6):278–284. doi:10.1016/S0167-5699(99)01464-4

    Article  PubMed  CAS  Google Scholar 

  104. Huovila A-PJ, Turner AJ, Pelto-Huikko M, Kärkkäinen I, Ortiz RM (2005) Shedding light on ADAM metalloproteinases. Trends Biochem Sci 30(7):413–422. doi:10.1016/j.tibs.2005.05.006

    Article  PubMed  CAS  Google Scholar 

  105. Hartmann D, Tournoy J, Saftig P, Annaert W, De Strooper B (2001) Implication of APP secretases in notch signaling. J Mol Neurosci 17(2):171–181

    Article  PubMed  CAS  Google Scholar 

  106. Hartmann D, de Strooper B, Serneels L, Craessaerts K, Herreman A, Annaert W, Umans L, Lubke T, Lena Illert A, von Figura K, Saftig P (2002) The disintegrin/metalloprotease ADAM 10 is essential for Notch signalling but not for alpha-secretase activity in fibroblasts. Hum Mol Genet 11(21):2615–2624

    Article  PubMed  CAS  Google Scholar 

  107. Yang P, Baker KA, Hagg T (2006) The ADAMs family: coordinators of nervous system development, plasticity and repair. Prog Neurobiol 79(2):73–94

    Article  PubMed  CAS  Google Scholar 

  108. Postina R, Schroeder A, Dewachter I, Bohl J, Schmitt U, Kojro E, Prinzen C, Endres K, Hiemke C, Blessing M, Flamez P, Dequenne A, Godaux E, van Leuven F, Fahrenholz F (2004) A disintegrin-metalloproteinase prevents amyloid plaque formation and hippocampal defects in an Alzheimer disease mouse model. J Clin Invest 113(10):1456–1464. doi:10.1172/JCI20864

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  109. Epis R, Marcello E, Gardoni F, Vastagh C, Malinverno M, Balducci C, Colombo A, Borroni B, Vara H, Dell’Agli M, Cattabeni F, Giustetto M, Borsello T, Forloni G, Padovani A, Di Luca M (2010) Blocking ADAM10 synaptic trafficking generates a model of sporadic Alzheimer’s disease. Brain 133(11):3323–3335. doi:10.1093/brain/awq217

    Article  PubMed  Google Scholar 

  110. Arribas J, Esselens C (2009) ADAM17 as a therapeutic target in multiple diseases. Curr Pharm Des 15(20):2319–2335

    Article  PubMed  CAS  Google Scholar 

  111. Rose-John S (2013) ADAM17, shedding, TACE as therapeutic targets. Pharmacol Res 71:19–22

    Article  PubMed  CAS  Google Scholar 

  112. Scheller J, Chalaris A, Garbers C, Rose-John S (2011) ADAM17: a molecular switch to control inflammation and tissue regeneration. Trends Immunol 32(8):380–387

    Article  PubMed  CAS  Google Scholar 

  113. Blacker M, Noe MC, Carty TJ, Goodyer CG, LeBlanc AC (2002) Effect of tumor necrosis factor-alpha converting enzyme (TACE) and metalloprotease inhibitor on amyloid precursor protein metabolism in human neurons. J Neurochem 83(6):1349–1357

    Article  PubMed  CAS  Google Scholar 

  114. Hotoda N, Koike H, Sasagawa N, Ishiura S (2002) A secreted form of human ADAM9 has an α-secretase activity for APP. Biochem Biophys Res Commun 293(2):800–805. doi:10.1016/S0006-291X(02)00302-9

    Article  PubMed  CAS  Google Scholar 

  115. Huse JT, Pijak DS, Leslie GJ, Lee VM-Y, Doms RW (2000) Maturation and endosomal targeting of β-site amyloid precursor protein-cleaving enzyme: the Alzheimer’s disease β-secretase. J Biol Chem 275(43):33729–33737. doi:10.1074/jbc.M004175200

    Article  PubMed  CAS  Google Scholar 

  116. Taylor CJ, Ireland DR, Ballagh I, Bourne K, Marechal NM, Turner PR, Bilkey DK, Tate WP, Abraham WC (2008) Endogenous secreted amyloid precursor protein-α regulates hippocampal NMDA receptor function, long-term potentiation and spatial memory. Neurobiol Dis 31(2):250–260. doi:10.1016/j.nbd.2008.04.011

    Article  PubMed  CAS  Google Scholar 

  117. He W, Lu Y, Qahwash I, Hu X-Y, Chang A, Yan R (2004) Reticulon family members modulate BACE1 activity and amyloid-[beta] peptide generation. Nat Med 10(9):959–965. doi:10.1038/nm1088

    Article  PubMed  CAS  Google Scholar 

  118. Yokota T, Mishra M, Akatsu H, Tani Y, Miyauchi T, Yamamoto T, Kosaka K, Nagai Y, Sawada T, Heese K (2006) Brain site-specific gene expression analysis in Alzheimer’s disease patients. Eur J Clin Investig 36(11):820–830. doi:10.1111/j.1365-2362.2006.01722.x

    Article  CAS  Google Scholar 

  119. Shi Q, Ge Y, Sharoar MG, He W, Xiang R, Zhang Z, Hu X, Yan R (2014) Impact of RTN3 deficiency on expression of BACE1 and amyloid deposition. J Neurosci 34(42):13954–13962. doi:10.1523/jneurosci. 1588-14.2014

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  120. Serneels L, Van Biervliet J, Craessaerts K, Dejaegere T, Horre K, Van Houtvin T, Esselmann H, Paul S, Schafer MK, Berezovska O, Hyman BT, Sprangers B, Sciot R, Moons L, Jucker M, Yang Z, May PC, Karran E, Wiltfang J, D’Hooge R, De Strooper B (2009) Gamma-secretase heterogeneity in the Aph1 subunit: relevance for Alzheimer’s disease. Science 324(5927):639–642. doi:10.1126/science.1171176

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  121. Dries DR, Yu G (2008) Assembly, maturation, and trafficking of the gamma-secretase complex in Alzheimer’s disease. Curr Alzheimer Res 5(2):132–146

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  122. Yamasaki A, Eimer S, Okochi M, Smialowska A, Kaether C, Baumeister R, Haass C, Steiner H (2006) The GxGD motif of presenilin contributes to catalytic function and substrate identification of gamma-secretase. J Neurosci 26(14):3821–3828. doi:10.1523/jneurosci. 5354-05.2006

    Article  PubMed  CAS  Google Scholar 

  123. Kretner B, Fukumori A, Kuhn P-H, Pérez-Revuelta BI, Lichtenthaler SF, Haass C, Steiner H (2013) Important functional role of residue x of the presenilin GxGD protease active site motif for APP substrate cleavage specificity and substrate selectivity of γ-secretase. J Neurochem 125(1):144–156. doi:10.1111/jnc.12124

    Article  PubMed  CAS  Google Scholar 

  124. Mori H, Takio K, Ogawara M, Selkoe DJ (1992) Mass spectrometry of purified amyloid beta protein in Alzheimer’s disease. J Biol Chem 267(24):17082–17086

    PubMed  CAS  Google Scholar 

  125. Portelius E, Mattsson N, Andreasson U, Blennow K, Zetterberg H (2011) Novel aβ isoforms in Alzheimer’s disease—their role in diagnosis and treatment. Curr Pharm Des 17(25):2594–2602

    Article  PubMed  CAS  Google Scholar 

  126. Sgourakis NG, Yan Y, McCallum SA, Wang C, Garcia AE (2007) The Alzheimer’s peptides Aβ40 and 42 adopt distinct conformations in water: a combined MD/NMR study. J Mol Biol 368(5):1448–1457. doi:10.1016/j.jmb.2007.02.093

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  127. Lim KH, Collver HH, Le YTH, Nagchowdhuri P, Kenney JM (2007) Characterizations of distinct amyloidogenic conformations of the Aβ (1–40) and (1–42) peptides. Biochem Biophys Res Commun 353(2):443–449. doi:10.1016/j.bbrc.2006.12.043

    Article  PubMed  CAS  Google Scholar 

  128. Zhang Y, McLaughlin R, Goodyer C, LeBlanc A (2002) Selective cytotoxicity of intracellular amyloid β peptide1–42 through p53 and Bax in cultured primary human neurons. J Cell Biol 156(3):519–529. doi:10.1083/jcb.200110119

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  129. Mucke L, Masliah E, Yu G-Q, Mallory M, Rockenstein EM, Tatsuno G, Hu K, Kholodenko D, Johnson-Wood K, McConlogue L (2000) High-level neuronal expression of Aβ1–42 in wild-type human amyloid protein precursor transgenic mice: synaptotoxicity without plaque formation. J Neurosci 20(11):4050–4058

    PubMed  CAS  Google Scholar 

  130. Burdick D, Soreghan B, Kwon M, Kosmoski J, Knauer M, Henschen A, Yates J, Cotman C, Glabe C (1992) Assembly and aggregation properties of synthetic Alzheimer’s A4/beta amyloid peptide analogs. J Biol Chem 267(1):546–554

    PubMed  CAS  Google Scholar 

  131. Duff K, Eckman C, Zehr C, Yu X, Prada CM, Pereztur J, Hutton M, Buee L, Harigaya Y, Yager D, Morgan D, Gordon MN, Holcomb L, Refolo L, Zenk B, Hardy J, Younkin S (1996) Increased amyloid-beta 42(43) in brains of mice expressing mutant presenilin 1. Nature 383(6602):710–713. doi:10.1038/383710a0

    Article  PubMed  CAS  Google Scholar 

  132. Jan A, Gokce O, Luthi-Carter R, Lashuel HA (2008) The ratio of monomeric to aggregated forms of Abeta40 and Abeta42 is an important determinant of amyloid-beta aggregation, fibrillogenesis, and toxicity. J Biol Chem 283(42):28176–28189. doi:10.1074/jbc.M803159200

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  133. Kimberly WT, Zheng JB, Guenette SY, Selkoe DJ (2001) The intracellular domain of the beta-amyloid precursor protein is stabilized by Fe65 and translocates to the nucleus in a notch-like manner. J Biol Chem 276(43):40288–40292. doi:10.1074/jbc.C100447200

    Article  PubMed  CAS  Google Scholar 

  134. Gao Y, Pimplikar SW (2001) The gamma-secretase-cleaved C-terminal fragment of amyloid precursor protein mediates signaling to the nucleus. Proc Natl Acad Sci U S A 98(26):14979–14984. doi:10.1073/pnas.261463298

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  135. Cupers P, Orlans I, Craessaerts K, Annaert W, De Strooper B (2001) The amyloid precursor protein (APP)-cytoplasmic fragment generated by gamma-secretase is rapidly degraded but distributes partially in a nuclear fraction of neurones in culture. J Neurochem 78(5):1168–1178

    Article  PubMed  CAS  Google Scholar 

  136. Slomnicki LP, Lesniak W (2008) A putative role of the amyloid precursor protein intracellular domain (AICD) in transcription. Acta Neurobiol Exp (Wars) 68(2):219–228

    Google Scholar 

  137. Beckett C, Nalivaeva NN, Belyaev ND, Turner AJ (2012) Nuclear signalling by membrane protein intracellular domains: the AICD enigma. Cell Signal 24(2):402–409. doi:10.1016/j.cellsig.2011.10.007

    Article  PubMed  CAS  Google Scholar 

  138. Cao X, Südhof TC (2001) A transcriptively active complex of APP with Fe65 and histone acetyltransferase Tip60. Science 293(5527):115–120. doi:10.1126/science.1058783

    Article  PubMed  CAS  Google Scholar 

  139. Liu Q, Zerbinatti CV, Zhang J, Hoe H-S, Wang B, Cole SL, Herz J, Muglia L, Bu G (2007) Amyloid precursor protein regulates brain apolipoprotein E and cholesterol metabolism through lipoprotein receptor LRP1. Neuron 56(1):66–78. doi:10.1016/j.neuron.2007.08.008

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  140. von Rotz RC, Kohli BM, Bosset J, Meier M, Suzuki T, Nitsch RM, Konietzko U (2004) The APP intracellular domain forms nuclear multiprotein complexes and regulates the transcription of its own precursor. J Cell Sci 117(19):4435–4448. doi:10.1242/jcs.01323

    Article  CAS  Google Scholar 

  141. Ryan KA, Pimplikar SW (2005) Activation of GSK-3 and phosphorylation of CRMP2 in transgenic mice expressing APP intracellular domain. J Cell Biol 171(2):327–335. doi:10.1083/jcb.200505078

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  142. Kim H-S, Kim E-M, Lee J-P, Park CH, Kim S, Seo J-H, Chang K-A, Yu E, Jeong S-J, Chong YH, Suh Y-H (2003) C-terminal fragments of amyloid precursor protein exert neurotoxicity by inducing glycogen synthase kinase-3β expression. FASEB J 17(13):1951–1953. doi: 10.1096/fj.03-0106fje

  143. Checler F, Sunyach C, Pardossi-Piquard R, Sevalle J, Vincent B, Kawarai T, Girardot N, St George-Hyslop P, da Costa CA (2007) The gamma/epsilon-secretase-derived APP intracellular domain fragments regulate p53. Curr Alzheimer Res 4(4):423–426

    Article  PubMed  CAS  Google Scholar 

  144. Y-w Z, Wang R, Liu Q, Zhang H, Liao F-F, Xu H (2007) Presenilin/γ-secretase-dependent processing of β-amyloid precursor protein regulates EGF receptor expression. Proc Natl Acad Sci U S A 104(25):10613–10618. doi:10.1073/pnas.0703903104

    Article  CAS  Google Scholar 

  145. Muller T, Loosse C, Schrotter A, Schnabel A, Helling S, Egensperger R, Marcus K (2011) The AICD interacting protein DAB1 is up-regulated in Alzheimer frontal cortex brain samples and causes deregulation of proteins involved in gene expression changes. Curr Alzheimer Res 8(5):573–582

    Article  PubMed  CAS  Google Scholar 

  146. Nakayama K, Ohkawara T, Hiratochi M, Koh CS, Nagase H (2008) The intracellular domain of amyloid precursor protein induces neuron-specific apoptosis. Neurosci Lett 444(2):127–131. doi:10.1016/j.neulet.2008.08.034

    Article  PubMed  CAS  Google Scholar 

  147. Roncarati R, Sestan N, Scheinfeld MH, Berechid BE, Lopez PA, Meucci O, McGlade JC, Rakic P, D’Adamio L (2002) The gamma-secretase-generated intracellular domain of beta-amyloid precursor protein binds Numb and inhibits Notch signaling. Proc Natl Acad Sci U S A 99(10):7102–7107. doi:10.1073/pnas.102192599

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  148. Hu QD, Ang BT, Karsak M, Hu WP, Cui XY, Duka T, Takeda Y, Chia W, Sankar N, Ng YK, Ling EA, Maciag T, Small D, Trifonova R, Kopan R, Okano H, Nakafuku M, Chiba S, Hirai H, Aster JC, Schachner M, Pallen CJ, Watanabe K, Xiao ZC (2003) F3/contactin acts as a functional ligand for Notch during oligodendrocyte maturation. Cell 115(2):163–175

    Article  PubMed  CAS  Google Scholar 

  149. Ghosal K, Vogt DL, Liang M, Shen Y, Lamb BT, Pimplikar SW (2009) Alzheimer’s disease-like pathological features in transgenic mice expressing the APP intracellular domain. Proc Natl Acad Sci U S A 106(43):18367–18372. doi:10.1073/pnas.0907652106

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  150. Konietzko U (2012) AICD nuclear signaling and its possible contribution to Alzheimer’s disease. Curr Alzheimer Res 9(2):200–216

    Article  PubMed  CAS  Google Scholar 

  151. Yankner B, Duffy L, Kirschner D (1990) Neurotrophic and neurotoxic effects of amyloid beta protein: reversal by tachykinin neuropeptides. Science 250(4978):279–282. doi:10.1126/science.2218531

    Article  PubMed  CAS  Google Scholar 

  152. Whitson J, Selkoe D, Cotman C (1989) Amyloid beta protein enhances the survival of hippocampal neurons in vitro. Science 243(4897):1488–1490. doi:10.1126/science.2928783

    Article  PubMed  CAS  Google Scholar 

  153. Chen Y, Dong C (2008) A[beta]40 promotes neuronal cell fate in neural progenitor cells. Cell Death Differ 16(3):386–394

    Article  PubMed  CAS  Google Scholar 

  154. Giuffrida M, Tomasello F, Caraci F, Chiechio S, Nicoletti F, Copani A (2012) Beta-amyloid monomer and insulin/IGF-1 signaling in Alzheimer’s disease. Mol Neurobiol 46(3):605–613. doi:10.1007/s12035-012-8313-6

    Article  PubMed  CAS  Google Scholar 

  155. Calafiore M, Battaglia G, Zappala A, Trovato-Salinaro E, Caraci F, Caruso M, Vancheri C, Sortino MA, Nicoletti F, Copani A (2006) Progenitor cells from the adult mouse brain acquire a neuronal phenotype in response to beta-amyloid. Neurobiol Aging 27(4):606–613. doi:10.1016/j.neurobiolaging.2005.03.019

    Article  PubMed  CAS  Google Scholar 

  156. Lopez-Toledano MA, Shelanski ML (2004) Neurogenic effect of beta-amyloid peptide in the development of neural stem cells. J Neurosci 24(23):5439–5444. doi:10.1523/JNEUROSCI. 0974-04.2004

    Article  PubMed  CAS  Google Scholar 

  157. Reddy PH (2009) Amyloid beta, mitochondrial structural and functional dynamics in Alzheimer’s disease. Exp Neurol 218(2):286–292. doi:10.1016/j.expneurol.2009.03.042

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  158. Butterfield DA, Yatin SM, Link CD (1999) In vitro and in vivo protein oxidation induced by Alzheimer’s disease amyloid beta-peptide (1-42). Ann N Y Acad Sci 893:265–268

    Article  PubMed  CAS  Google Scholar 

  159. Yatin SM, Varadarajan S, Link CD, Butterfield DA (1999) In vitro and in vivo oxidative stress associated with Alzheimer’s amyloid beta-peptide (1-42). Neurobiol Aging 20(3):325–330, discussion 339–342

    Article  PubMed  CAS  Google Scholar 

  160. Yatin SM, Aksenova M, Aksenov M, Markesbery WR, Aulick T, Butterfield DA (1998) Temporal relations among amyloid beta-peptide-induced free-radical oxidative stress, neuronal toxicity, and neuronal defensive responses. J Mol Neurosci 11(3):183–197. doi:10.1385/JMN:11:3:183

    Article  PubMed  CAS  Google Scholar 

  161. Almeida CG, Takahashi RH, Gouras GK (2006) β-amyloid accumulation impairs multivesicular body sorting by inhibiting the ubiquitin-proteasome system. J Neurosci 26(16):4277–4288. doi:10.1523/jneurosci. 5078-05.2006

    Article  PubMed  CAS  Google Scholar 

  162. Busciglio J, Lorenzo A, Yeh J, Yankner BA (1995) β-Amyloid fibrils induce tau phosphorylation and loss of microtubule binding. Neuron 14(4):879–888. doi:10.1016/0896-6273(95)90232-5

    Article  PubMed  CAS  Google Scholar 

  163. Zempel H, Thies E, Mandelkow E, Mandelkow EM (2010) Abeta oligomers cause localized Ca(2+) elevation, missorting of endogenous Tau into dendrites, Tau phosphorylation, and destruction of microtubules and spines. J Neurosci 30(36):11938–11950. doi:10.1523/jneurosci. 2357-10.2010

    Article  PubMed  CAS  Google Scholar 

  164. Butterfield DA, Drake J, Pocernich C, Castegna A (2001) Evidence of oxidative damage in Alzheimer’s disease brain: central role for amyloid β-peptide. Trends Mol Med 7(12):548–554. doi:10.1016/S1471-4914(01)02173-6

    Article  PubMed  CAS  Google Scholar 

  165. Axelsen PH, Komatsu H, Murray IVJ (2011) Oxidative stress and cell membranes in the pathogenesis of Alzheimer’s disease. Physiology 26(1):54–69. doi:10.1152/physiol.00024.2010

    Article  PubMed  CAS  Google Scholar 

  166. Adibhatla RM, Hatcher JF (2010) Lipid oxidation and peroxidation in CNS health and disease: from molecular mechanisms to therapeutic opportunities. Antioxid Redox Signal 12(1):125–169. doi:10.1089/ars.2009.2668

    Article  PubMed  CAS  Google Scholar 

  167. Rauchova H, Vokurkova M, Koudelova J (2012) Hypoxia-induced lipid peroxidation in the brain during postnatal ontogenesis. Physiol Res 61(Suppl 1):S89–S101

    PubMed  CAS  Google Scholar 

  168. De Georgia MA (2014) Brain tissue oxygen monitoring in neurocritical care. J Intensive Care Med. doi:10.1177/0885066614529254

    PubMed  Google Scholar 

  169. Radak D, Resanovic I, Isenovic ER (2014) Link between oxidative stress and acute brain ischemia. Angiology 65(8):667–676. doi:10.1177/0003319713506516

    Article  PubMed  CAS  Google Scholar 

  170. Rodrigo R, Fernandez-Gajardo R, Gutierrez R, Matamala JM, Carrasco R, Miranda-Merchak A, Feuerhake W (2013) Oxidative stress and pathophysiology of ischemic stroke: novel therapeutic opportunities. CNS Neurol Disord Drug Targets 12(5):698–714

    Article  PubMed  CAS  Google Scholar 

  171. Smith MA, Hirai K, Hsiao K, Pappolla MA, Harris PLR, Siedlak SL, Tabaton M, Perry G (1998) Amyloid-β deposition in Alzheimer transgenic mice is associated with oxidative stress. J Neurochem 70(5):2212–2215. doi:10.1046/j.1471-4159.1998.70052212.x

    Article  PubMed  CAS  Google Scholar 

  172. Xie H, Hou S, Jiang J, Sekutowicz M, Kelly J, Bacskai BJ (2013) Rapid cell death is preceded by amyloid plaque-mediated oxidative stress. Proc Natl Acad Sci U S A 110(19):7904–7909. doi:10.1073/pnas.1217938110

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  173. Behl C, Davis JB, Lesley R, Schubert D (1994) Hydrogen peroxide mediates amyloid β protein toxicity. Cell 77(6):817–827. doi:10.1016/0092-8674(94)90131-7

    Article  PubMed  CAS  Google Scholar 

  174. Kontush A, Berndt C, Weber W, Akopyan V, Arlt S, Schippling S, Beisiegel U (2001) Amyloid-β is an antioxidant for lipoproteins in cerebrospinal fluid and plasma. Free Radic Biol Med 30(1):119–128. doi:10.1016/S0891-5849(00)00458-5

    Article  PubMed  CAS  Google Scholar 

  175. Kontush A, Donarski N, Beisiegel U (2001) Resistance of human cerebrospinal fluid to in vitro oxidation is directly related to its amyloid-β content. Free Radic Res 35(5):507–517. doi:10.1080/10715760100301521

    Article  PubMed  CAS  Google Scholar 

  176. Zou K, Gong JS, Yanagisawa K, Michikawa M (2002) A novel function of monomeric amyloid β-protein serving as an antioxidant molecule against metal-induced oxidative damage. J Neurosci 22(12):4833–4841

    PubMed  CAS  Google Scholar 

  177. Smith MA, Casadesus G, Joseph JA, Perry G (2002) Amyloid-β and τ serve antioxidant functions in the aging and Alzheimer brain. Free Radic Biol Med 33(9):1194–1199. doi:10.1016/S0891-5849(02)01021-3

    Article  PubMed  CAS  Google Scholar 

  178. Markesbery WR (1997) Oxidative stress hypothesis in Alzheimer’s disease. Free Radic Biol Med 23(1):134–147. doi:10.1016/S0891-5849(96)00629-6

    Article  PubMed  CAS  Google Scholar 

  179. Skaper SD (2012) Alzheimer’s disease and amyloid: culprit or coincidence. Int Rev Neurobiol 102:277–316

    Article  PubMed  CAS  Google Scholar 

  180. Golde TE, Dickson D, Hutton M (2006) Filling the gaps in the a cascade hypothesis of Alzheimer’s disease. Curr Alzheimer Res 3(5):421–430

    Article  PubMed  CAS  Google Scholar 

  181. Drachman DA (2014) The amyloid hypothesis, time to move on: amyloid is the downstream result, not cause, of Alzheimer’s disease. Alzheimers Dement 10(3):372–380

    Article  PubMed  Google Scholar 

  182. Krstic D, Knuesel I (2013) The airbag problem-a potential culprit for bench-to-bedside translational efforts: relevance for Alzheimer’s disease. Acta Neuropathol Commun 1(1):62. doi:10.1186/2051-5960-1-62

    Article  PubMed Central  PubMed  Google Scholar 

  183. Zempel H, Mandelkow E-M (2011) Linking amyloid-β and tau: amyloid-β induced synaptic dysfunction via local wreckage of the neuronal cytoskeleton. Neurodegener Dis 10(1–4):64–72

    PubMed  Google Scholar 

  184. Zempel H, Luedtke J, Kumar Y, Biernat J, Dawson H, Mandelkow E, Mandelkow EM (2013) Amyloid-beta oligomers induce synaptic damage via Tau-dependent microtubule severing by TTLL6 and spastin. EMBO J 32(22):2920–2937. doi:10.1038/emboj.2013.207

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  185. Ferreira A, Lu Q, Orecchio L, Kosik KS (1997) Selective phosphorylation of adult tau isoforms in mature hippocampal neurons exposed to fibrillar Aβ. Mol Cell Neurosci 9(3):220–234. doi:10.1006/mcne.1997.0615

    Article  PubMed  CAS  Google Scholar 

  186. Yu W, Polepalli J, Wagh D, Rajadas J, Malenka R, Lu B (2012) A critical role for the PAR-1/MARK-tau axis in mediating the toxic effects of Aβ on synapses and dendritic spines. Hum Mol Genet 21(6):1384–1390

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  187. Mairet-Coello G, Courchet J, Pieraut S, Courchet V, Maximov A, Polleux F (2013) The CAMKK2-AMPK kinase pathway mediates the synaptotoxic effects of Aβ oligomers through tau phosphorylation. Neuron 78(1):94–108

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  188. Zheng W-H, Bastianetto S, Mennicken F, Ma W, Kar S (2002) Amyloid β peptide induces tau phosphorylation and loss of cholinergic neurons in rat primary septal cultures. Neuroscience 115(1):201–211

    Article  PubMed  CAS  Google Scholar 

  189. Lewis J, Dickson DW, Lin W-L, Chisholm L, Corral A, Jones G, Yen S-H, Sahara N, Skipper L, Yager D, Eckman C, Hardy J, Hutton M, McGowan E (2001) Enhanced neurofibrillary degeneration in transgenic mice expressing mutant tau and APP. Science 293(5534):1487–1491. doi:10.1126/science.1058189

    Article  PubMed  CAS  Google Scholar 

  190. Spillantini MG, Goedert M (1998) Tau protein pathology in neurodegenerative diseases. Trends Neurosci 21(10):428–433. doi:10.1016/S0166-2236(98)01337-X

    Article  PubMed  CAS  Google Scholar 

  191. Mandelkow E-M, Mandelkow E (1998) Tau in Alzheimer’s disease. Trends Cell Biol 8(11):425–427. doi:10.1016/S0962-8924(98)01368-3

    Article  PubMed  CAS  Google Scholar 

  192. Tolnay P (1999) Review: tau protein pathology in Alzheimer’s disease and related disorders. Neuropathol Appl Neurobiol 25(3):171–187. doi:10.1046/j.1365-2990.1999.00182.x

    Article  PubMed  CAS  Google Scholar 

  193. Brandt R, Hundelt M, Shahani N (2005) Tau alteration and neuronal degeneration in tauopathies: mechanisms and models. Biochim Biophys Acta (BBA)-Mol Basis Dis 1739(2):331–354

    Article  CAS  Google Scholar 

  194. Ludolph A, Kassubek J, Landwehrmeyer B, Mandelkow E, Mandelkow EM, Burn D, Caparros‐Lefebvre D, Frey K, De Yebenes J, Gasser T (2009) Tauopathies with parkinsonism: clinical spectrum, neuropathologic basis, biological markers, and treatment options. Eur J Neurol 16(3):297–309

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  195. Ihara Y, Abraham C, Selkoe DJ (1983) Antibodies to paired helical filaments in Alzheimer’s disease do not recognize normal brain proteins. Nature 304(5928):727–730

    Article  PubMed  CAS  Google Scholar 

  196. Grundke-Iqbal I, Iqbal K, Quinlan M, Tung YC, Zaidi MS, Wisniewski HM (1986) Microtubule-associated protein tau. A component of Alzheimer paired helical filaments. J Biol Chem 261(13):6084–6089

    PubMed  CAS  Google Scholar 

  197. Grundke-Iqbal I, Iqbal K, Tung YC, Quinlan M, Wisniewski HM, Binder LI (1986) Abnormal phosphorylation of the microtubule-associated protein tau (tau) in Alzheimer cytoskeletal pathology. Proc Natl Acad Sci U S A 83(13):4913–4917

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  198. Cleveland DW, Hwo S-Y, Kirschner MW (1977) Purification of tau, a microtubule-associated protein that induces assembly of microtubules from purified tubulin. J Mol Biol 116(2):207–225

    Article  PubMed  CAS  Google Scholar 

  199. Weingarten MD, Lockwood AH, Hwo SY, Kirschner MW (1975) A protein factor essential for microtubule assembly. Proc Natl Acad Sci U S A 72(5):1858–1862

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  200. Witman GB, Cleveland DW, Weingarten MD, Kirschner MW (1976) Tubulin requires tau for growth onto microtubule initiating sites. Proc Natl Acad Sci U S A 73(11):4070–4074

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  201. Schoenfeld TA, Obar RA (1994) Diverse distribution and function of fibrous microtubule-associated proteins in the nervous system. Int Rev Cytol 151:67–137

    Article  PubMed  CAS  Google Scholar 

  202. Buée L, Bussière T, Buée-Scherrer V, Delacourte A, Hof PR (2000) Tau protein isoforms, phosphorylation and role in neurodegenerative disorders. Brain Res Rev 33(1):95–130. doi:10.1016/S0165-0173(00)00019-9

    Article  PubMed  Google Scholar 

  203. Binder LI, Frankfurter A, Rebhun LI (1985) The distribution of tau in the mammalian central nervous system. J Cell Biol 101(4):1371–1378. doi:10.1083/jcb.101.4.1371

    Article  PubMed  CAS  Google Scholar 

  204. González-Billault C, Engelke M, Jiménez-Mateos EM, Wandosell F, Cáceres A, Avila J (2002) Participation of structural microtubule-associated proteins (MAPs) in the development of neuronal polarity. J Neurosci Res 67(6):713–719. doi:10.1002/jnr.10161

    Article  PubMed  CAS  Google Scholar 

  205. Caceres A, Mautino J, Kosik KS (1992) Suppression of MAP2 in cultured cerebellar macroneurons inhibits minor neurite formation. Neuron 9(4):607–618. doi:10.1016/0896-6273(92)90025-9

    Article  PubMed  CAS  Google Scholar 

  206. Liu C-wA, Lee G, Jay DG (1999) Tau is required for neurite outgrowth and growth cone motility of chick sensory neurons. Cell Motil Cytoskeleton 43(3):232–242. doi:10.1002/(SICI)1097-0169(1999)43:3<232::AID-CM6>3.0.CO;2-7

    Article  PubMed  CAS  Google Scholar 

  207. Kempf M, Clement A, Faissner A, Lee G, Brandt R (1996) Tau binds to the distal axon early in development of polarity in a microtubule- and microfilament-dependent manner. J Neurosci 16(18):5583–5592

    PubMed  CAS  Google Scholar 

  208. Ebneth A, Godemann R, Stamer K, Illenberger S, Trinczek B, Mandelkow E-M, Mandelkow E (1998) Overexpression of Tau protein inhibits kinesin-dependent trafficking of vesicles, mitochondria, and endoplasmic reticulum: implications for Alzheimer’s disease. J Cell Biol 143(3):777–794. doi:10.1083/jcb.143.3.777

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  209. Terwel D, Dewachter I, Van Leuven F (2002) Axonal transport, tau protein, and neurodegeneration in Alzheimer’s disease. Neuromol Med 2(2):151–165. doi:10.1385/NMM:2:2:151

    Article  CAS  Google Scholar 

  210. Kanaan NM, Pigino GF, Brady ST, Lazarov O, Binder LI, Morfini GA (2013) Axonal degeneration in Alzheimer’s disease: when signaling abnormalities meet the axonal transport system. Exp Neurol 246:44–53. doi:10.1016/j.expneurol.2012.06.003

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  211. Morfini GA, Burns M, Binder LI, Kanaan NM, LaPointe N, Bosco DA, Brown RH, Brown H, Tiwari A, Hayward L, Edgar J, Nave K-A, Garberrn J, Atagi Y, Song Y, Pigino G, Brady ST (2009) Axonal transport defects in neurodegenerative diseases. J Neurosci 29(41):12776–12786. doi:10.1523/jneurosci. 3463-09.2009

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  212. De Vos KJ, Grierson AJ, Ackerley S, Miller CCJ (2008) Role of axonal transport in neurodegenerative diseases. Annu Rev Neurosci 31(1):151–173. doi:10.1146/annurev.neuro.31.061307.090711

    Article  PubMed  CAS  Google Scholar 

  213. Hirokawa N, Shiomura Y, Okabe S (1988) Tau proteins: the molecular structure and mode of binding on microtubules. J Cell Biol 107(4):1449–1459

    Article  PubMed  CAS  Google Scholar 

  214. Avila J, Lucas JJ, Perez M, Hernandez F (2004) Role of tau protein in both physiological and pathological conditions. Physiol Rev 84(2):361–384. doi:10.1152/physrev.00024.2003

    Article  PubMed  CAS  Google Scholar 

  215. Goedert M, Spillantini MG, Jakes R, Rutherford D, Crowther RA (1989) Multiple isoforms of human microtubule-associated protein tau: sequences and localization in neurofibrillary tangles of Alzheimer’s disease. Neuron 3(4):519–526. doi:10.1016/0896-6273(89)90210-9

    Article  PubMed  CAS  Google Scholar 

  216. Goedert M, Spillantini MG, Cairns NJ, Crowther RA (1992) Tau proteins of Alzheimer paired helical filaments: abnormal phosphorylation of all six brain isoforms. Neuron 8(1):159–168. doi:10.1016/0896-6273(92)90117-V

    Article  PubMed  CAS  Google Scholar 

  217. Avila J (2006) Tau phosphorylation and aggregation in Alzheimer’s disease pathology. FEBS Lett 580(12):2922–2927. doi:10.1016/j.febslet.2006.02.067

    Article  PubMed  CAS  Google Scholar 

  218. Ferrer I, Gomez-Isla T, Puig B, Freixes M, Ribe E, Dalfo E, Avila J (2005) Current advances on different kinases involved in tau phosphorylation, and implications in Alzheimer’s disease and tauopathies. Curr Alzheimers Res 2(1):3–18

    Article  CAS  Google Scholar 

  219. Gong CX, Iqbal K (2008) Hyperphosphorylation of microtubule-associated protein tau: a promising therapeutic target for Alzheimer disease. Curr Med Chem 15(23):2321–2328

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  220. Schwalbe M, Biernat J, Bibow S, Ozenne V, Jensen MR, Kadavath H, Blackledge M, Mandelkow E, Zweckstetter M (2013) Phosphorylation of human tau protein by microtubule affinity-regulating kinase 2. Biochemistry (Mosc) 52(50):9068–9079. doi:10.1021/bi401266n

    Article  CAS  Google Scholar 

  221. Drewes G, Lichtenberg-Kraag B, Doring F, Mandelkow EM, Biernat J, Goris J, Doree M, Mandelkow E (1992) Mitogen activated protein (MAP) kinase transforms tau protein into an Alzheimer-like state. EMBO J 11(6):2131–2138

    PubMed Central  PubMed  CAS  Google Scholar 

  222. Mandelkow EM, Drewes G, Biernat J, Gustke N, Van Lint J, Vandenheede JR, Mandelkow E (1992) Glycogen synthase kinase-3 and the Alzheimer-like state of microtubule-associated protein tau. FEBS Lett 314(3):315–321

    Article  PubMed  CAS  Google Scholar 

  223. Demuro A, Parker I, Stutzmann GE (2010) Calcium signaling and amyloid toxicity in Alzheimer disease. J Biol Chem 285(17):12463–12468. doi:10.1074/jbc.R109.080895

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  224. Lin K-F, Chang RC-C, Suen K-C, So K-F, Hugon J (2004) Modulation of calcium/calmodulin kinase-II provides partial neuroprotection against beta-amyloid peptide toxicity. Eur J Neurosci 19(8):2047–2055. doi:10.1111/j.0953-816X.2004.03245.x

    Article  PubMed  Google Scholar 

  225. Steen E, Terry BM, Rivera EJ, Cannon JL, Neely TR, Tavares R, Xu XJ, Wands JR, de la Monte SM (2005) Impaired insulin and insulin-like growth factor expression and signaling mechanisms in Alzheimer’s disease—is this type 3 diabetes? J Alzheimers Dis 7(1):63–80

    PubMed  CAS  Google Scholar 

  226. Correia SC, Santos RX, Perry G, Zhu X, Moreira PI, Smith MA (2011) Insulin-resistant brain state: the culprit in sporadic Alzheimer’s disease? Ageing Res Rev 10(2):264–273. doi:10.1016/j.arr.2011.01.001

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  227. Blass JP (2001) Brain metabolism and brain disease: is metabolic deficiency the proximate cause of Alzheimer dementia? J Neurosci Res 66(5):851–856. doi:10.1002/jnr.10087

    Article  PubMed  CAS  Google Scholar 

  228. Lindwall G, Cole RD (1984) Phosphorylation affects the ability of tau protein to promote microtubule assembly. J Biol Chem 259(8):5301–5305

    PubMed  CAS  Google Scholar 

  229. Gustke N, Steiner B, Mandelkow EM, Biernat J, Meyer HE, Goedert M, Mandelkow E (1992) The Alzheimer-like phosphorylation of tau protein reduces microtubule binding and involves Ser-Pro and Thr-Pro motifs. FEBS Lett 307(2):199–205

    Article  PubMed  CAS  Google Scholar 

  230. Liu F, Grundke-Iqbal I, Iqbal K, Gong CX (2005) Contributions of protein phosphatases PP1, PP2A, PP2B and PP5 to the regulation of tau phosphorylation. Eur J Neurosci 22(8):1942–1950. doi:10.1111/j.1460-9568.2005.04391.x

    Article  PubMed  Google Scholar 

  231. Watanabe A, Takio K, Ihara Y (1999) Deamidation and isoaspartate formation in smeared tau in paired helical filaments: unusual properties of the microtubule-binding domain of tau. J Biol Chem 274(11):7368–7378. doi:10.1074/jbc.274.11.7368

    Article  PubMed  CAS  Google Scholar 

  232. Min S-W, Cho S-H, Zhou Y, Schroeder S, Haroutunian V, Seeley WW, Huang EJ, Shen Y, Masliah E, Mukherjee C, Meyers D, Cole PA, Ott M, Gan L (2010) Acetylation of tau inhibits its degradation and contributes to tauopathy. Neuron 67(6):953–966. doi:10.1016/j.neuron.2010.08.044

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  233. Cohen TJ, Guo JL, Hurtado DE, Kwong LK, Mills IP, Trojanowski JQ, Lee VMY (2011) The acetylation of tau inhibits its function and promotes pathological tau aggregation. Nat Commun 2:252. doi:10.1038/ncomms1255

    Article  PubMed Central  PubMed  Google Scholar 

  234. Dickey CA, Kamal A, Lundgren K, Klosak N, Bailey RM, Dunmore J, Ash P, Shoraka S, Zlatkovic J, Eckman CB, Patterson C, Dickson DW, Nahman NS Jr, Hutton M, Burrows F, Petrucelli L (2007) The high-affinity HSP90-CHIP complex recognizes and selectively degrades phosphorylated tau client proteins. J Clin Invest 117(3):648–658. doi:10.1172/JCI29715

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  235. Tompa P (2002) Intrinsically unstructured proteins. Trends Biochem Sci 27(10):527–533. doi:10.1016/S0968-0004(02)02169-2

    Article  PubMed  CAS  Google Scholar 

  236. Uversky VN, Oldfield CJ, Dunker AK (2008) Intrinsically disordered proteins in human diseases: introducing the D2 concept. Annu Rev Biophys 37(1):215–246. doi:10.1146/annurev.biophys.37.032807.125924

    Article  PubMed  CAS  Google Scholar 

  237. Skrabana R, Sevcik J, Novak M (2006) Intrinsically disordered proteins in the neurodegenerative processes: formation of tau protein paired helical filaments and their analysis. Cell Mol Neurobiol 26(7–8):1083–1095. doi:10.1007/s10571-006-9083-3

    Article  CAS  Google Scholar 

  238. Dyson HJ, Wright PE (2005) Intrinsically unstructured proteins and their functions. Nat Rev Mol Cell Biol 6(3):197–208

    Article  PubMed  CAS  Google Scholar 

  239. Uversky VN (2010) Targeting intrinsically disordered proteins in neurodegenerative and protein dysfunction diseases: another illustration of the D(2) concept. Expert Rev Proteomics 7(4):543–564. doi:10.1586/epr.10.36

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  240. Nonaka T, Masuda-Suzukake M, Arai T, Hasegawa Y, Akatsu H, Obi T, Yoshida M, Murayama S, Mann DM, Akiyama H, Hasegawa M (2013) Prion-like properties of pathological TDP-43 aggregates from diseased brains. Cell Rep 4(1):124–134. doi:10.1016/j.celrep.2013.06.007

    Article  PubMed  CAS  Google Scholar 

  241. Tsuiji H, Iguchi Y, Furuya A, Kataoka A, Hatsuta H, Atsuta N, Tanaka F, Hashizume Y, Akatsu H, Murayama S, Sobue G, Yamanaka K (2013) Spliceosome integrity is defective in the motor neuron diseases ALS and SMA. EMBO Mol Med 5(2):221–234. doi:10.1002/emmm.201202303

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  242. Eisele YS, Bolmont T, Heikenwalder M, Langer F, Jacobson LH, Yan ZX, Roth K, Aguzzi A, Staufenbiel M, Walker LC, Jucker M (2009) Induction of cerebral beta-amyloidosis: intracerebral versus systemic Abeta inoculation. Proc Natl Acad Sci U S A 106(31):12926–12931. doi:10.1073/pnas.0903200106

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  243. Langer F, Eisele YS, Fritschi SK, Staufenbiel M, Walker LC, Jucker M (2011) Soluble Abeta seeds are potent inducers of cerebral beta-amyloid deposition. J Neurosci 31(41):14488–14495. doi:10.1523/JNEUROSCI. 3088-11.2011

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  244. Brundin P, Melki R, Kopito R (2010) Prion-like transmission of protein aggregates in neurodegenerative diseases. Nat Rev Mol Cell Biol 11(4):301–307. doi:10.1038/nrm2873

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  245. Jucker M, Walker LC (2013) Self-propagation of pathogenic protein aggregates in neurodegenerative diseases. Nature 501(7465):45–51. doi:10.1038/nature12481

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  246. Braak H, Del Tredici K (2011) Alzheimer’s pathogenesis: is there neuron-to-neuron propagation? Acta Neuropathol 121(5):589–595. doi:10.1007/s00401-011-0825-z

    Article  PubMed  CAS  Google Scholar 

  247. Lee S-J, Desplats P, Sigurdson C, Tsigelny I, Masliah E (2010) Cell-to-cell transmission of non-prion protein aggregates. Nat Rev Neurol 6(12):702–706

    Article  PubMed  CAS  Google Scholar 

  248. Prusiner SB (2012) A unifying role for prions in neurodegenerative diseases. Science 336(6088):1511–1513

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  249. Goedert M, Clavaguera F, Tolnay M (2010) The propagation of prion-like protein inclusions in neurodegenerative diseases. Trends Neurosci 33(7):317–325. doi:10.1016/j.tins.2010.04.003

    Article  PubMed  CAS  Google Scholar 

  250. Eisele YS, Obermuller U, Heilbronner G, Baumann F, Kaeser SA, Wolburg H, Walker LC, Staufenbiel M, Heikenwalder M, Jucker M (2010) Peripherally applied Abeta-containing inoculates induce cerebral beta-amyloidosis. Science 330(6006):980–982. doi:10.1126/science.1194516

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  251. Meyer-Luehmann M, Coomaraswamy J, Bolmont T, Kaeser S, Schaefer C, Kilger E, Neuenschwander A, Abramowski D, Frey P, Jaton AL, Vigouret JM, Paganetti P, Walsh DM, Mathews PM, Ghiso J, Staufenbiel M, Walker LC, Jucker M (2006) Exogenous induction of cerebral beta-amyloidogenesis is governed by agent and host. Science 313(5794):1781–1784. doi:10.1126/science.1131864

    Article  PubMed  CAS  Google Scholar 

  252. Soto C, Estrada L, Castilla J (2006) Amyloids, prions and the inherent infectious nature of misfolded protein aggregates. Trends Biochem Sci 31(3):150–155. doi:10.1016/j.tibs.2006.01.002

    Article  PubMed  CAS  Google Scholar 

  253. Clavaguera F, Bolmont T, Crowther RA, Abramowski D, Frank S, Probst A, Fraser G, Stalder AK, Beibel M, Staufenbiel M, Jucker M, Goedert M, Tolnay M (2009) Transmission and spreading of tauopathy in transgenic mouse brain. Nat Cell Biol 11(7):909–913. doi:10.1038/ncb1901

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  254. Frost B, Jacks RL, Diamond MI (2009) Propagation of tau misfolding from the outside to the inside of a cell. J Biol Chem 284(19):12845–12852. doi:10.1074/jbc.M808759200

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  255. Guo JL, Lee VM-Y (2011) Seeding of normal tau by pathological tau conformers drives pathogenesis of Alzheimer-like tangles. J Biol Chem 286(17):15317–15331. doi:10.1074/jbc.M110.209296

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  256. Clavaguera F, Akatsu H, Fraser G, Crowther RA, Frank S, Hench J, Probst A, Winkler DT, Reichwald J, Staufenbiel M, Ghetti B, Goedert M, Tolnay M (2013) Brain homogenates from human tauopathies induce tau inclusions in mouse brain. Proc Natl Acad Sci U S A 110(23):9535–9540. doi:10.1073/pnas.1301175110

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  257. Desplats P, Lee HJ, Bae EJ, Patrick C, Rockenstein E, Crews L, Spencer B, Masliah E, Lee SJ (2009) Inclusion formation and neuronal cell death through neuron-to-neuron transmission of alpha-synuclein. Proc Natl Acad Sci U S A 106(31):13010–13015. doi:10.1073/pnas.0903691106

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  258. Mougenot A-L, Nicot S, Bencsik A, Morignat E, Verchère J, Lakhdar L, Legastelois S, Baron T (2012) Prion-like acceleration of a synucleinopathy in a transgenic mouse model. Neurobiol Aging 33(9):2225–2228. doi:10.1016/j.neurobiolaging.2011.06.022

    Article  PubMed  CAS  Google Scholar 

  259. Masuda-Suzukake M, Nonaka T, Hosokawa M, Oikawa T, Arai T, Akiyama H, Mann DM, Hasegawa M (2013) Prion-like spreading of pathological alpha-synuclein in brain. Brain 136(Pt 4):1128–1138. doi:10.1093/brain/awt037

    Article  PubMed Central  PubMed  Google Scholar 

  260. Ren PH, Lauckner JE, Kachirskaia I, Heuser JE, Melki R, Kopito RR (2009) Cytoplasmic penetration and persistent infection of mammalian cells by polyglutamine aggregates. Nat Cell Biol 11(2):219–225. doi:10.1038/ncb1830

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  261. Münch C, O’Brien J, Bertolotti A (2011) Prion-like propagation of mutant superoxide dismutase-1 misfolding in neuronal cells. Proc Natl Acad Sci U S A 108(9):3548–3553. doi:10.1073/pnas.1017275108

    Article  PubMed Central  PubMed  Google Scholar 

  262. Moreno-Gonzalez I, Soto C (2011) Misfolded protein aggregates: mechanisms, structures and potential for disease transmission. Semin Cell Dev Biol 22(5):482–487. doi:10.1016/j.semcdb.2011.04.002

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  263. Jaiswal JK, Fix M, Takano T, Nedergaard M, Simon SM (2007) Resolving vesicle fusion from lysis to monitor calcium-triggered lysosomal exocytosis in astrocytes. Proc Natl Acad Sci U S A 104(35):14151–14156. doi:10.1073/pnas.0704935104

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  264. Mohamed NV, Herrou T, Plouffe V, Piperno N, Leclerc N (2013) Spreading of tau pathology in Alzheimer’s disease by cell-to-cell transmission. Eur J Neurosci 37(12):1939–1948. doi:10.1111/ejn.12229

    Article  PubMed  Google Scholar 

  265. Gousset K, Schiff E, Langevin C, Marijanovic Z, Caputo A, Browman DT, Chenouard N, de Chaumont F, Martino A, Enninga J, Olivo-Marin JC, Mannel D, Zurzolo C (2009) Prions hijack tunnelling nanotubes for intercellular spread. Nat Cell Biol 11(3):328–336. doi:10.1038/ncb1841

    Article  PubMed  CAS  Google Scholar 

  266. Ciechanover A, Brundin P (2003) The ubiquitin proteasome system in neurodegenerative diseases: sometimes the chicken, sometimes the egg. Neuron 40(2):427–446. doi:10.1016/S0896-6273(03)00606-8

    Article  PubMed  CAS  Google Scholar 

  267. Manavalan A, Mishra M, Feng L, Sze SK, Akatsu H, Heese K (2013) Brain site-specific proteome changes in aging-related dementia. Exp Mol Med 45:e39. doi:10.1038/emm.2013.76

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  268. Hershko A, Ciechanover A, Rose IA (1979) Resolution of the ATP-dependent proteolytic system from reticulocytes: a component that interacts with ATP. Proc Natl Acad Sci U S A 76(7):3107–3110

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  269. Thompson SJ, Loftus LT, Ashley MD, Meller R (2008) Ubiquitin-proteasome system as a modulator of cell fate. Curr Opin Pharmacol 8(1):90–95. doi:10.1016/j.coph.2007.09.010

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  270. Jana NR (2012) Protein homeostasis and aging: role of ubiquitin protein ligases. Neurochem Int 60(5):443–447. doi:10.1016/j.neuint.2012.02.009

    Article  PubMed  CAS  Google Scholar 

  271. Weissman AM, Shabek N, Ciechanover A (2011) The predator becomes the prey: regulating the ubiquitin system by ubiquitylation and degradation. Nat Rev Mol Cell Biol 12(9):605–620

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  272. Dennissen FJ, Kholod N, van Leeuwen FW (2012) The ubiquitin proteasome system in neurodegenerative diseases: culprit, accomplice or victim? Prog Neurobiol 96(2):190–207. doi:10.1016/j.pneurobio.2012.01.003

    Article  PubMed  CAS  Google Scholar 

  273. Pickart CM, Eddins MJ (2004) Ubiquitin: structures, functions, mechanisms. Biochim Biophys Acta (BBA) - Mol Cell Res 1695(1–3):55–72. doi:10.1016/j.bbamcr.2004.09.019

    Article  CAS  Google Scholar 

  274. Scheffner M, Nuber U, Huibregtse JM (1995) Protein ubiquitination involving an E1-E2-E3 enzyme ubiquitin thioester cascade. Nature 373(6509):81–83

    Article  PubMed  CAS  Google Scholar 

  275. Ciechanover A, Schwartz AL (2004) The ubiquitin system: pathogenesis of human diseases and drug targeting. Biochim Biophys Acta (BBA) - Mol Cell Res 1695(1–3):3–17. doi:10.1016/j.bbamcr.2004.09.018

    Article  CAS  Google Scholar 

  276. Nisole S, Stoye JP, Saib A (2005) TRIM family proteins: retroviral restriction and antiviral defence. Nat Rev Microbiol 3(10):799–808. doi:10.1038/nrmicro1248

    Article  PubMed  CAS  Google Scholar 

  277. Hatakeyama S (2011) TRIM proteins and cancer. Nat Rev Cancer 11(11):792–804. doi:10.1038/nrc3139

    Article  PubMed  CAS  Google Scholar 

  278. Meroni G, Diez-Roux G (2005) TRIM/RBCC, a novel class of ‘single protein RING finger’ E3 ubiquitin ligases. Bioessays 27(11):1147–1157. doi:10.1002/bies.20304

    Article  PubMed  CAS  Google Scholar 

  279. Avela K, Lipsanen-Nyman M, Idänheimo N, Seemanová E, Rosengren S, Mäkelä TP, Perheentupa J, de la Chapelle A, Lehesjoki A-E (2000) Gene encoding a new RING-B-box-Coiled-coil protein is mutated in mulibrey nanism. Nat Genet 25(3):298–301

    Article  PubMed  CAS  Google Scholar 

  280. Horn EJ, Albor A, Liu Y, El-Hizawi S, Vanderbeek GE, Babcock M, Bowden GT, Hennings H, Lozano G, Weinberg WC, Kulesz-Martin M (2004) RING protein Trim32 associated with skin carcinogenesis has anti-apoptotic and E3-ubiquitin ligase properties. Carcinogenesis 25(2):157–167. doi:10.1093/carcin/bgh003

    Article  PubMed  CAS  Google Scholar 

  281. Schwamborn JC, Berezikov E, Knoblich JA (2009) The TRIM-NHL protein TRIM32 activates microRNAs and prevents self-renewal in mouse neural progenitors. Cell 136(5):913–925. doi:10.1016/j.cell.2008.12.024

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  282. Kudryashova E, Kudryashov D, Kramerova I, Spencer MJ (2005) Trim32 is a ubiquitin ligase mutated in limb girdle muscular dystrophy type 2H that binds to skeletal muscle myosin and ubiquitinates actin. J Mol Biol 354(2):413–424. doi:10.1016/j.jmb.2005.09.068

    Article  PubMed  CAS  Google Scholar 

  283. Kudryashova E, Wu J, Havton LA, Spencer MJ (2009) Deficiency of the E3 ubiquitin ligase TRIM32 in mice leads to a myopathy with a neurogenic component. Hum Mol Genet 18(7):1353–1367. doi:10.1093/hmg/ddp036

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  284. Higashi S, Iseki E, Yamamoto R, Minegishi M, Hino H, Fujisawa K, Togo T, Katsuse O, Uchikado H, Furukawa Y, Kosaka K, Arai H (2007) Concurrence of TDP-43, tau and α-synuclein pathology in brains of Alzheimer’s disease and dementia with Lewy bodies. Brain Res 1184:284–294. doi:10.1016/j.brainres.2007.09.048

    Article  PubMed  CAS  Google Scholar 

  285. Ishizawa T, Mattila P, Davies P, Wang D, Dickson DW (2003) Colocalization of Tau and alpha‐synuclein epitopes in lewy bodies. J Neuropathol Exp Neurol 62(4):389–397

  286. Zhang Y, Dawson VL, Dawson TM (2001) Parkin: clinical aspects and neurobiology. Clin Neurosci Res 1(6):467–482. doi:10.1016/S1566-2772(01)00025-1

    Article  CAS  Google Scholar 

  287. Dawson TM, Dawson VL (2003) Molecular pathways of neurodegeneration in Parkinson’s disease. Science 302(5646):819–822. doi:10.1126/science.1087753

    Article  PubMed  CAS  Google Scholar 

  288. McNaught KSP, Björklund LM, Belizaire R, Isacson O, Jenner P, Olanow CW (2002) Proteasome inhibition causes nigral degeneration with inclusion bodies in rats. Neuroreport 13(11):1437–1441

    Article  PubMed  CAS  Google Scholar 

  289. McNaught KSP, Mytilineou C, JnoBaptiste R, Yabut J, Shashidharan P, Jenner P, Olanow CW (2002) Impairment of the ubiquitin-proteasome system causes dopaminergic cell death and inclusion body formation in ventral mesencephalic cultures. J Neurochem 81(2):301–306. doi:10.1046/j.1471-4159.2002.00821.x

    Article  PubMed  CAS  Google Scholar 

  290. van Eersel J, Ke YD, Gladbach A, Bi M, Götz J, Kril JJ, Ittner LM (2011) Cytoplasmic accumulation and aggregation of TDP-43 upon proteasome inhibition in cultured neurons. PLoS ONE 6(7):e22850. doi:10.1371/journal.pone.0022850

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  291. Tashiro Y, Urushitani M, Inoue H, Koike M, Uchiyama Y, Komatsu M, Tanaka K, Yamazaki M, Abe M, Misawa H, Sakimura K, Ito H, Takahashi R (2012) Motor neuron-specific disruption of proteasomes, but not autophagy, replicates amyotrophic lateral sclerosis. J Biol Chem 287(51):42984–42994. doi:10.1074/jbc.M112.417600

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  292. Giannini C, Kloß A, Gohlke S, Mishto M, Nicholson TP, Sheppard PW, Kloetzel P-M, Dahlmann B (2013) Poly-Ub-substrate-degradative activity of 26S proteasome is not impaired in the aging rat brain. PLoS ONE 8(5):e64042. doi:10.1371/journal.pone.0064042

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  293. Seo H, Sonntag K-C, Kim W, Cattaneo E, Isacson O (2007) Proteasome activator enhances survival of Huntington’s disease neuronal model cells. PLoS ONE 2(2):e238. doi:10.1371/journal.pone.0000238

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  294. Kirkin V, McEwan DG, Novak I, Dikic I (2009) A role for ubiquitin in selective autophagy. Mol Cell 34(3):259–269. doi:10.1016/j.molcel.2009.04.026

    Article  PubMed  CAS  Google Scholar 

  295. Nixon RA, Wegiel J, Kumar A, Yu WH, Peterhoff C, Cataldo A, Cuervo AM (2005) Extensive involvement of autophagy in Alzheimer disease: an immuno-electron microscopy study. J Neuropathol Exp Neurol 64(2):113–122

    Article  PubMed  Google Scholar 

  296. Wong E, Cuervo AM (2010) Autophagy gone awry in neurodegenerative diseases. Nat Neurosci 13(7):805–811

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  297. Nedelsky NB, Todd PK, Taylor JP (2008) Autophagy and the ubiquitin-proteasome system: collaborators in neuroprotection. Biochim Biophys Acta (BBA) - Mol Basis Dis 1782(12):691–699. doi:10.1016/j.bbadis.2008.10.002

    Article  CAS  Google Scholar 

  298. Nixon RA, Yang D-S (2011) Autophagy failure in Alzheimer’s disease—locating the primary defect. Neurobiol Dis 43(1):38–45. doi:10.1016/j.nbd.2011.01.021

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  299. Bukau B, Horwich AL (1998) The Hsp70 and Hsp60 chaperone machines. Cell 92(3):351–366

    Article  PubMed  CAS  Google Scholar 

  300. Kim YE, Hipp MS, Bracher A, Hayer-Hartl M, Ulrich Hartl F (2013) Molecular chaperone functions in protein folding and proteostasis. Annu Rev Biochem 82(1):323–355. doi:10.1146/annurev-biochem-060208-092442

    Article  PubMed  CAS  Google Scholar 

  301. Richter K, Haslbeck M, Buchner J (2010) The heat shock response: life on the verge of death. Mol Cell 40(2):253–266

    Article  PubMed  CAS  Google Scholar 

  302. Pearl LH, Prodromou C (2006) Structure and mechanism of the Hsp90 molecular chaperone machinery. Annu Rev Biochem 75:271–294. doi:10.1146/annurev.biochem.75.103004.142738

    Article  PubMed  CAS  Google Scholar 

  303. Mayer MP, Bukau B (2005) Hsp70 chaperones: cellular functions and molecular mechanism. Cell Mol Life Sci 62(6):670–684. doi:10.1007/s00018-004-4464-6

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  304. Mayer MP (2013) Hsp70 chaperone dynamics and molecular mechanism. Trends Biochem Sci 38(10):507–514. doi:10.1016/j.tibs.2013.08.001

    Article  PubMed  CAS  Google Scholar 

  305. Doyle SM, Genest O, Wickner S (2013) Protein rescue from aggregates by powerful molecular chaperone machines. Nat Rev Mol Cell Biol 14(10):617–629. doi:10.1038/nrm3660

    Article  PubMed  CAS  Google Scholar 

  306. Kampinga HH, Craig EA (2010) The HSP70 chaperone machinery: J proteins as drivers of functional specificity. Nat Rev Mol Cell Biol 11(8):579–592. doi:10.1038/nrm2941

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  307. Pratt WB, Morishima Y, Peng HM, Osawa Y (2010) Proposal for a role of the Hsp90/Hsp70-based chaperone machinery in making triage decisions when proteins undergo oxidative and toxic damage. Exp Biol Med (Maywood) 235(3):278–289. doi:10.1258/ebm.2009.009250

    Article  CAS  Google Scholar 

  308. Cao W, Konsolaki M (2011) FKBP immunophilins and Alzheimer’s disease: a chaperoned affair. J Biosci 36(3):493–498

    Article  PubMed  CAS  Google Scholar 

  309. Van Duyne GD, Standaert RF, Karplus PA, Schreiber SL, Clardy J (1993) Atomic structures of the human immunophilin FKBP-12 complexes with FK506 and rapamycin. J Mol Biol 229(1):105–124

    Article  PubMed  Google Scholar 

  310. Somarelli JA, Lee SY, Skolnick J, Herrera RJ (2008) Structure-based classification of 45 FK506-binding proteins. Proteins Struct Funct Bioinforma 72(1):197–208. doi:10.1002/prot.21908

    Article  CAS  Google Scholar 

  311. Liu J, Farmer JD Jr, Lane WS, Friedman J, Weissman I, Schreiber SL (1991) Calcineurin is a common target of cyclophilin-cyclosporin A and FKBP-FK506 complexes. Cell 66(4):807–815. doi:10.1016/0092-8674(91)90124-H

    Article  PubMed  CAS  Google Scholar 

  312. Kang CB, Hong Y, Dhe-Paganon S, Yoon HS (2008) FKBP family proteins: immunophilins with versatile biological functions. Neurosignals 16(4):318–325

    Article  PubMed  CAS  Google Scholar 

  313. Charters AR, Kobayashi M, Butcher SP (1994) The subcellular distribution of FK506 binding proteins in rat brain. Biochem Soc Trans 22(4):412 s

  314. Shirane M, Nakayama KI (2003) Inherent calcineurin inhibitor FKBP38 targets Bcl-2 to mitochondria and inhibits apoptosis. Nat Cell Biol 5(1):28–37. doi:10.1038/ncb894

    Article  PubMed  CAS  Google Scholar 

  315. Wang H-Q, Nakaya Y, Du Z, Yamane T, Shirane M, Kudo T, Takeda M, Takebayashi K, Noda Y, Nakayama KI, Nishimura M (2005) Interaction of presenilins with FKBP38 promotes apoptosis by reducing mitochondrial Bcl-2. Hum Mol Genet 14(13):1889–1902. doi:10.1093/hmg/ddi195

    Article  PubMed  CAS  Google Scholar 

  316. Sinars CR, Cheung-Flynn J, Rimerman RA, Scammell JG, Smith DF, Clardy J (2003) Structure of the large FK506-binding protein FKBP51, an Hsp90-binding protein and a component of steroid receptor complexes. Proc Natl Acad Sci U S A 100(3):868–873. doi:10.1073/pnas.0231020100

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  317. Wu B, Li P, Liu Y, Lou Z, Ding Y, Shu C, Ye S, Bartlam M, Shen B, Rao Z (2004) 3D structure of human FK506-binding protein 52: implications for the assembly of the glucocorticoid receptor/Hsp90/immunophilin heterocomplex. Proc Natl Acad Sci U S A 101(22):8348–8353

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  318. Boudko SP, Ishikawa Y, Nix J, Chapman MS, Bachinger HP (2014) Structure of human peptidyl-prolyl cis-trans isomerase FKBP22 containing two EF-hand motifs. Protein Sci 23(1):67–75. doi:10.1002/pro.2391

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  319. van de Hoef DL, Bonner JM, Boulianne GL (2013) FKBP14 is an essential gene that regulates presenilin protein levels and Notch signaling in Drosophila. Development 140(4):810–819. doi:10.1242/dev.081356

    Article  PubMed  CAS  Google Scholar 

  320. Dickey CA, Yue M, Lin W-L, Dickson DW, Dunmore JH, Lee WC, Zehr C, West G, Cao S, Clark AMK, Caldwell GA, Caldwell KA, Eckman C, Patterson C, Hutton M, Petrucelli L (2006) Deletion of the ubiquitin ligase CHIP leads to the accumulation, but not the aggregation, of both endogenous phospho- and caspase-3-cleaved tau species. J Neurosci 26(26):6985–6996. doi:10.1523/jneurosci. 0746-06.2006

    Article  PubMed  CAS  Google Scholar 

  321. Jinwal UK, Koren J 3rd, Dickey CA (2013) Reconstructing the Hsp90/Tau machine. Curr Enzym Inhib 9(1):41–45. doi:10.2174/1573408011309010006

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  322. Karagoz GE, Duarte AM, Akoury E, Ippel H, Biernat J, Moran Luengo T, Radli M, Didenko T, Nordhues BA, Veprintsev DB, Dickey CA, Mandelkow E, Zweckstetter M, Boelens R, Madl T, Rudiger SG (2014) Hsp90-Tau complex reveals molecular basis for specificity in chaperone action. Cell 156(5):963–974. doi:10.1016/j.cell.2014.01.037

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  323. Kraemer BC, Burgess JK, Chen JH, Thomas JH, Schellenberg GD (2006) Molecular pathways that influence human tau-induced pathology in Caenorhabditis elegans. Hum Mol Genet 15(9):1483–1496. doi:10.1093/hmg/ddl067

    Article  PubMed  CAS  Google Scholar 

  324. Jinwal UK, Koren J 3rd, Borysov SI, Schmid AB, Abisambra JF, Blair LJ, Johnson AG, Jones JR, Shults CL, O’Leary JC 3rd, Jin Y, Buchner J, Cox MB, Dickey CA (2010) The Hsp90 cochaperone, FKBP51, increases Tau stability and polymerizes microtubules. J Neurosci 30(2):591–599. doi:10.1523/jneurosci. 4815-09.2010

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  325. Blair LJ, Nordhues BA, Hill SE, Scaglione KM, O’Leary JC 3rd, Fontaine SN, Breydo L, Zhang B, Li P, Wang L, Cotman C, Paulson HL, Muschol M, Uversky VN, Klengel T, Binder EB, Kayed R, Golde TE, Berchtold N, Dickey CA (2013) Accelerated neurodegeneration through chaperone-mediated oligomerization of tau. J Clin Invest 123(10):4158–4169. doi:10.1172/jci69003

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  326. Chambraud B, Belabes H, Fontaine-Lenoir V, Fellous A, Baulieu EE (2007) The immunophilin FKBP52 specifically binds to tubulin and prevents microtubule formation. FASEB J 21(11):2787–2797. doi:10.1096/fj.06-7667com

    Article  PubMed  CAS  Google Scholar 

  327. Sanokawa-Akakura R, Cao W, Allan K, Patel K, Ganesh A, Heiman G, Burke R, Kemp FW, Bogden JD, Camakaris J, Birge RB, Konsolaki M (2010) Control of Alzheimer’s amyloid beta toxicity by the high molecular weight immunophilin FKBP52 and copper homeostasis in Drosophila. PLoS ONE 5(1):e8626. doi:10.1371/journal.pone.0008626

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  328. Avramut M, Achim CL (2002) Immunophilins and their ligands: insights into survival and growth of human neurons. Physiol Behav 77(4–5):463–468. doi:10.1016/S0031-9384(02)00934-4

    Article  PubMed  CAS  Google Scholar 

  329. Sugata H, Matsuo K, Nakagawa T, Takahashi M, Mukai H, Ono Y, Maeda K, Akiyama H, Kawamata T (2009) A peptidyl–prolyl isomerase, FKBP12, accumulates in Alzheimer neurofibrillary tangles. Neurosci Lett 459(2):96–99

    Article  PubMed  CAS  Google Scholar 

  330. Liu FL, Liu TY, Kung FL (2014) FKBP12 regulates the localization and processing of amyloid precursor protein in human cell lines. J Biosci 39(1):85–95

    Article  PubMed  CAS  Google Scholar 

  331. Liu F-L, Liu P-H, Shao H-W, Kung F-L (2006) The intracellular domain of amyloid precursor protein interacts with FKBP12. Biochem Biophys Res Commun 350(2):472–477. doi:10.1016/j.bbrc.2006.09.073

    Article  PubMed  CAS  Google Scholar 

  332. Gerard M, Deleersnijder A, Daniels V, Schreurs S, Munck S, Reumers V, Pottel H, Engelborghs Y, Van den Haute C, Taymans JM, Debyser Z, Baekelandt V (2010) Inhibition of FK506 binding proteins reduces alpha-synuclein aggregation and Parkinson’s disease-like pathology. J Neurosci 30(7):2454–2463. doi:10.1523/JNEUROSCI. 5983-09.2010

    Article  PubMed  CAS  Google Scholar 

  333. Deleersnijder A, Van Rompuy AS, Desender L, Pottel H, Buee L, Debyser Z, Baekelandt V, Gerard M (2011) Comparative analysis of different peptidyl-prolyl isomerases reveals FK506-binding protein 12 as the most potent enhancer of alpha-synuclein aggregation. J Biol Chem 286(30):26687–26701. doi:10.1074/jbc.M110.182303

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  334. Liou YC, Sun A, Ryo A, Zhou XZ, Yu ZX, Huang HK, Uchida T, Bronson R, Bing G, Li X, Hunter T, Lu KP (2003) Role of the prolyl isomerase Pin1 in protecting against age-dependent neurodegeneration. Nature 424(6948):556–561. doi:10.1038/nature01832

    Article  PubMed  CAS  Google Scholar 

  335. Holzer M, Gartner U, Stobe A, Hartig W, Gruschka H, Bruckner MK, Arendt T (2002) Inverse association of Pin1 and tau accumulation in Alzheimer’s disease hippocampus. Acta Neuropathol 104(5):471–481. doi:10.1007/s00401-002-0581-1

    PubMed  CAS  Google Scholar 

  336. Pastorino L, Sun A, Lu PJ, Zhou XZ, Balastik M, Finn G, Wulf G, Lim J, Li SH, Li X, Xia W, Nicholson LK, Lu KP (2006) The prolyl isomerase Pin1 regulates amyloid precursor protein processing and amyloid-beta production. Nature 440(7083):528–534. doi:10.1038/nature04543

    Article  PubMed  CAS  Google Scholar 

  337. Perry G, Friedman R, Shaw G, Chau V (1987) Ubiquitin is detected in neurofibrillary tangles and senile plaque neurites of Alzheimer disease brains. Proc Natl Acad Sci U S A 84(9):3033–3036

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  338. López Salon M, Morelli L, Castaño EM, Soto EF, Pasquini JM (2000) Defective ubiquitination of cerebral proteins in Alzheimer’s disease. J Neurosci Res 62(2):302–310. doi:10.1002/1097-4547(20001015)62:2<302::AID-JNR15>3.0.CO;2-L

    Article  PubMed  Google Scholar 

  339. Keller JN, Hanni KB, Markesbery WR (2000) Impaired proteasome function in Alzheimer’s disease. J Neurochem 75(1):436–439. doi:10.1046/j.1471-4159.2000.0750436.x

    Article  PubMed  CAS  Google Scholar 

  340. Keck S, Nitsch R, Grune T, Ullrich O (2003) Proteasome inhibition by paired helical filament-tau in brains of patients with Alzheimer’s disease. J Neurochem 85(1):115–122

    Article  PubMed  CAS  Google Scholar 

  341. Berke SJS, Paulson HL (2003) Protein aggregation and the ubiquitin proteasome pathway: gaining the UPPer hand on neurodegeneration. Curr Opin Genet Dev 13(3):253–261. doi:10.1016/S0959-437X(03)00053-4

    Article  PubMed  CAS  Google Scholar 

  342. Lindsten K, de Vrij FMS, Verhoef LGGC, Fischer DF, van Leeuwen FW, Hol EM, Masucci MG, Dantuma NP (2002) Mutant ubiquitin found in neurodegenerative disorders is a ubiquitin fusion degradation substrate that blocks proteasomal degradation. J Cell Biol 157(3):417–427. doi:10.1083/jcb.200111034

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  343. Layfield R, Cavey JR, Lowe J (2003) Role of ubiquitin-mediated proteolysis in the pathogenesis of neurodegenerative disorders. Ageing Res Rev 2(4):343–356. doi:10.1016/S1568-1637(03)00025-4

    Article  PubMed  CAS  Google Scholar 

  344. de Vrij FMS, Jacqueline A, Gregori LF, David F, Hermens WTJMC, Goldgaber D, Verhaagen J, Van Leeuwen FW, Hol EM (2001) Mutant ubiquitin expressed in Alzheimer’s disease causes neuronal death. FASEB J 15(14):2680–2688. doi:10.1096/fj.01-0438com

    Article  PubMed  Google Scholar 

  345. Mawuenyega KG, Sigurdson W, Ovod V, Munsell L, Kasten T, Morris JC, Yarasheski KE, Bateman RJ (2010) Decreased clearance of CNS β-amyloid in Alzheimer’s disease. Science 330(6012):1774. doi:10.1126/science.1197623

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  346. Yen SS (2011) Proteasome degradation of brain cytosolic tau in Alzheimer’s disease. Int J Clin Exp Pathol 4(4):385–402

    PubMed Central  PubMed  CAS  Google Scholar 

  347. Oh S, Hong HS, Hwang E, Sim HJ, Lee W, Shin SJ, Mook-Jung I (2005) Amyloid peptide attenuates the proteasome activity in neuronal cells. Mech Ageing Dev 126(12):1292–1299. doi:10.1016/j.mad.2005.07.006

    Article  PubMed  CAS  Google Scholar 

  348. Tseng BP, Green KN, Chan JL, Blurton-Jones M, LaFerla FM (2008) Aβ inhibits the proteasome and enhances amyloid and tau accumulation. Neurobiol Aging 29(11):1607–1618. doi:10.1016/j.neurobiolaging.2007.04.014

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  349. Gregori L, Hainfeld JF, Simon MN, Goldgaber D (1997) Binding of amyloid β protein to the 20 S proteasome. J Biol Chem 272(1):58–62. doi:10.1074/jbc.272.1.58

    Article  PubMed  CAS  Google Scholar 

  350. Shringarpure R, Grune T, Sitte N, Davies* KJA (2000) 4-Hydroxynonenal-modified amyloid-β peptide inhibits the proteasome: possible importance in Alzheimer’s disease*. CMLS, Cell Mol Life Sci 57(12):1802–1809. doi: 10.1007/PL00000660

  351. Gregori L, Fuchs C, Figueiredo-Pereira ME, Van Nostrand WE, Goldgaber D (1995) Amyloid β-protein inhibits ubiquitin-dependent protein degradation in vitro. J Biol Chem 270(34):19702–19708. doi:10.1074/jbc.270.34.19702

    Article  PubMed  CAS  Google Scholar 

  352. Lam YA, Pickart CM, Alban A, Landon M, Jamieson C, Ramage R, Mayer RJ, Layfield R (2000) Inhibition of the ubiquitin-proteasome system in Alzheimer’s disease. Proc Natl Acad Sci U S A 97(18):9902–9906. doi:10.1073/pnas.170173897

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  353. Klettner A, Baumgrass R, Zhang Y, Fischer G, Bürger E, Herdegen T, Mielke K (2001) The neuroprotective actions of FK506 binding protein ligands: neuronal survival is triggered by de novo RNA synthesis, but is independent of inhibition of JNK and calcineurin. Mol Brain Res 97(1):21–31. doi:10.1016/S0169-328X(01)00286-8

    Article  PubMed  CAS  Google Scholar 

  354. Lee KH, Won R, Kim UJ, Kim GM, Chung M-A, Sohn J-H, Lee BH (2010) Neuroprotective effects of FK506 against excitotoxicity in organotypic hippocampal slice culture. Neurosci Lett 474(3):126–130. doi:10.1016/j.neulet.2010.03.009

    Article  PubMed  CAS  Google Scholar 

  355. Winter C, Schenkel J, Bürger E, Eickmeier C, Zimmermann M, Herdegen T (1999) The immunophilin ligand FK506, but not GPI-1046, protects against neuronal death and inhibits c-Jun expression in the substantia nigra pars compacta following transection of the rat medial forebrain bundle. Neuroscience 95(3):753–762. doi:10.1016/S0306-4522(99)00486-8

    Article  Google Scholar 

  356. Karapetyan YE, Sferrazza GF, Zhou M, Ottenberg G, Spicer T, Chase P, Fallahi M, Hodder P, Weissmann C, Lasmézas CI (2013) Unique drug screening approach for prion diseases identifies tacrolimus and astemizole as antiprion agents. Proc Natl Acad Sci U S A 110(17):7044–7049. doi:10.1073/pnas.1303510110

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  357. Chiang K, Koo EH (2014) Emerging therapeutics for Alzheimer’s disease. Annu Rev Pharmacol Toxicol 54(1):381–405. doi:10.1146/annurev-pharmtox-011613-135932

    Article  PubMed  CAS  Google Scholar 

  358. Harrington C, Rickard JE, Horsley D, Harrington KA, Hindley KP, Riedel G, Theuring F, Seng KM, Wischik CM (2008) O1-06-04: methylthioninium chloride (MTC) acts as a Tau aggregation inhibitor (TAI) in a cellular model and reverses Tau pathology in transgenic mouse models of Alzheimer’s disease. Alzheimers Dement 4(Supplement 4):T120–T121. doi:10.1016/j.jalz.2008.05.259

    Article  Google Scholar 

  359. Wischik CM, Bentham P, Wischik DJ, Seng KM (2008) O3-04-07: Tau aggregation inhibitor (TAI) therapy with rember™ arrests disease progression in mild and moderate Alzheimer’s disease over 50 weeks. Alzheimers Dement 4(Supplement 4):T167. doi:10.1016/j.jalz.2008.05.438

    Article  Google Scholar 

  360. Hong X, Liu J, Zhu G, Zhuang Y, Suo H, Wang P, Huang D, Xu J, Huang Y, Yu M, Bian M, Sheng Z, Fei J, Song H, Behnisch T, Huang F (2014) Parkin overexpression ameliorates hippocampal long-term potentiation and β-amyloid load in an Alzheimer’s disease mouse model. Hum Mol Genet 23(4):1056–1072. doi:10.1093/hmg/ddt501

    Article  PubMed  CAS  Google Scholar 

  361. Deshaies RJ, Joazeiro CAP (2009) RING domain E3 ubiquitin ligases. Annu Rev Biochem 78(1):399–434. doi:10.1146/annurev.biochem.78.101807.093809

    Article  PubMed  CAS  Google Scholar 

  362. Mukherjee A, Morales-Scheihing D, Gonzalez-Romero D, Green K, Taglialatela G, Soto C (2010) Calcineurin inhibition at the clinical phase of prion disease reduces neurodegeneration, improves behavioral alterations and increases animal survival. PLoS Pathog 6(10):e1001138. doi:10.1371/journal.ppat.1001138

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  363. Blackburn EA, Walkinshaw MD (2011) Targeting FKBP isoforms with small-molecule ligands. Curr Opin Pharmacol 11(4):365–371. doi:10.1016/j.coph.2011.04.007

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by the research fund of Hanyang University.

Conflict of Interest

The authors declare that they have no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Klaus Heese.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sulistio, Y.A., Heese, K. The Ubiquitin-Proteasome System and Molecular Chaperone Deregulation in Alzheimer’s Disease. Mol Neurobiol 53, 905–931 (2016). https://doi.org/10.1007/s12035-014-9063-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12035-014-9063-4

Keywords

Navigation