Skip to main content
Log in

Kdm6b and Pmepa1 as Targets of Bioelectrically and Behaviorally Induced Activin A Signaling

  • Published:
Molecular Neurobiology Aims and scope Submit manuscript

Abstract

The transforming growth factor-β (TGF-β) family member activin A exerts multiple neurotrophic and protective effects in the brain. Activin also modulates cognitive functions and affective behavior and is a presumed target of antidepressant therapy. Despite its important role in the injured and intact brain, the mechanisms underlying activin effects in the CNS are still largely unknown. Our goal was to identify the first target genes of activin signaling in the hippocampus in vivo. Electroconvulsive seizures, a rodent model of electroconvulsive therapy in humans, were applied to C57BL/6J mice to elicit a strong increase in activin A signaling. Chromatin immunoprecipitation experiments with hippocampal lysates subsequently revealed that binding of SMAD2/3, the intracellular effectors of activin signaling, was significantly enriched at the Pmepa1 gene, which encodes a negative feedback regulator of TGF-β signaling in cancer cells, and at the Kdm6b gene, which encodes an epigenetic regulator promoting transcriptional plasticity. Underlining the significance of these findings, activin treatment also induced PMEPA1 and KDM6B expression in human forebrain neurons generated from embryonic stem cells suggesting interspecies conservation of activin effects in mammalian neurons. Importantly, physiological stimuli such as provided by environmental enrichment proved already sufficient to engender a rapid and significant induction of activin signaling concomitant with an upregulation of Pmepa1 and Kdm6b expression. Taken together, our study identified the first target genes of activin signaling in the brain. With the induction of Kdm6b expression, activin is likely to gain impact on a presumed epigenetic regulator of activity-dependent neuronal plasticity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Werner S, Alzheimer C (2006) Roles of activin in tissue repair, fibrosis, and inflammatory disease. Cytokine Growth Factor Rev 17 (3):157–171

  2. Ageta H, Murayama A, Migishima R, Kida S, Tsuchida K, Yokoyama M, Inokuchi K (2008) Activin in the brain modulates anxiety-related behavior and adult neurogenesis. PLoS One 3(4), e1869

    Article  PubMed  PubMed Central  Google Scholar 

  3. Krieglstein K, Zheng F, Unsicker K, Alzheimer C (2011) More than being protective: functional roles for TGF-beta/activin signaling pathways at central synapses. Trends Neurosci 34 (8):421–429

  4. Mukerji SS, Rainey RN, Rhodes JL, Hall AK (2009) Delayed activin A administration attenuates tissue death after transient focal cerebral ischemia and is associated with decreased stress-responsive kinase activation. J Neurochem 111 (5):1138–1148

  5. Müller MR, Zheng F, Werner S, Alzheimer C (2006) Transgenic mice expressing dominant-negative activin receptor IB in forebrain neurons reveal novel functions of activin at glutamatergic synapses. J Biol Chem 281 (39):29076–29084

  6. Tretter YP, Hertel M, Munz B, ten BG, Werner S, Alzheimer C (2000) Induction of activin A is essential for the neuroprotective action of basic fibroblast growth factor in vivo. Nat Med 6(7):812–815. doi:10.1038/77548

    Article  CAS  PubMed  Google Scholar 

  7. Zheng F, Adelsberger H, Muller MR, Fritschy JM, Werner S, Alzheimer C (2009) Activin tunes GABAergic neurotransmission and modulates anxiety-like behavior. Mol Psychiatry 14 (3):332–346

  8. Dow AL, Russell DS, Duman RS (2005) Regulation of activin mRNA and Smad2 phosphorylation by antidepressant treatment in the rat brain: effects in behavioral models. J Neurosci 25(20):4908–4916

    Article  CAS  PubMed  Google Scholar 

  9. Ganea K, Menke A, Schmidt MV, Lucae S, Rammes G, Liebl C, Harbich D, Sterlemann V et al (2012) Convergent animal and human evidence suggests the activin/inhibin pathway to be involved in antidepressant response. Transl Psychiatry 2:e177

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Miller BH, Schultz LE, Gulati A, Cameron MD, Pletcher MT (2008) Genetic regulation of behavioral and neuronal responses to fluoxetine. Neuropsychopharmacology 33(6):1312–1322

    Article  CAS  PubMed  Google Scholar 

  11. Chen YG, Wang Q, Lin SL, Chang CD, Chuang J, Ying SY (2006) Activin signaling and its role in regulation of cell proliferation, apoptosis, and carcinogenesis. Exp Biol Med (Maywood) 231(5):534–544

    CAS  Google Scholar 

  12. Xia Y, Schneyer AL (2009) The biology of activin: recent advances in structure, regulation and function. J Endocrinol 202(1):1–12

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Choi SC, Han JK (2011) Negative regulation of activin signal transduction. Vitam Horm 85:79–104

    Article  CAS  PubMed  Google Scholar 

  14. Mathews LS, Vale WW (1991) Expression cloning of an activin receptor, a predicted transmembrane serine kinase. Cell 65(6):973–982

    Article  CAS  PubMed  Google Scholar 

  15. Nakamura T, Takio K, Eto Y, Shibai H, Titani K, Sugino H (1990) Activin-binding protein from rat ovary is follistatin. Science 247(4944):836–838

    Article  CAS  PubMed  Google Scholar 

  16. Lebrun JJ, Takabe K, Chen Y, Vale W (1999) Roles of pathway-specific and inhibitory Smads in activin receptor signaling. Mol Endocrinol 13(1):15–23. doi:10.1210/mend.13.1.0218

    Article  CAS  PubMed  Google Scholar 

  17. Luo K (2004) Ski and SnoN: negative regulators of TGF-beta signaling. Curr Opin Genet Dev 14(1):65–70. doi:10.1016/j.gde.2003.11.003

    Article  CAS  PubMed  Google Scholar 

  18. Singha PK, Yeh IT, Venkatachalam MA, Saikumar P (2010) Transforming growth factor-beta (TGF-beta)-inducible gene TMEPAI converts TGF-beta from a tumor suppressor to a tumor promoter in breast cancer. Cancer Res 70(15):6377–6383

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Vo Nguyen TT, Watanabe Y, Shiba A, Noguchi M, Itoh S, Kato M (2014) TMEPAI/PMEPA1 enhances tumorigenic activities in lung cancer cells. Cancer Sci 105(3):334–341. doi:10.1111/cas.12355

    Article  PubMed  PubMed Central  Google Scholar 

  20. Watanabe Y, Itoh S, Goto T, Ohnishi E, Inamitsu M, Itoh F, Satoh K, Wiercinska E et al (2010) TMEPAI, a transmembrane TGF-beta-inducible protein, sequesters Smad proteins from active participation in TGF-beta signaling. Mol Cell 37(1):123–134

    Article  CAS  PubMed  Google Scholar 

  21. Hattori S, Hashimoto R, Miyakawa T, Yamanaka H, Maeno H, Wada K, Kunugi H (2007) Enriched environments influence depression-related behavior in adult mice and the survival of newborn cells in their hippocampi. Behav Brain Res 180(1):69–76. doi:10.1016/j.bbr.2007.02.036

    Article  PubMed  Google Scholar 

  22. Nithianantharajah J, Levis H, Murphy M (2004) Environmental enrichment results in cortical and subcortical changes in levels of synaptophysin and PSD-95 proteins. Neurobiol Learn Mem 81(3):200–210. doi:10.1016/j.nlm.2004.02.002

    Article  CAS  PubMed  Google Scholar 

  23. Rampon C, Tang YP, Goodhouse J, Shimizu E, Kyin M, Tsien JZ (2000) Enrichment induces structural changes and recovery from nonspatial memory deficits in CA1 NMDAR1-knockout mice. Nat Neurosci 3(3):238–244. doi:10.1038/72945

    Article  CAS  PubMed  Google Scholar 

  24. Havlicek S, Kohl Z, Mishra HK, Prots I, Eberhardt E, Denguir N, Wend H, Plotz S et al (2014) Gene dosage-dependent rescue of HSP neurite defects in SPG4 patients’ neurons. Hum Molecular Gen 23(10):2527–2541. doi:10.1093/hmg/ddt644

    Article  CAS  Google Scholar 

  25. Brackmann FA, Link AS, Jung S, Richter M, Zoglauer D, Walkinshaw G, Alzheimer C, Trollmann R (2013) Activin A regulation under global hypoxia in developing mouse brain. Brain Res 1531:65–74

    Article  CAS  PubMed  Google Scholar 

  26. Nibuya M, Morinobu S, Duman RS (1995) Regulation of BDNF and trkB mRNA in rat brain by chronic electroconvulsive seizure and antidepressant drug treatments. J Neurosci 15(11):7539–7547

    CAS  PubMed  Google Scholar 

  27. Melhuish TA, Wotton D (2006) The Tgif2 gene contains a retained intron within the coding sequence. BMC Mol Biol 7:2

    Article  PubMed  PubMed Central  Google Scholar 

  28. Dyrvig M, Hansen HH, Christiansen SH, Woldbye DP, Mikkelsen JD, Lichota J (2012) Epigenetic regulation of Arc and c-Fos in the hippocampus after acute electroconvulsive stimulation in the rat. Brain Res Bull 88(5):507–513

    Article  CAS  PubMed  Google Scholar 

  29. Tsankova NM, Kumar A, Nestler EJ (2004) Histone modifications at gene promoter regions in rat hippocampus after acute and chronic electroconvulsive seizures. J Neurosci 24(24):5603–5610. doi:10.1523/JNEUROSCI.0589-04.2004

    Article  CAS  PubMed  Google Scholar 

  30. Burgold T, Spreafico F, De SF, Totaro MG, Prosperini E, Natoli G, Testa G (2008) The histone H3 lysine 27-specific demethylase Jmjd3 is required for neural commitment. PLoS One 3(8), e3034. doi:10.1371/journal.pone.0003034

    Article  PubMed  PubMed Central  Google Scholar 

  31. Estaras C, Akizu N, Garcia A, Beltran S, de lCX, Martinez-Balbas MA (2012) Genome-wide analysis reveals that Smad3 and JMJD3 HDM co-activate the neural developmental program. Development 139(15):2681–2691

    Article  CAS  PubMed  Google Scholar 

  32. Jepsen K, Solum D, Zhou T, McEvilly RJ, Kim HJ, Glass CK, Hermanson O, Rosenfeld MG (2007) SMRT-mediated repression of an H3K27 demethylase in progression from neural stem cell to neuron. Nature 450(7168):415–419

    Article  CAS  PubMed  Google Scholar 

  33. Wijayatunge R, Chen LF, Cha YM, Zannas AS, Frank CL, West AE (2014) The histone lysine demethylase Kdm6b is required for activity-dependent preconditioning of hippocampal neuronal survival. Mol Cell Neurosci 61:187–200

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Nakano N, Itoh S, Watanabe Y, Maeyama K, Itoh F, Kato M (2010) Requirement of TCF7L2 for TGF-beta-dependent transcriptional activation of the TMEPAI gene. J Biol Chem 285(49):38023–38033. doi:10.1074/jbc.M110.132209

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Kuzumaki N, Ikegami D, Tamura R, Hareyama N, Imai S, Narita M, Torigoe K, Niikura K et al (2011) Hippocampal epigenetic modification at the brain-derived neurotrophic factor gene induced by an enriched environment. Hippocampus 21(2):127–132. doi:10.1002/hipo.20775

    Article  CAS  PubMed  Google Scholar 

  36. Giannini G, Ambrosini MI, Di ML, Cerignoli F, Zani M, MacKay AR, Screpanti I, Frati L et al (2003) EGF- and cell-cycle-regulated STAG1/PMEPA1/ERG1.2 belongs to a conserved gene family and is overexpressed and amplified in breast and ovarian cancer. Mol Carcinog 38(4):188–200. doi:10.1002/mc.10162

    Article  CAS  PubMed  Google Scholar 

  37. Sharad S, Ravindranath L, Haffner MC, Li H, Yan W, Sesterhenn IA, Chen Y, Ali A, et al (2014) Methylation of the PMEPA1 gene, a negative regulator of the androgen receptor in prostate cancer. Epigenetics 9 (6)

  38. Agger K, Cloos PA, Christensen J, Pasini D, Rose S, Rappsilber J, Issaeva I, Canaani E et al (2007) UTX and JMJD3 are histone H3K27 demethylases involved in HOX gene regulation and development. Nature 449(7163):731–734

    Article  CAS  PubMed  Google Scholar 

  39. Hong S, Cho YW, Yu LR, Yu H, Veenstra TD, Ge K (2007) Identification of JmjC domain-containing UTX and JMJD3 as histone H3 lysine 27 demethylases. Proc Natl Acad Sci USA 104(47):18439–18444

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Lan F, Bayliss PE, Rinn JL, Whetstine JR, Wang JK, Chen S, Iwase S, Alpatov R et al (2007) A histone H3 lysine 27 demethylase regulates animal posterior development. Nature 449(7163):689–694

    Article  CAS  PubMed  Google Scholar 

  41. Bernstein BE, Mikkelsen TS, Xie X, Kamal M, Huebert DJ, Cuff J, Fry B, Meissner A, et al (2006) A bivalent chromatin structure marks key developmental genes in embryonic stem cells. Cell 125 (2):315–326

  42. Bracken AP, Dietrich N, Pasini D, Hansen KH, Helin K (2006) Genome-wide mapping of Polycomb target genes unravels their roles in cell fate transitions. Genes Dev 20 (9):1123–1136

  43. Canovas S, Cibelli JB, Ross PJ (2012) Jumonji domain-containing protein 3 regulates histone 3 lysine 27 methylation during bovine preimplantation development. Proc Natl Acad Sci USA 109 (7):2400–2405

  44. Kim SW, Yoon SJ, Chuong E, Oyolu C, Wills AE, Gupta R, Baker J (2011) Chromatin and transcriptional signatures for Nodal signaling during endoderm formation in hESCs. Dev Biol 357 (2):492–504

  45. Mikkelsen TS, Ku M, Jaffe DB, Issac B, Lieberman E, Giannoukos G, Alvarez P, Brockman W et al (2007) Genome-wide maps of chromatin state in pluripotent and lineage-committed cells. Nature 448(7153):553–560

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Ohtani K, Zhao C, Dobreva G, Manavski Y, Kluge B, Braun T, Rieger MA, et al (2013) Jmjd3 controls mesodermal and cardiovascular differentiation of embryonic stem cells. Circ Res 113 (7):856–862

  47. Surani MA, Hayashi K, Hajkova P (2007) Genetic and epigenetic regulators of pluripotency. Cell 128 (4):747–762

  48. Fei T, Xia K, Li Z, Zhou B, Zhu S, Chen H, Zhang J, Chen Z, et al (2010) Genome-wide mapping of SMAD target genes reveals the role of BMP signaling in embryonic stem cell fate determination. Genome Res 20 (1):36–44

  49. Park DH, Hong SJ, Salinas RD, Liu SJ, Sun SW, Sgualdino J, Testa G, Matzuk MM et al (2014) Activation of neuronal gene expression by the JMJD3 demethylase is required for postnatal and adult brain neurogenesis. Cell reports 8(5):1290–1299. doi:10.1016/j.celrep.2014.07.060

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Miller SA, Mohn SE, Weinmann AS (2010) Jmjd3 and UTX play a demethylase-independent role in chromatin remodeling to regulate T-box family member-dependent gene expression. Mol Cell 40 (4):594–605

  51. Przanowski P, Dabrowski M, Ellert-Miklaszewska A, Kloss M, Mieczkowski J, Kaza B, Ronowicz A, Hu F et al (2014) The signal transducers Stat1 and Stat3 and their novel target Jmjd3 drive the expression of inflammatory genes in microglia. J Mol Med(Berl) 92(3):239–254. doi:10.1007/s00109-013-1090-5

    Article  CAS  Google Scholar 

  52. Duman RS (2004) Role of neurotrophic factors in the etiology and treatment of mood disorders. Neuromolecular Med 5 (1):11–25

  53. Kuzumaki N, Ikegami D, Tamura R, Hareyama N, Imai S, Narita M, Torigoe K, Niikura K et al (2011) Hippocampal epigenetic modification at the brain-derived neurotrophic factor gene induced by an enriched environment. Hippocampus 21(2):127–132. doi:10.1002/hipo.20775

    Article  CAS  PubMed  Google Scholar 

  54. Tsankova NM, Berton O, Renthal W, Kumar A, Neve RL, Nestler EJ (2006) Sustained hippocampal chromatin regulation in a mouse model of depression and antidepressant action. Nat Neurosci 9 (4):519–525

  55. Karpova NN, Rantamaki T, Di Lieto A, Lindemann L, Hoener MC, Castren E (2010) Darkness reduces BDNF expression in the visual cortex and induces repressive chromatin remodeling at the BDNF gene in both hippocampus and visual cortex. Cell Mol Neurobiol 30(7):1117–1123. doi:10.1007/s10571-010-9544-6

    Article  CAS  PubMed  Google Scholar 

  56. Castren E, Rantamaki T (2010) Role of brain-derived neurotrophic factor in the aetiology of depression: implications for pharmacological treatment. CNS drugs 24(1):1–7. doi:10.2165/11530010-000000000-00000

    Article  CAS  PubMed  Google Scholar 

  57. Lindholm JS, Castren E (2014) Mice with altered BDNF signaling as models for mood disorders and antidepressant effects. Front Behav Neurosci 8:143. doi:10.3389/fnbeh.2014.00143

    Article  PubMed  PubMed Central  Google Scholar 

  58. Kyeremanteng C, MacKay JC, James JS, Kent P, Cayer C, Anisman H, Merali Z (2014) Effects of electroconvulsive seizures on depression-related behavior, memory and neurochemical changes in Wistar and Wistar-Kyoto rats. Prog Neuropsychopharmacol Biol Psychiatry 54:170–178. doi:10.1016/j.pnpbp.2014.05.012

    Article  CAS  PubMed  Google Scholar 

  59. Altar CA, Laeng P, Jurata LW, Brockman JA, Lemire A, Bullard J, Bukhman YV, Young TA et al (2004) Electroconvulsive seizures regulate gene expression of distinct neurotrophic signaling pathways. J Neurosci 24(11):2667–2677. doi:10.1523/JNEUROSCI.5377-03.2004

    Article  CAS  PubMed  Google Scholar 

  60. Newton SS, Collier EF, Hunsberger J, Adams D, Terwilliger R, Selvanayagam E, Duman RS (2003) Gene profile of electroconvulsive seizures: induction of neurotrophic and angiogenic factors. J Neurosci 23(34):10841–10851

    CAS  PubMed  Google Scholar 

  61. Rampon C, Jiang CH, Dong H, Tang YP, Lockhart DJ, Schultz PG, Tsien JZ, Hu Y (2000) Effects of environmental enrichment on gene expression in the brain. Proc Natl Acad Sci USA 97(23):12880–12884. doi:10.1073/pnas.97.23.12880

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Brown J, Cooper-Kuhn CM, Kempermann G, Van Praag H, Winkler J, Gage FH, Kuhn HG (2003) Enriched environment and physical activity stimulate hippocampal but not olfactory bulb neurogenesis. Eur J Neurosci 17(10):2042–2046

    Article  PubMed  Google Scholar 

  63. Madsen TM, Treschow A, Bengzon J, Bolwig TG, Lindvall O, Tingstrom A (2000) Increased neurogenesis in a model of electroconvulsive therapy. Biol Psychiatry 47(12):1043–1049

    Article  CAS  PubMed  Google Scholar 

  64. Chen F, Madsen TM, Wegener G, Nyengaard JR (2009) Repeated electroconvulsive seizures increase the total number of synapses in adult male rat hippocampus. Eur Neuropsychopharmacol 19(5):329–338. doi:10.1016/j.euroneuro.2008.12.007

    Article  CAS  PubMed  Google Scholar 

  65. Zhao C, Warner-Schmidt J, Duman RS, Gage FH (2012) Electroconvulsive seizure promotes spine maturation in newborn dentate granule cells in adult rat. Dev Neurobiol 72(6):937–942. doi:10.1002/dneu.20986

    Article  PubMed  PubMed Central  Google Scholar 

  66. Duman RS (2004) Role of neurotrophic factors in the etiology and treatment of mood disorders. Neuromolecular Med 5(1):11–25. doi:10.1385/NMM:5:1:011

    Article  CAS  PubMed  Google Scholar 

  67. Ickes BR, Pham TM, Sanders LA, Albeck DS, Mohammed AH, Granholm AC (2000) Long-term environmental enrichment leads to regional increases in neurotrophin levels in rat brain. Exp Neurol 164(1):45–52. doi:10.1006/exnr.2000.7415

    Article  CAS  PubMed  Google Scholar 

  68. Pham TM, Winblad B, Granholm AC, Mohammed AH (2002) Environmental influences on brain neurotrophins in rats. Pharmacol Biochem Behav 73(1):167–175

    Article  CAS  PubMed  Google Scholar 

  69. Chourbaji S, Brandwein C, Gass P (2011) Altering BDNF expression by genetics and/or environment: impact for emotional and depression-like behaviour in laboratory mice. Neurosci Biobehav Rev 35(3):599–611. doi:10.1016/j.neubiorev.2010.07.003

    Article  CAS  PubMed  Google Scholar 

  70. Ishikawa M, Nishijima N, Shiota J, Sakagami H, Tsuchida K, Mizukoshi M, Fukuchi M, Tsuda M, et al (2010) Involvement of the serum response factor coactivator megakaryoblastic leukemia (MKL) in the activin-regulated dendritic complexity of rat cortical neurons. J Biol Chem 285 (43):32734–32743

  71. Shoji-Kasai Y, Ageta H, Hasegawa Y, Tsuchida K, Sugino H, Inokuchi K (2007) Activin increases the number of synaptic contacts and the length of dendritic spine necks by modulating spinal actin dynamics. J Cell Sci 120 (Pt 21):3830–3837

  72. Wu DD, Lai M, Hughes PE, Sirimanne E, Gluckman PD, Williams CE (1999) Expression of the activin axis and neuronal rescue effects of recombinant activin A following hypoxic-ischemic brain injury in the infant rat. Brain Res 835 (2):369–378

  73. Abdipranoto-Cowley A, Park JS, Croucher D, Daniel J, Henshall S, Galbraith S, Mervin K, Vissel B (2009) Activin A is essential for neurogenesis following neurodegeneration. Stem Cells 27(6):1330–1346

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Reul JM (2014) Making memories of stressful events: a journey along epigenetic, gene transcription, and signaling pathways. Front Psychiatry 5:5. doi:10.3389/fpsyt.2014.00005

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgments

We thank Iwona Izydorczyk and Birgit Vogler for technical assistance.

Compliance with ethical standards

Funding

This study was funded by the Deutsche Forschungsgemeinschaft (DFG AL 294/10-1 and INST 90/675-1 FUGG to C.A.), the Johannes und Frieda Marohn-Stiftung (to F.Z. and C.A.), the Emerging Field Initiative of the University Erlangen-Nürnberg (to C.A.), the Dr. Ernst und Anita Bauer Stiftung (to A. L.), the Jürgen Manchot Stiftung (to A. L.), the Studienstiftung des deutschen Volkes (to S. L.), the Swiss National Science Foundation (310030_132884 to S.W.) and the Swiss Cancer League (KFS-2822-08-2011 to S.W.). Financial support to B.W. came from the German Federal Ministry of Education and Research (BMBF, 01GQ113), the Interdisciplinary Centre for Clinical Research (IZKF, University Hospital of Erlangen), and the Bavarian Ministry of Education and Culture, Science and the Arts in the framework of the BioSysNet and ForIPS.

Conflict of interest

The authors declare that they have no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Christian Alzheimer.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Figure S1

Analysis of TGF-β/activin signaling after ECS. Hippocampal mRNA levels of Bdnf (a), TGF-β subfamily ligands that activate SMAD2/3 signaling (b-e), their inhibitors (f,k-l), and activin receptors (g-j) were analyzed by RT-qPCR after electroconvulsive seizures (ECS) and were normalized to the mean mRNA levels of Tbp, Hprt and Rpl13a. Error bars represent mean +/- SEM, n ≥ 3; *p < 0.05, **p < 0.01, ***p < 0.001, ****p < 0.0001 using one-way ANOVA and Tukey multiple comparison test. (DOC 351 kb)

Figure S2

siRNA-mediated knock-down of Pmepa1 does not significantly enhance activin-induced SMAD2/3 phosphorylation in HT22 cells. (a) Dose-dependent effect of activin A on SMAD2/3 phosphorylation in HT22 cells. Cells were treated for 24 h with 10 or 50 ng/ml activin A and analyzed by western blotting for the levels of total and phosphorylated SMAD2/3. The ratio between P-SMAD2/3 and total SMAD2/3 is shown. (b) HT22 cells were transfected with different concentrations of two different Pmepa1 siRNAs or scrambled siRNA as indicated and treated with 10 ng/ml activin A 24 h later. Pmepa1 mRNA levels were determined after another 24 h. Transfection with siRNA against Pmepa1 significantly suppressed the activin-induced increase in Pmepa1 mRNA levels (grey bars) in comparison to cells transfected with scrambled siRNA (black bar). Error bars represent mean +/- SEM; *p < 0.05, **p < 0.01, ****p < 0.0001 using one-way ANOVA and Tukey test for multiple comparison. (c) Densitometric quantification of Westernblots assessing levels of total and phosphorylated SMAD2/3 revealed no significant increase in SMAD2/3 phosphorylation after transfection with Pmepa1-specific siRNAs and activin treatment. The concentration of the siRNA is indicated at the bottom of the grey bars. (d) Representative Westernblot demonstrating that SMAD2/3 phosphorylation levels were almost back to baseline (first lane) after 24 h of activin treatment (10 ng/ml, second lane) and were largely unaffected by transfection with Pmepa1 siRNA (third lane). (DOC 362 kb)

Figure S3

Impact of ECS on H3K27 trimethylation. (a) The amount of the histone mark H3K27me3 was analyzed at different time points after ECS or sham treatment (sh) by Westernblot and normalized to histone 3 (H3) protein levels. β-actin was used as independent loading control. Densitometric quantification (bar graph) did not show significant changes in global H3K27me3 methylation relative to the corresponding sham controls (white bars) using one-way ANOVA and Tukey test for multiple comparison. n = 3. Error bars represent mean +/- SEM. (b) Immunofluorescence staining of H3K27me3 (visualized in red, left panel) did not reveal obvious local changes in H3K27 trimethylation in the hippocampus at 0 h (upper row) and 24 h (middle row) after ECS. DAPI was used to counterstain nuclei (blue, middle panel). Merged pictures are shown in the right panel. Primary antibody was omitted to control for background staining (control, bottom row). Scale bar: 500 μm. (DOC 1604 kb)

Figure S4

Expression analysis of several TGF-β family members during environmental enrichment (EE). Hippocampal mRNA levels of Tgfb1 (a), Tgfb2 (b), Tgfb3 (c), Inhbb (d) and Inha (e) were analyzed by RT-qPCR and did not markedly change during exposure to EE. mRNA levels were normalized to the mean of Tbp, Hprt and Rpl13a. Experiments were conducted twice except for Inhbb (n = 3). Error bars represent mean +/- SEM. One-way ANOVA and Tukey multiple comparison test was used to test for significant changes. (DOC 377 kb)

Figure S5

Analysis of Inhba and Kdm6b mRNA levels 0.5 h after ECS. While Inhba (a) mRNA expression was still unaltered shortly after ECS, Kdm6b (b) mRNA levels had already increased significantly. mRNA levels were normalized to the mean of Tbp, Hprt and Rpl13a. n = 3. Error bars represent mean +/- SEM; ***p < 0.001, ****p < 0.0001 using one-way ANOVA and Tukey test for multiple comparison. (DOC 120 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Link, A.S., Kurinna, S., Havlicek, S. et al. Kdm6b and Pmepa1 as Targets of Bioelectrically and Behaviorally Induced Activin A Signaling. Mol Neurobiol 53, 4210–4225 (2016). https://doi.org/10.1007/s12035-015-9363-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12035-015-9363-3

Keywords

Navigation