Skip to main content
Log in

Codon Usage Pattern of Genes Involved in Central Nervous System

  • Published:
Molecular Neurobiology Aims and scope Submit manuscript

Abstract

Codon usage bias (CUB) is the non-uniform usage of synonymous codons in which some codons are more preferred to others in the transcript. Analysis of codon usage bias has applications in understanding the basics of molecular biology, genetics, gene expression, and molecular evolution. To understand the patterns of codon usage in genes involved in the central nervous system (CNS), we used bioinformatic approaches to analyze the protein-coding sequences of genes involved in the CNS. The improved effective number of codons (ENC) suggested that the overall codon usage bias was low. The relative synonymous codon usage (RSCU) revealed that the most frequently occurring codons had a G or C at the third codon position. The codons namely TCC, AGC, CTG, CAG, CGC, ATC, ACC, GTG, GCC, GGC, and CGG (average RSCU > 1.6) were over-represented. Both mutation pressure and natural selection might affect the codon usage pattern as evident from correspondence and parity plot analyses. The overall GC content (59.93) was higher than AT content, i.e., genes were GC-rich. The correlation of GC12 with GC3 suggested that mutation pressure might affect the codon usage pattern.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Sujatha Thankeswaran Parvathy, Varatharajalu Udayasuriyan & Vijaipal Bhadana

References

  1. Risch NJ (2000) Searching for genetic determinants in the new millennium. Nature 405:847–856

    Article  CAS  Google Scholar 

  2. Bertram L, Tanzi RE (2005) The genetic epidemiology of neurodegenerative disease. J Clin Invest 115:1449–1457

    Article  CAS  Google Scholar 

  3. Tanner CM, Ottman R, Goldman SM, Ellenberg J, Chan P et al (1999) Parkinson disease in twins: an etiologic study. Jama 281:341–346

    Article  CAS  Google Scholar 

  4. Maher N, Golbe L, Lazzarini A, Mark M, Currie L, Wooten GF, Saint-Hilaire M, Wilk JB et al (2002) Epidemiologic study of 203 sibling pairs with Parkinson’s disease the GenePD study. Neurology 58:79–84

    Article  CAS  Google Scholar 

  5. de la Fuente-Fernandez R (2003) A note of caution on correlation between sibling pairs. Neurology 60:1561–1561

    Article  Google Scholar 

  6. Polymeropoulos MH, Lavedan C, Leroy E, Ide SE, Dehejia A, Dutra A, Pike B, Root H et al (1997) Mutation in the α-synuclein gene identified in families with Parkinson's disease. Science 276:2045–2047

    Article  CAS  Google Scholar 

  7. Kitada T, Asakawa S, Hattori N, Matsumine H, Yamamura Y, Minoshima S, Yokochi M, Mizuno Y et al (1998) Mutations in the parkin gene cause autosomal recessive juvenile parkinsonism. Nature 392:605–608

    Article  CAS  Google Scholar 

  8. Bonifati V, Rizzu P, van Baren MJ, Schaap O, Breedveld GJ, Krieger E, Dekker MC, Squitieri F et al (2003) Mutations in the DJ-1 gene associated with autosomal recessive early-onset parkinsonism. Science 299:256–259

    Article  CAS  Google Scholar 

  9. Valente EM, Abou-Sleiman PM, Caputo V, Muqit MM, Harvey K, Gispert S, Ali Z, del Turco D et al (2004) Hereditary early-onset Parkinson's disease caused by mutations in PINK1. Science 304:1158–1160

    Article  CAS  Google Scholar 

  10. Zimprich A, Biskup S, Leitner P, Lichtner P, Farrer M, Lincoln S, Kachergus J, Hulihan M et al (2004) Mutations in LRRK2 cause autosomal-dominant parkinsonism with pleomorphic pathology. Neuron 44:601–607

    Article  CAS  Google Scholar 

  11. McKeith IG, Galasko D, Kosaka K, Perry E, Dickson DW et al (1996) Consensus guidelines for the clinical and pathologic diagnosis of dementia with Lewy bodies (DLB) report of the consortium on DLB international workshop. Neurology 47:1113–1124

    Article  CAS  Google Scholar 

  12. Hamilton RL (2000) Lewy bodies in Alzheimer's disease: A neuropathological review of 145 cases using α-Synuclein immunohistochemistry. Brain Pathol 10:378–384

    Article  CAS  Google Scholar 

  13. Tanzi RE, McClatchey AI, Lamperti ED, Villa-Komaroff L, Gusella JF, et al. (1988) Protease inhibitor domain encoded by an amyloid protein precursor mRNA associated with Alzheimer's disease.

  14. Bennetzen JL, Hall B (1982) Codon selection in yeast. J Biol Chem 257:3026–3031

    CAS  PubMed  Google Scholar 

  15. Plotkin JB, Robins H, Levine AJ (2004) Tissue-specific codon usage and the expression of human genes. Proc Natl Acad Sci U S A 101:12588–12591

    Article  CAS  Google Scholar 

  16. Duret L (2002) Evolution of synonymous codon usage in metazoans. Curr Opin Genet Dev 12:640–649

    Article  CAS  Google Scholar 

  17. Bernardi G, Olofsson B, Filipski J, Zerial M, Salinas J, Cuny G, Meunier-Rotival M, Rodier F (1985) The mosaic genome of warm-blooded vertebrates. Science 228:953–958

    Article  CAS  Google Scholar 

  18. Dittmar KA, Goodenbour JM, Pan T (2006) Tissue-specific differences in human transfer RNA expression. PLoS Genet 2:e221

    Article  Google Scholar 

  19. Gupta S, Ghosh T (2001) Gene expressivity is the main factor in dictating the codon usage variation among the genes in Pseudomonas aeruginosa. Gene 273:63–70

    Article  CAS  Google Scholar 

  20. Liu Q (2006) Analysis of codon usage pattern in the radioresistant bacterium Deinococcus radiodurans. Biosystems 85:99–106

    Article  CAS  Google Scholar 

  21. Urrutia AO, Hurst LD (2001) Codon usage bias covaries with expression breadth and the rate of synonymous evolution in humans, but this is not evidence for selection. Genetics 159:1191–1199

    CAS  PubMed  PubMed Central  Google Scholar 

  22. Ikemura T (1982) Correlation between the abundance of yeast transfer RNAs and the occurrence of the respective codons in protein genes: Differences in synonymous codon choice patterns of yeast and Escherichia coli with reference to the abundance of isoaccepting transfer RNAs. J Mol Biol 158:573–597

    Article  CAS  Google Scholar 

  23. Moriyama EN, Powell JR (1998) Gene length and codon usage bias in Drosophila melanogaster, Saccharomyces cerevisiae and Escherichia coli. Nucleic Acids Res 26:3188–3193

    Article  CAS  Google Scholar 

  24. Akashi H (1994) Synonymous codon usage in Drosophila melanogaster: Natural selection and translational accuracy. Genetics 136:927–935

    CAS  PubMed  PubMed Central  Google Scholar 

  25. Jenkins GM, Holmes EC (2003) The extent of codon usage bias in human RNA viruses and its evolutionary origin. Virus Res 92:1–7

    Article  CAS  Google Scholar 

  26. Knight RD, Freeland SJ, Landweber LF (2001) A simple model based on mutation and selection explains trends in codon and amino-acid usage and GC composition within and across genomes. In: Genome biology 2: research0010

    Google Scholar 

  27. Sharp PM, Li W-H (1987) The codon adaptation index-a measure of directional synonymous codon usage bias, and its potential applications. Nucleic Acids Res 15:1281–1295

    Article  CAS  Google Scholar 

  28. Butt AM, Nasrullah I, Tong Y (2014) Genome-wide analysis of codon usage and influencing factors in chikungunya viruses. PLoS One 9:e90905

    Article  Google Scholar 

  29. Wright F (1990) The ‘effective number of codons’ used in a gene. Gene 87:23–29

    Article  CAS  Google Scholar 

  30. Comeron JM (2004) Selective and mutational patterns associated with gene expression in humans influences on synonymous composition and intron presence. Genetics 167:1293–1304

    Article  CAS  Google Scholar 

  31. Satapathy SS, Sahoo AK, Ray SK, Ghosh TC (2017) Codon degeneracy and amino acid abundance influence the measures of codon usage bias: Improved Nc (N̂c) and ENCprime (N̂′ c) measures. Genes Cells 22:277–283

    Article  CAS  Google Scholar 

  32. Dilucca M, Cimini G, Semmoloni A, Deiana A, Giansanti A (2015) Codon Bias patterns of E. coli’s interacting proteins. PLoS One 10:e0142127

    Article  Google Scholar 

  33. Grantham R, Gautier C, Gouy M (1980) Codon frequencies in 119 individual genes confirm consistent choices of degenerate bases according to genome type. Nucleic Acids Res 8:1893–1912

    Article  CAS  Google Scholar 

  34. Shields DC, Sharp PM (1987) Synonymous codon usage in Bacillus subtilis reflects both translational selection and mutational biases. Nucleic Acids Res 15:8023–8040

    Article  CAS  Google Scholar 

  35. Sueoka N (1995) Intrastrand parity rules of DNA base composition and usage biases of synonymous codons. J Mol Evol 40:318–325

    Article  CAS  Google Scholar 

  36. Sueoka N (1999) Two aspects of DNA base composition: G+ C content and translation-coupled deviation from intra-strand rule of a= T and G= C. J Mol Evol 49:49–62

    Article  CAS  Google Scholar 

  37. Zhang Z, Dai W, Dai D (2013) Synonymous codon usage in TTSuV2: Analysis and comparison with TTSuV1. PLoS One 8:e81469

    Article  Google Scholar 

  38. Uddin A, Chakraborty S (2015) Synonymous codon usage pattern in mitochondrial CYB gene in pisces, aves, and mammals. Mitochondrial DNA: 1–10.

  39. Zhou T, Gu W, Ma J, Sun X, Lu Z (2005) Analysis of synonymous codon usage in H5N1 virus and other influenza a viruses. Biosystems 81:77–86

    Article  CAS  Google Scholar 

  40. Wei L, He J, Jia X, Qi Q, Liang Z, Zheng H, Ping Y, Liu S et al (2014) Analysis of codon usage bias of mitochondrial genome in Bombyx mori and its relation to evolution. BMC Evol Biol 14:262

    Article  Google Scholar 

  41. Uddin A, Chakraborty S (2016) Codon usage trend in mitochondrial CYB gene. Gene 586:105–114

    Article  CAS  Google Scholar 

  42. Yang X, Luo X, Cai X (2014) Analysis of codon usage pattern in Taenia saginata based on a transcriptome dataset. Parasit Vectors 7:1–11

    Article  Google Scholar 

  43. Behura SK, Severson DW (2012) Comparative analysis of codon usage bias and codon context patterns between dipteran and hymenopteran sequenced genomes. PLoS One 7:e43111

    Article  CAS  Google Scholar 

  44. Beletskii A, Bhagwat AS (2001) Transcription-induced cytosine-to-thymine mutations are not dependent on sequence context of the target cytosine. J Bacteriol 183:6491–6493

    Article  CAS  Google Scholar 

  45. Gatherer D, McEwan NR (1997) Small regions of preferential codon usage and their effect on overall codon bias-the case of the plp gene. IUBMB Life 43:107–114

    Article  CAS  Google Scholar 

  46. Sur S, Sen A, Bothra AK (2007) Mutational drift prevails over translational efficiency in Frankia nif operons. Indian J Biotechnol 6:321–328

    CAS  Google Scholar 

  47. Chakraborty S, Nag D, Mazumder TH, Uddin A (2017) Codon usage pattern and prediction of gene expression level in Bungarus species. Gene 604:48–60

    Article  CAS  Google Scholar 

  48. Zhao Y, Zheng H, Xu A, Yan D, Jiang Z, Qi Q, Sun J (2016) Analysis of codon usage bias of envelope glycoprotein genes in nuclear polyhedrosis virus (NPV) and its relation to evolution. BMC Genomics 17:677

    Article  Google Scholar 

  49. Hey J, Kliman RM (2002) Interactions between natural selection, recombination and gene density in the genes of Drosophila. Genetics 160:595–608

    CAS  PubMed  PubMed Central  Google Scholar 

  50. Duret L, Mouchiroud D (1999) Expression pattern and, surprisingly, gene length shape codon usage in Caenorhabditis, Drosophila, and Arabidopsis. Proc Natl Acad Sci 96:4482–4487

    Article  CAS  Google Scholar 

  51. Hartl DL, Moriyama EN, Sawyer SA (1994) Selection intensity for codon bias. Genetics 138:227–234

    CAS  PubMed  PubMed Central  Google Scholar 

  52. Orešič M, Dehn MH, Korenblum DH, Shalloway DH (2003) Tracing specific synonymous codon–secondary structure correlations through evolution. J Mol Evol 56:473–484

    Article  Google Scholar 

  53. Romero H, Zavala A, Musto H (2000) Codon usage in chlamydia trachomatis is the result of strand-specific mutational biases and a complex pattern of selective forces. Nucleic Acids Res 28:2084–2090

    Article  CAS  Google Scholar 

  54. Goodarzi H, Torabi N, Najafabadi HS, Archetti M (2008) Amino acid and codon usage profiles: Adaptive changes in the frequency of amino acids and codons. Gene 407:30–41

    Article  CAS  Google Scholar 

  55. Mirsafian H, Mat Ripen A, Singh A, Teo PH, Merican AF, Mohamad SB (2014) A comparative analysis of synonymous codon usage Bias pattern in human albumin superfamily. Sci World J 2014:1–7

    Google Scholar 

  56. Jia X, Liu S, Zheng H, Li B, Qi Q, Wei L, Zhao T, He J et al (2015) Non-uniqueness of factors constraint on the codon usage in Bombyx mori. BMC Genomics 16:356

    Article  Google Scholar 

  57. Schwartz S, Meshorer E, Ast G (2009) Chromatin organization marks exon-intron structure. Nat Struct Mol Biol 16:990–995

    Article  CAS  Google Scholar 

  58. Hoeijmakers JH (2001) Genome maintenance mechanisms for preventing cancer. Nature 411:366–374

    Article  CAS  Google Scholar 

  59. Shen W, Wang D, Ye B, Shi M, Ma L, Zhang Y, Zhao Z (2015) GC3 biased gene domains in mammalian genomes. In: Bioinformatics: btv329, vol 31, pp. 3081–3084

    Google Scholar 

  60. Tatarinova TV, Alexandrov NN, Bouck JB, Feldmann KA (2010) GC3 biology in corn, rice, sorghum and other grasses. BMC Genomics 11:308

    Article  Google Scholar 

  61. Aota S-i, Ikemura T (1986) Diversity in G+ C content at the third position of codons in vertebrate genes and its cause. Nucleic Acids Res 14:6345–6355

    Article  CAS  Google Scholar 

  62. Malakar AK, Halder B, Paul P, Chakraborty S (2016) Cytochrome P450 genes in coronary artery diseases: Codon usage analysis reveals genomic GC adaptation. Gene 590:35–43

    Article  CAS  Google Scholar 

  63. Mazumder TH, Uddin A, Chakraborty S (2016) Transcription factor gene GATA2: Association of leukemia and nonsynonymous to the synonymous substitution rate across five mammals. Genomics 107:155–161

    Article  CAS  Google Scholar 

  64. FADIEL A (2003) GENOME ANALYSIS OF GENBANK KNOWN RABBIT.

  65. Garcia JA, Fernández-Guerra A, Casamayor EO (2011) A close relationship between primary nucleotides sequence structure and the composition of functional genes in the genome of prokaryotes. Mol Phylogenet Evol 61:650–658

    Article  CAS  Google Scholar 

  66. Shah P, Gilchrist MA (2010) Effect of correlated tRNA abundances on translation errors and evolution of codon usage bias. PLoS Genet 6:e1001128

    Article  Google Scholar 

  67. Drummond DA, Wilke CO (2009) The evolutionary consequences of erroneous protein synthesis. Nat Rev Genet 10:715–724

    Article  Google Scholar 

  68. Akashi H (2001) Gene expression and molecular evolution. Curr Opin Genet Dev 11:660–666

    Article  CAS  Google Scholar 

  69. Arava Y, Boas FE, Brown PO, Herschlag D (2005) Dissecting eukaryotic translation and its control by ribosome density mapping. Nucleic Acids Res 33:2421–2432

    Article  CAS  Google Scholar 

  70. Stoletzki N, Eyre-Walker A (2007) Synonymous codon usage in Escherichia coli: Selection for translational accuracy. Mol Biol Evol 24:374–381

    Article  CAS  Google Scholar 

  71. Kramer EB, Farabaugh PJ (2007) The frequency of translational misreading errors in E. Coli is largely determined by tRNA competition. Rna 13:87–96

    Article  CAS  Google Scholar 

  72. Kaufmann WK, Paules RS (1996) DNA damage and cell cycle checkpoints. FASEB J 10:238–247

    Article  CAS  Google Scholar 

  73. Choudhury MN, Chakraborty S (2015) Codon usage pattern in human SPANX genes. Bioinformation 11:454–459

    Article  Google Scholar 

  74. Uddin A, Mazumder TH, Choudhury MN, Chakraborty S (2015) Codon bias and gene expression of mitochondrial ND2 gene in chordates. Bioinformation 11:407–412

    Article  Google Scholar 

Download references

Acknowledgements

The authors are thankful to Assam University, Silchar, Assam, India, for providing necessary facilities.

Funding

Unfunded: The work was not supported by any national or international organization.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Arif Uddin or Supriyo Chakraborty.

Ethics declarations

The study is based on DNA sequence-based analysis. Ethical clearance is not applicable.

Conflict of Interest

The authors declare that they have no conflict of interests.

Electronic supplementary material

ESM S1

Sequence of genes involved in central nervous system (TXT 76 kb)

ESM S2

(DOCX 14 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Uddin, A., Chakraborty, S. Codon Usage Pattern of Genes Involved in Central Nervous System. Mol Neurobiol 56, 1737–1748 (2019). https://doi.org/10.1007/s12035-018-1173-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12035-018-1173-y

Keywords

Navigation