Skip to main content
Log in

INDeGenIUS, a new method for high-throughput identification of specialized functional islands in completely sequenced organisms

  • Published:
Journal of Biosciences Aims and scope Submit manuscript

Abstract

Genomic islands (GIs) are regions in the genome which are believed to have been acquired via horizontal gene transfer events and are thus likely to be compositionally distinct from the rest of the genome. Majority of the genes located in a GI encode a particular function. Depending on the genes they encode, GIs can be classified into various categories, such as ‘metabolic islands’, ‘symbiotic islands’, ‘resistance islands’, ‘pathogenicity islands’, etc. The computational process for GI detection is known and many algorithms for the same are available. We present a new method termed as Improved N-mer based Detection of Genomic Islands Using Sequence-clustering (INDeGenIUS) for the identification of GIs. This method was applied to 400 completely sequenced species belonging to proteobacteria. Based on the genes encoded in the identified GIs, the GIs were grouped into 6 categories: metabolic islands, symbiotic islands, resistance islands, secretion islands, pathogenicity islands and motility islands. Several new islands of interest which had previously been missed out by earlier algorithms were picked up as GIs by INDeGenIUS. The present algorithm has potential application in the identification of functionally relevant GIs in the large number of genomes that are being sequenced. Investigation of the predicted GIs in pathogens may lead to identification of potential drug/vaccine candidates.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

Abbreviations

FPI:

Francisella pathogenicity island

GI:

genomic island

HGT:

horizontal gene transfer

HPI:

high pathogenicity island

INDeGenIUS:

Improved N-mer based Detection of Genomic Islands Using Sequence-clustering

LEE:

locus of enterocyte effacement

LPS:

lipopolysaccharide

MDR:

multidrug resistant

MI:

metabolic island

MoI:

motility island

MSHA:

mannose-sensitive haemagglutinin

PAI:

pathogenicity island

RI:

resistance island

SyI:

symbiotic island

SI:

secretion island

TCA:

tricarboxylic acid

References

  • Abe-yoshizumi R, Kamei U, Yamada A, Kimura M and Ichihara S 2004 The evolution of the phenylacetic acid degradation pathway in bacteria; Biosci. Biotechnol. Biochem. 68 746–748

    Article  CAS  PubMed  Google Scholar 

  • Asadulghani M, Ogura Y, Ooka T, Itoh T, Sawaguchi A, Iguchi A, Nakayama K and Hayashi T 2009 The defective prophage pool of Escherichia coli O157: prophage-prophage interactions potentiate horizontal transfer of virulence determinants; PLoS Pathog. 5 e1000408

    Article  PubMed  Google Scholar 

  • Beaber J W, Hochhut B and Waldor M K 2002 Genomic and functional analysis of SXT, an integrating antibiotic resistance gene transfer element derived from Vibrio cholerae; J. Bacteriol. 184 4259–4269

    Article  CAS  PubMed  Google Scholar 

  • Beaber J W, Hochhut B and Waldor M K 2004 SOS response promotes horizontal dissemination of antibiotic resistance genes; Nature (London) 427 72–74

    Article  CAS  Google Scholar 

  • Blum G, Ott M, Lischewski A, Ritter A, Imrich H, Tschäpe H and Hacker J 1994 Excision of large DNA regions termed pathogenicity islands from tRNA-specific loci in the chromosome of an Escherichia coli wild-type pathogen; Infect. Immun. 62 606–614

    CAS  PubMed  Google Scholar 

  • Borenstein E, Kupiec M, Feldman M W and Ruppin E 2008 Large-scale reconstruction and phylogenetic analysis of metabolic environments; Proc. Natl. Acad. Sci. USA 105 14482–14487

    Article  CAS  PubMed  Google Scholar 

  • Carniel E 1999 The Yersinia high-pathogenicity island; Int. Microbiol. 2 161–167

    CAS  PubMed  Google Scholar 

  • Chen W M, Moulin L, Bontemps C, Vandamme P, Béna G and Boivin-Masson C 2003 Legume symbiotic nitrogen fixation by β-proteobacteria is widespread in nature; J. Bacteriol. 185 7266–7272

    Article  CAS  PubMed  Google Scholar 

  • Chiu C H, Tang P, Chu C, Hu S, Bao Q, Yu J, Chou Y Y, Wangand H S et al. 2005 The genome sequence of Salmonella enterica serovar Choleraesuis, a highly invasive and resistant zoonotic pathogen; Nucleic Acids Res. 33 1690–1698

    Article  CAS  PubMed  Google Scholar 

  • Cieslewicz M J, Chaffin D, Glusman G, Kasper D, Madan A, Rodrigues S, Fahey J, Wessels M R et al. 2005 Structural and genetic diversity of Group B Streptococcus capsular polysaccharides; Infect. Immun. 73 3096–3103

    Article  CAS  PubMed  Google Scholar 

  • Desmond E, Brochier-Armanet C and Gribaldo S 2007 Phylogenomics of the archaeal flagellum: rare horizontal gene transfer in a unique motility structure; BMC Evol. Biol. 7 106

    Article  PubMed  Google Scholar 

  • Dobrindt U, Hochhut B, Hentschel U, Hacker J. 2004. Genomic islands in pathogenic and environmental microorganisms. Nat. Rev Microbiol. 2 414–424

    Article  CAS  PubMed  Google Scholar 

  • Doublet B, Butaye P, Imberechts H, Boyd D, Mulvey M R, Chaslus-Dancla E and Cloeckaert A 2002 Salmonella genomic island 1 multi drug resistance gene clusters in Salmonella enterica serovar Agona isolated in Belgium in 1992 to 2002; Antimicrob. Agents Chemother. 48 2510–2517

    Article  Google Scholar 

  • Finan T M 2002 Evolving insights: symbiosis islands and horizontal gene transfer; J. Bacteriol. 184 2855–2856

    Article  CAS  PubMed  Google Scholar 

  • Fournier P E, Vallenet D, Barbe V, Audic S, Ogata H, Poirel L, Richet H, Robert C et al. 2006 Comparative genomics of multi drug resistance in Acinetobacter baumannii; PLoS Genet. 2 e7

    Article  PubMed  Google Scholar 

  • Friedrich A W, Köck R, Bielaszewska M, Zhang W, Karch H and Mathys W 2005 Distribution of the urease gene cluster among and urease activities of enterohemorrhagic Escherichia coli O157 isolates from humans; J. Clin. Microbiol. 43 546–550

    Article  CAS  PubMed  Google Scholar 

  • Garcia-Vallvé S, Romeu A and Palau J 2000 Horizontal gene transfer in bacterial and archaeal complete genomes; Genome Res. 10 1719–1725

    Article  PubMed  Google Scholar 

  • Garcia-Vallve S, Guzman E, Montero M A and Romeu A 2003 HGT-DB: a database of putative horizontally transferred genes in prokaryotic complete genomes; Nucleic Acids Res. 31 187–189

    Article  CAS  PubMed  Google Scholar 

  • Gerlach R G, Jackel D, Stecher B, Wagner C, Lupas L, Hardt W D and Hensel M 2007 Salmonella pathogenicity island 4 encodes a giant non-fimbrial adhesin and the cognate type I secretion system; Cell Microbiol. 9 1834–1850

    Article  CAS  PubMed  Google Scholar 

  • Ginolhac A, Jarrin C, Robe P, Perrière G, Vogel T M, Simonet P and Nalin R 2005 Type I polyketide synthases may have evolved through horizontal gene transfer; J. Mol. Evol. 60 716–725

    Article  CAS  PubMed  Google Scholar 

  • Gonzalez V, Bustos P, Ramirez-Romero M A, Medrano-Soto A, Salgado H, Hernandez-Gonzalez I, Hernandez-celis J C, Quintero V et al. 2003 The mosaic structure of the symbiotic plasmid of Rhizobium etli CFN42 and its relation to other symbiotic genome compartment; Genome Biol. 4 R36

    Article  PubMed  Google Scholar 

  • Hacker J, Bender L, Ott M, Wingender J, Lund B, Marre R and Goebel W 1990 Deletions of chromosomal regions coding for fimbriae and hemolysins occur in vitro and in vivo in various extraintestinal Escherichia coli isolates; Microb. Pathog. 8 213–225

    Article  CAS  PubMed  Google Scholar 

  • Kaneko T, Nakamura Y, Sato S, Asamizu E, Kato T, Sasamoto S, Watanabe A, Idesawa K et al. 2000 Complete genome structure of the nitrogen-fixing symbiotic bacterium Mesorhizobium loti; DNA Res. 7 331–338

    Article  CAS  PubMed  Google Scholar 

  • Karlin S 2001 Detecting anamolous gene clusters and pathogenicity islands in diverse bacterial genomes; Trends Microbiol. 9 335–343

    Article  CAS  PubMed  Google Scholar 

  • Kostakioti M, Newman C L, Thanassi D G and Stathopoulos C 2005 Mechanisms of protein export across the bacterial outer membrane; J. Bacteriol. 187 4306–4314

    Article  CAS  PubMed  Google Scholar 

  • Lawrence J G and Ochman H 1998 Molecular archaeology of the Escherichia coli genome; Proc. Natl. Acad. Sci. USA 95 9413–9417

    Article  CAS  PubMed  Google Scholar 

  • Lawrence J G and Roth J R 1995 The cobalamin (coenzyme B12) biosynthetic genes of Escherichia coli; J. Bacteriol. 177 6371–6380

    CAS  PubMed  Google Scholar 

  • Lawrence J G and Roth J R 1996 Selfish operons: horizontal transfer may drive the evolution of gene clusters; Genetics 143 1843–1860

    CAS  PubMed  Google Scholar 

  • Lawrence J G and Roth J R 1996 Evolution of coenzyme B(12) synthesis among enteric bacteria: evidence for loss and reacquisition of a multigene complex; Genetics 142 11–24

    CAS  PubMed  Google Scholar 

  • Lima W C, Paquola A C M, Varani A M, Sluys M A V and Menck C F M 2008 Laterally transferred genomic islands in Xanthomonadales related to pathogenicity and primary metabolism; FEMS Microbiol Lett. 281 87–97

    Article  CAS  PubMed  Google Scholar 

  • Liu B and Pop M 2009 ARDB — Antibiotic Resistance Genes Database; Nucleic Acids Res. 37 D443–D447

    Article  CAS  PubMed  Google Scholar 

  • Liu R 2009 Origin and evolution of the bacterial flagellar system, pili and flagella: current research and future trends (ed.) K Jarrell (Ontario, Canada: Caister Academic Press)

    Google Scholar 

  • Mantri Y and Williams K P 2004 Islander: a database of integrative islands in prokaryotic genomes, the associated integrases and their DNA site specificities; Nucleic Acids Res. 32 D55–D58

    Article  CAS  PubMed  Google Scholar 

  • Mario J, Meer V D, Roelof J, Murriel G, Rosalind M H, Derek W H and Derrick W C 2009 Genomic islands: tools of bacterial horizontal gene transfer and evolution; FEMS Microbiol Rev. 33 376–393

    Article  Google Scholar 

  • Mecsas J and Strauss E J 1996 Molecular mechanisms of bacterial virulence: Type III secretion and pathogenicity islands; Emerg. Infect. Dis. 2 270–288

    Article  CAS  PubMed  Google Scholar 

  • Mooi F R and Bik E M 1997 The evolution of epidemic Vibrio cholerae strains; Trends Microbiol. 5 161–165

    Article  CAS  PubMed  Google Scholar 

  • Muñoz R, García E and López R 1998 Evidence for horizontal transfer from Streptococcus to Escherichia coli of the kfiD gene encoding the K5-specific UDP-glucose dehydrogenase; J. Mol. Evol. 46 432–436

    Article  PubMed  Google Scholar 

  • Nag S, Chatterjee R, Chaudhuri K and Chaudhuri P 2006 Unsupervised statistical identification of genomic islands using oligonucleotide distributions with application to Vibrio genomes; Sadhana 31 105–115

    Article  CAS  Google Scholar 

  • Nano F E, Zhang N, Cowley S C, Klose K E, Cheung K K M, Roberts M J, Ludu J S, Letendre G W et al. 2004 A Francisella tularensis pathogenicity island required for intramacrophage growth; J. Bacteriol. 186 6430–6436

    Article  CAS  PubMed  Google Scholar 

  • Odenbreit S, Püls J, Sedlmaier B, Gerland E, Fischer W and Haas R 2000 Translocation of Helicobacter pylori CagA into gastric epithelial cells by type IV secretion; Science 287 1497–1500

    Article  CAS  PubMed  Google Scholar 

  • Ou H Y, Chen L L, Lonnen J, Chaudhuri R R, Thani A B, Smith R, Garton N J, Hinton J et al. 2006 A novel strategy for the identification of genomic islands by comparative analysis of the contents and contexts of tRNA sites in closely related bacteria; Nucleic Acids Res. 34 e3

    Article  PubMed  Google Scholar 

  • Patil P B and Sonti R V 2004 Variation suggestive of horizontal gene transfer at a lipopolysaccharide (lps) biosynthetic locus in Xanthomonas oryzae pv. oryzae, the bacterial leaf blight pathogen of rice; BMC Microbiol. 4 40

    Article  PubMed  Google Scholar 

  • Patil P B, Bogdanove A J and Sonti R V 2007 The role of horizontal transfer in the evolution of a highly variable lipopolysaccharide biosynthesis locus in xanthomonads that infect rice, citrus and crucifers; BMC Evol. Biol. 7 243

    Article  PubMed  Google Scholar 

  • Poggio S, Abreu-Goodger C, Fabela S, Osorio A, Dreyfus G, Vinuesa P and Camarena L 2007 A complete set of flagellar genes acquired by horizontal transfer coexists with the endogenous flagellar system in Rhodobacter sphaeroides; J. Bacteriol. 189 3208–3216

    Article  CAS  PubMed  Google Scholar 

  • Pukatzki S, Amy T Ma, Derek S, Bryan K, David S, Nelson W C, Heidelberg JF and Mekalanos J J 2006 Identification of a conserved bacterial protein secretion system in Vibrio cholerae using the Dictyostelium host model system; Proc. Natl. Acad. Sci. USA 103 1528–1533

    Article  CAS  PubMed  Google Scholar 

  • Rajan I, Aravamuthan S and Mande S S 2007 Identification of compositionally distinct regions in genomes using the centroid method; Bioinformatics 23 2672–2677

    Article  CAS  PubMed  Google Scholar 

  • Roth J R, Lawrence J G and Bobik T A 1996 COBALAMIN (COENZYME B12): synthesis and biological significance; Annu. Rev. Microbiol. 50 137–181

    Article  CAS  PubMed  Google Scholar 

  • Sandkvist M 2001 Type II secretion and pathogenesis; Infect. Immun. 69 3523–3535

    Article  CAS  PubMed  Google Scholar 

  • Schubert S, Picard B, Gouriou S, Heesemann J and Denamur E 2002 Yersinia high-pathogenicity island contributes to virulence in Escherichia coli causing extraintestinal infections; Infect. Immun. 70 5335–5337

    Article  CAS  PubMed  Google Scholar 

  • Shrivastava S and Mande S S 2008 Identification and functional characterization of gene components of type VI secretion system in bacterial genomes; PLoS ONE 3 e2955

    Article  PubMed  Google Scholar 

  • Sullivan J T and Ronson C W 1998 Evolution of rhizobia by acquisition of a 500-kb symbiosis island that integrates in to a phe-tRNA gene; Proc. Natl. Acad. Sci. USA 95 5145–5149

    Article  CAS  PubMed  Google Scholar 

  • Sullivan J T, Trzebiatowski J R, Cruickshank R W, Gouzy J, Brown S D, Elliot R M, Fleetwood D J, McCallum N G et al. 2002. Comparative sequence analysis of the symbiosis island of Mesorhizobium loti strain R7A; J. Bacteriol. 184 3086–3095

    Article  CAS  PubMed  Google Scholar 

  • Tumapa S, Holden M T, Vesaratchavest M, Wuthiekanun V, Limmathurotsakul D, Cheirakul W, Feil E J, Currie B J et al. 2008 Burkholderia pseudomallei genome plasticity associated with genomic island variation; BMC Genomics 9 190

    Article  PubMed  Google Scholar 

  • Turner S A, Luck S N, Sakellaris H, Rajakumar S and Adler B 2001 Nested deletions of the SRL pathogenicity island of Shigella flexneri 2a; J. Bacteriol. 183 5535–5543

    Article  CAS  PubMed  Google Scholar 

  • Vernikos G S, Thomson N R and Parkhill J 2007 Genetic flux over time in the Salmonella lineage; Genome Biol. 8 R100

    Article  PubMed  Google Scholar 

  • Yan Y, Yang J, Dou Y, Chen M, Ping S, Peng J, Lu W, Zhang W et al. 2008 Nitrogen fixation island and rhizosphere competence traits in the genome of root-associated Pseudomonas stutzeri A1501; Proc. Natl. Acad. Sci. USA 105 7564–7569

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sharmila S. Mande.

Additional information

The program is available on request from the authors.

Supplementary tables and figures pertaining to this article are available on the Journal of Biosciences Website at http://www.ias.ac.in/jbiosci/sept2010/351-364-suppl.pdf

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Cite this article

Shrivastava, S., Siva Kumar Reddy, C.V. & Mande, S.S. INDeGenIUS, a new method for high-throughput identification of specialized functional islands in completely sequenced organisms. J Biosci 35, 351–364 (2010). https://doi.org/10.1007/s12038-010-0040-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12038-010-0040-4

Keywords

Navigation