Skip to main content
Log in

The regulatory epicenter of miRNAs

  • Published:
Journal of Biosciences Aims and scope Submit manuscript

Abstract

miRNAs are small non-coding RNAs with average length of ~21 bp. miRNA formation seems to be dependent upon multiple factors besides Drosha and Dicer, in a tissue/stage-specific manner, with interplay of several specific binding factors. In the present study, we have investigated transcription factor binding sites in and around the genomic sequences of precursor miRNAs and RNA-binding protein (RBP) sites in miRNA precursor sequences, analysed and tested in comprehensive manner. Here, we report that miRNA precursor regions are positionally enriched for binding of transcription factors as well as RBPs around the 3′ end of mature miRNA region in 5′ arm. The pattern and distribution of such regulatory sites appears to be a characteristic of precursor miRNA sequences when compared with non-miRNA sequences as negative dataset and tested statistically. When compared with 1 kb upstream regions, a sudden sharp peak for binding sites arises in the enriched zone near the mature miRNA region. An expression-data-based correlation analysis was performed between such miRNAs and their corresponding transcription factors and RBPs for this region. Some specific groups of binding factors and associated miRNAs were identified. We also identified some of the over-represented transcription factors and associated miRNAs with high expression correlation values which could be useful in cancer-related studies. The highly correlated groups were found to host experimentally validated composite regulatory modules, in which Lmo2-GATA1 appeared as the predominant one. For many of RBP–miRNAs associations, co-expression similarity was also evident among the associated miRNA common to given RBPs, supporting the Regulon model, suggesting a common role and common control of these miRNAs by the associated RBPs. Based on our findings, we propose that the observed characteristic distribution of regulatory sites in precursor miRNA sequence regions could be critical in miRNA transcription, processing, stability and formation and are important for therapeutic studies. Our findings also support the recently proposed theory of self-sufficient mode of transcription by miRNAs, which states that miRNA transcription can be carried out in host-independent mode too.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Figure 1
Figure 2
Figure 3
Figure 4

Similar content being viewed by others

References

  • Abeel A, Peer YV and Saeys Y 2009 Toward a gold standard for promoter prediction evaluation. Bioinformatics 25 i313–i320

    Google Scholar 

  • Aguda BD, Kim Y, Piper-Hunter MG, Friedman A and Marsh CB 2008 miRNA regulation of a cancer network: consequences of the feedback loops involving miR-17–92, E2F, and Myc. Proc. Natl. Acad. Sci. USA 105 19678–19683

    Article  PubMed  CAS  Google Scholar 

  • Auweter SD, Fasan R, Reymond L, Underwood JG, Black DL, Pitsch S and Allain FH-T 2006 Molecular basis of RNA recognition by the human alternative splicing factor Fox-1. EMBO J. 25 163–173

    Article  PubMed  CAS  Google Scholar 

  • Berezikov E, Chung W, Wills J, Cuppen E and Lai EC 2007 Mammalian mirtron genes. Mol. Cell. 28 328–336

    Article  PubMed  CAS  Google Scholar 

  • Berretta J and Morillon A 2009 Pervasive transcription constitutes a new level of eukaryotic genome regulation. EMBO Rep. 10 973–982

    Article  PubMed  CAS  Google Scholar 

  • Borchert GM, Lanier W and Davidson BL 2006 RNA polymerase III transcribes human miRNAs. Nat. Struct. Mol. Biol. 13 1097–1101

    Article  PubMed  CAS  Google Scholar 

  • Bornstein P,Mckay J,Morishima JK, Devarayalu S and Gelinas RE 1987 Regulatory elements in the first intron contribute to transcriptional control of the human al(I) collagen gene. PNAS 84 8869–8873

    Article  PubMed  CAS  Google Scholar 

  • Bushati N and Cohen SM 2007 miRNA functions. Annu. Rev. Cell Dev. Biol. 23 175–205

    Article  PubMed  CAS  Google Scholar 

  • Chang TC, Wentzel EA, Kent OA, Ramachandran K, Mullendore M, Lee KH, Feldmann G, Yamakuchi M, et al. 2007 Transactivation of miR-34a by p53 broadly influences gene expression and promotes apoptosis. Mol. Cell 26 745–752

    Google Scholar 

  • Cheloufi S, Dos Santos CO, Chong MM and Hannon GJ 2010 A Dicer-independent miRNA biogenesis pathway that requires Ago catalysis. Nature (London) 465 584–589

    Article  CAS  Google Scholar 

  • Cook BK, Kazan H, Zuberi K, Morris Q and Hughes TR 2010 RBPDB: a database of RNA-binding specificities. Nucleic Acids Res. 39 D301–D308

    Article  PubMed  Google Scholar 

  • Coulon V, Chebli K, Cavelier P and Blanchard JM 2010 A novel mouse c-fos intronic promoter that responds to CREB and AP-1 is developmentally regulated in vivo. PLoS One 5 e11235

    Article  PubMed  Google Scholar 

  • Davis BN, Hilyard AC, Nguyen PH, Lagna G and Hata A 2010 Smad proteins bind a conserved RNA sequence to promote microRNA maturation by Drosha. Mol. Cell 39 373–384

    Article  PubMed  CAS  Google Scholar 

  • Davis-Dusenbery BN and Hata A 2010 Mechanism of control of miRNA biogenesis. J. Biochem. 148 381–392

    PubMed  CAS  Google Scholar 

  • Dinger ME, Amaral PP, Mercer TR and Mattick JS 2009 Pervasive transcription of the exukaryotic genome: functional indices and conceptual implications. Brief. Bioinformatics 8 407–423

    CAS  Google Scholar 

  • Down TA and Hubbard TJP 2002 Computational detection of location of transcription start sites in mammalian genomic DNA. Genome Res. 12 458–461

    Article  PubMed  CAS  Google Scholar 

  • Fellenberg F, Hartmann TB, Dummer R, Usener D, Schadendorf D and Eichmüller S 2004 GBP-5 splicing variants: New guanylate−binding proteins with tumor-associated expression and antigenicity. J. Invest. Dermatol. 122 1510–1517

    Article  PubMed  CAS  Google Scholar 

  • Filipowicz W, Bhattacharya SN and Sonenberg N 2008 Mechanisms of post-transcriptional regulation by miRNAs: are the answers in sight? Nat. Rev. Genet. 9 102–114

    Article  PubMed  CAS  Google Scholar 

  • Fukuda T, Yamagata K, Fujiyama S, Matsumoto T, Koshida L, Yoshimura K, Mihara M, Naitou M, et al. 2007 DEAD-box RNA helicase subunits of the Drosha complex are required for processing of rRNA and a subset of miRNAs. Nat. Cell Biol. 9 604–611

    Article  PubMed  CAS  Google Scholar 

  • Gao J, Zhang Y, Li M, Tucker LD, Machan JT, Quesenberry P, Rigoutsos I and Ramratnam B 2010 Atypical transcription of miRNA gene fragments. Nucleic Acids Res. 38 2775–2787

    Article  CAS  Google Scholar 

  • Gerber AP, Herschlag D and Brown OP 2004 Extensive association of functionally and cytotopically related mRNAs with Puf family RNA-binding proteins in yeasts. PLoS Biol. 2 E79

    Article  PubMed  Google Scholar 

  • Goers ES, Purcell J, Voelker RB, Gates DP and Berglund JA 2010 MBNL1 binds GC motifs embedded in pyrimidines to regulate alternative splicing. Nucleic Acids Res. 38 2467–2484

    Article  PubMed  CAS  Google Scholar 

  • Griffiths-Jones S, Saini HK and Dongen SV 2008 miRBase: tools for miRNA genomics. Nucleic Acids Res. 36 D154–D158

    Article  Google Scholar 

  • Guil S and Cáceres JF 2007 The multifunctional RNA-binding protein hnRNP A1 is required for processing of miR-18a. Nat. Struct. Mol. Biol. 14 591–596

    Google Scholar 

  • Guimarães DP, Oliveira IM, de Moraes E, Paiva GR, Souza DM, Barnas C, Olmedo DB, Pinto CE, et al. 2009 Interferon-inducible guanylate binding protein (GBP)-2: a novel p53-regulated tumor marker in esophageal squamous cell carcinomas. Int. J. Cancer 124 272–279

    Article  PubMed  Google Scholar 

  • Haase AD, Jaskiewicz L, Zhang H, Lainé S, Sack R, Gatignol A and Filipowicz W 2005 TRBP, a regulator of cellular PKR and HIV-1 virus expression, interacts with Dicer and functions in RNA silencing. EMBO Rep. 6 961–967

    Article  PubMed  CAS  Google Scholar 

  • Han J, Lee Y, Yeom K-H, Kim Y-H, Jin H and Kim VN 2004 The Drosha–DGCR8 complex in primary miRNA processing. Genes Dev. 18 3016–3027

    Article  PubMed  CAS  Google Scholar 

  • Higo K, Ugawa Y, Iwamoto M and Korenaga T 1999 Plant cis-acting regulatory DNA elements (PLACE) database. Nucleic Acids Res. 27 297–300

    Article  PubMed  CAS  Google Scholar 

  • Hofacker IL 2003 Vienna RNA secondary structure server. Nucleic Acids Res. 31 3429–3431

    Article  PubMed  CAS  Google Scholar 

  • Hutvagner G, McLachlan J, Pasquinelli AE, Bálint E, Tuschl T and Zamore PD 2001 A cellular function for the RNA-interference enzyme dicer in the maturation of the let-7 small temporal RNA. Science 293 834–838

    Article  PubMed  CAS  Google Scholar 

  • Isik M, Korswagen HC and Berezikov E 2010 Expression patterns of intronic microRNAs in Caenorhabditis elegans. Silence 1 5

  • Jay P, Berta P and Blache P 2005 Expression of the carcinoembryonic antigen gene is inhibited by SOX9 in human colon carcinoma cells. Cancer Res. 65 2193–2198

    Article  PubMed  CAS  Google Scholar 

  • Johnson SM, Lin SY and Slack FJ 2003 The time of appearance of the C. elegans let-7 miRNA is transcriptionally controlled utilizing a temporal regulatory element in its promoter. Dev. Biol. 259 364–79

    Article  PubMed  CAS  Google Scholar 

  • Kanhoush R, Beenders B, Perrin C, Moreau J, Bellini M and Penrad-Mobayed M 2009 Novel domains in the hnRNP G/RBMX protein with distinct roles in RNA binding and targeting nascent transcripts. Nucleus 1 109–122

    Google Scholar 

  • Kaye JA, Rose NC, Goldsworthy B, Goga A and L'Etoile ND 2009 A 3′UTR pumilio-binding element directs translational activation in olfactory sensory neurons. Neuron 61 57–70

    Article  PubMed  CAS  Google Scholar 

  • Kedde M, van Kouwenhove M, Zwart W, Oude Vrielink JA, Elkon R and Agami R 2010 A Pumilio-induced RNA structure switch in p27-3′ UTR controls miR-221 and miR-222 accessibility. Nat. Cell Biol. 12 1014–1020

    Google Scholar 

  • Keene JD 2001 Ribonucleoprotein infrastructure regulating the inflow of genetic information between the genome and proteome. Proc. Natl. Acad. Sci. USA 98 7018–7024

    Article  PubMed  CAS  Google Scholar 

  • Keene JD 2007 RNA regulons: coordination of post-transcriptional events. Nat. Rev. Genet. 8 533–543

    Article  PubMed  CAS  Google Scholar 

  • Lai EC 2003 miRNAs: Runts of the genome assert themselves. Curr. Biol. 13 R925–R936

    Article  PubMed  CAS  Google Scholar 

  • Lee RC, Feinbaum RL and Ambros V 1993 The C. elegans heterochronic gene lin-4 encodes small RNAs with antisense complementarity to lin-14. Cell 75 843–854

    Article  PubMed  CAS  Google Scholar 

  • Lee Y, Ahn C, Han J, Choi H, Kim J, Yim J, Lee J, Provost P, Rådmark O, Kim S and Kim VN 2003 The nuclear RNase III Drosha initiates miRNA processing. Nature (London) 425 415–419

    Article  CAS  Google Scholar 

  • Licatalosi DD and Darnell RB 2010 RNA processing and its regulation: global insights into biological networks. Nat. Rev. Genet. 11 75–87

    Article  PubMed  CAS  Google Scholar 

  • Liu X, Fortin K and Mourelatos Z 2008 miRNAs: Biogenesis and Molecular Functions. Brain Pathol. 18 113–121

    Article  PubMed  CAS  Google Scholar 

  • Lee Y, Kim M, Han J, Yeom KH, Lee S, Baek SH and Kim VN 2004 miRNA genes are transcribed by RNA polymerase II. EMBO J. 23 4051–4060

    Article  PubMed  CAS  Google Scholar 

  • Ma S, Guan XY, Beh PSL, Wong KY, Chan YP, Yuen HF, Vielkind J and Chan KW 2007 The significance of LMO2 expression in the progression of prostate cancer. J. Pathol. 211 278–285.

    Article  PubMed  CAS  Google Scholar 

  • Matys V, Kel-Margoulis OV, Fricke E, Liebich I, Land S, Barre-Dirrie A, Reuter I, Chekmenev D, et al. 2006 TRANSFAC and its module TRANSCompel: transcriptional gene regulation in eukaryotes. Nucleic Acids Res. 34 D108–D110

    Article  PubMed  CAS  Google Scholar 

  • Mayeda A and Krainer AR 1992 Regulation of alternative pre-mRNA splicing by hnRNP A1 and splicing factor SF2. Cell 68 365–375

    Article  PubMed  CAS  Google Scholar 

  • Michlewski G, Guil S, Semple CA and Cáceres JF 2008 Posttranscriptional regulation of miRNAs harboring conserved terminal loops. Mol. Cell 32 383–393

    Article  PubMed  CAS  Google Scholar 

  • Monteys MA, Spengler RM, Wan J, Tecedor L, Lennox KA, Xing Y and Davidson BL 2010 Structure and activity of putative intronic miRNA promoters. RNA 16 495–505

    Article  PubMed  Google Scholar 

  • Nakata K, Ohuchida K, Nagai E, Hayashi A, Miyasaka Y, Kayashima T, Yu J, Aishima S, et al. 2009 LMO2 is a novel predictive marker for a better prognosis in pancreaticcancer. Neoplasia 11 712–719

    PubMed  CAS  Google Scholar 

  • Newman MA, Thomson JM and Hammond SM 2008 Lin-28 interaction with the Let-7 precursor loop mediates regulated miRNA processing. RNA 14 1539–1549

    Article  PubMed  CAS  Google Scholar 

  • Newman MA and Hammond SM 2010 Emerging paradigms of regulated miRNA processing. Genes Dev. 24 1086–1092

    Article  Google Scholar 

  • Nolde MJ, Saka N, Reinert KL and Slack FJ 2007 The Caenorhabditis elegans pumilio homolog, puf-9, is required for the 3′UTR-mediated repression of the let-7 microRNA target gene, hbl-1. Dev Biol. 305 551–563

    Article  PubMed  CAS  Google Scholar 

  • Ritchie W, Flamant S and Rasko JE 2009 mimiRNA: a miRNA expression profiler and classification resource designed to identify functional correlations between miRNAs and their targets. Bioinformatics 26 223–227

    Article  PubMed  Google Scholar 

  • Robertson G, Bilenky M, Lin K, He A, Yuen W, Dagpinar M, Varhol R, Teague K, et al. 2006 cisRED: a database system for genomE−scale computational discovery of regulatory elements. Nucleic Acids Res. 34 D68–D73

    Article  PubMed  CAS  Google Scholar 

  • Rodriguez A, Griffiths-Jones S, Ashurst JL and Bradley A 2004 Identification of mammalian miRNA host genes and transcription units. Genome Res. 14 1902–1910

    Article  PubMed  CAS  Google Scholar 

  • Ruby GJ, Calvin HJ and Bartel DP 2007 Intronic microRNA precursors that bypass Drosha processing. Nature (London) 448 83–87

    Article  CAS  Google Scholar 

  • Seshasayee D, Geiger JN, Gaines P and Wojchowski DM 2000 Intron 1 elements promote erythroid-specific GATA-1 gene expression. J. Biol. Chem. 275 22969–22977

    Article  PubMed  CAS  Google Scholar 

  • Sewer A, Paul N, Landgraf P, Aravin A, Pfeffer S, Brownstein MJ, Tuschl T, Nimwegen EV and Zavolan M 2005 Identification of clustered miRNAs using an ab initio prediction method. BMC Bioinformatics 6 267

    Article  PubMed  Google Scholar 

  • Shalgi R, Leiber D, Oren M and Pilpel Y 2007 Global and local architecture of the mammalian miRNA-transcription factor regulatory network. PLoS Comput. Biol. 3 e131

    Article  PubMed  Google Scholar 

  • Shiohama A, Sasaki T, Noda S, Minoshima S and Shimizu N 2007 Nucleolar localization of DGCR8 and identification of eleven DGCR8-associated proteins. Exp. Cell Res. 313 4196–4207

    Article  PubMed  CAS  Google Scholar 

  • Siomi H and Siomi MC 2010 Posttranscriptional regulation of miRNA biogenesis in animals. Mol. Cell 38 323–332

    Article  PubMed  CAS  Google Scholar 

  • Slezak-Prochazka I, Durmus S, Kroesen B-J and Berg A 2010 miRNAs, macrocontrol: Regulation of miRNA processing. RNA 16 1087–1095

    Article  PubMed  CAS  Google Scholar 

  • Shankar R, Grover D, Brahmachari SK and Mukerji M 2004 Evolution and distribution of RNA polymerase II regulatory sites from RNA polymerase III dependant mobile Alu elements. BMC Evol. Biol. 4 37

    Article  PubMed  Google Scholar 

  • Sonnenburg S, Zien A and Ratsch G 2006 ARTS: accurate recognition of transcription starts in human. Bioinformatics 22 e472–e480

    Article  PubMed  CAS  Google Scholar 

  • Stark KL, Xu B, Bagchi A, Lai W-S, Lui H, Hsu R, Wan X, Pavlidis P, Mills AA, Karayiorgou M and Gogos JA 2008 Altered brain miRNA biogenesis contributes to phenotypic deficits in a 22q11-deletion mouse model. Nat. Genet. 40 751–760

    Article  PubMed  CAS  Google Scholar 

  • Stefani G and Slack FJ 2008 Small non-coding RNAs in animal development. Nat. Rev. Mol. Cell Biol. 9 219–230

    Article  PubMed  CAS  Google Scholar 

  • Su N, Wang Y, Qian M and Deng M 2010 Combinatorial regulation of transcription factors and miRNAs. BMC Syst. Biol. 4 150

    Article  PubMed  Google Scholar 

  • Tarasov V, Jung P, Verdoodt B, Lodygin D, Epanchintsev A, Menssen A, Meister G and Hermeking H 2007 Differential regulation of microRNAs by p53 revealed by massively parallel sequencing: miR-34a is a p53 target that induces apoptosis and G1-arrest. Cell Cycle 6 1586–1593

    Google Scholar 

  • Trabucchi M, Briata P, Garcia-Mayoral M, Haase AD, Filipowicz W, Ramos A, Gherzi R and Rosenfeld MG 2009 The RNA-binding Protein KSRP Promotes the Biogenesis of a Subset of miRNAs. Nature (London) 459 1010–1014

    Article  CAS  Google Scholar 

  • Vesseya JP, Schoderboeck L, Gingl E, Luzi E, Reifler J, Di Leva F, Karra D, Thomas S, Keibler MA and Macchi P 2010 Mammalian Pumilio 2 regulates dendrite morphogenesis and synaptic function. PNAS 107 3222–3227

    Article  Google Scholar 

  • Wadman IA, Osada H, Grütz GG, Agulnick AD, Westphal H, Forster A and Rabbitts TH 1997 The LIM-only protein Lmo2 is a bridging molecule assembling an erythroid, DNA-binding complex which includes the TAL1, E47, GATA-1 and Ldb1/NLI proteins. EMBO J. 16 3145–3157

    Article  PubMed  CAS  Google Scholar 

  • Wasserman WW and Fickett JW 1998 Identification of regulatory regions which confer muscle-specific gene expression. J. Mol. Biol. 278 167–181

    Article  PubMed  CAS  Google Scholar 

  • Wickens M, Bernstein DS, Kimble J and Parker R 2002 A PUF family portrait: 3′UTR regulation as a way of life. Trends Genet. 18 150–157

    Article  PubMed  CAS  Google Scholar 

  • Wingender E, Dietze P, Karas H and Knüppel R 1996 TRANSFAC: A database on transcription factors and their DNA binding sites. Nucleic Acids Res. 24 238–241

    Article  PubMed  CAS  Google Scholar 

  • Wozniak RJ, Boyer ME, Grass JA, Lee Y and Bresnick EH 2007 Context-dependent GATA factor function: combinatorial requirements for transcriptional control in hematopoietic and endothelial cells. J. Biol. Chem. 282 14665–14674

    Article  PubMed  CAS  Google Scholar 

  • Wu H, Sun S, Tu K, Gao Y, Xie B, Krainer AR and Zhu J 2010 A splicing-independent function of SF2/ASF in microRNA processing. Mol. Cell 38 67–77

  • Yamada Y, Pannell R, Forster A and Rabbitts TH 2002 The LIM-domain protein Lmo2 is a key regulator of tumour angiogenesis: a new anti-angiogenesis drug target. Oncogene 21 1309–1315

    Article  PubMed  CAS  Google Scholar 

  • Yousef M, Nebozhyn M, Shatkay H, Kanterakis S, Showe LC and Showe MK 2006 Combining multi-species genomic data for miRNA identification using a Naïve Bayes classifier. Bioinformatics 22 1325–1334

    Article  PubMed  CAS  Google Scholar 

  • Yuan Y, Compton SA, Sobczak K, Stenberg MG, Thornton CA, Griffith JD and Swanson MS 2007 Muscleblind-like 1 interacts with RNA hairpins in splicing target and pathogenic RNAs. Nucleic Acids Res. 35 5474–5486

    Article  PubMed  CAS  Google Scholar 

  • Zhang B, Pan X, Cobb GP and Anderson TA 2006 Plant miRNA: a small regulatory molecule with big impact. Dev. Biol. 289 3–16

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgements

We are thankful to Department of Biotechnology for the fellowship to AJ. MM is thankful to Council of Scientific and Industrial Research, India, for her JRF fellowship. We thank Amit Chaurasia and Dr Mitali Mukerji, IGIB, for sharing TFBS data for human.

The present research work was funded by DBT, India, grant number: BT/PR-11098/BID/07/261/2008 and CSIR grant OLP-0037. We are thankful to Dr PS Ahuja, IHBT, for helping us with internal funding MLP0037. The IHBT communication ID for this manuscript is: 3165.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ravi Shankar.

Additional information

Corresponding editor: Reiner A Veitia

[Jha A, Mehra M and Shankar R 2011 The regulatory epicenter of miRNAs. J. Biosci. 36 621–638] DOI 10.1007/s12038-011-9109-y

Supplementary materials pertaining to this article are available on the Journal of Biosciences Website at http://www.ias.ac.in/jbiosci/Sep2011/pp621–638/suppl.pdf

Electronic Supplementary Material

Below is the link to the electronic supplementary material.

Supplementary Material

(PDF 454 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Jha, A., Mehra, M. & Shankar, R. The regulatory epicenter of miRNAs. J Biosci 36, 621–638 (2011). https://doi.org/10.1007/s12038-011-9109-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12038-011-9109-y

Keywords

Navigation