Skip to main content
Log in

Saltational symbiosis

  • Original Paper
  • Published:
Theory in Biosciences Aims and scope Submit manuscript

Abstract

Symbiosis has long been associated with saltational evolutionary change in contradistinction to gradual Darwinian evolution based on gene mutations and recombination between individuals of a species, as well as with super-organismal views of the individual in contrast to the classical one-genome: one organism conception. Though they have often been dismissed, and overshadowed by Darwinian theory, suggestions that symbiosis and lateral gene transfer are fundamental mechanisms of evolutionary innovation are borne out today by molecular phylogenetic research. It is time to treat these processes as central principles of evolution.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  • Allee WC, Emerson AE, Park O, Park T, Schmidt KP (1949) Principles of animal ecology. WB Saunders, Philadelphia

    Google Scholar 

  • Allsopp A (1969) Phylogenetic relationships of the procaryota and the origin of the eucaryotic cell. New Phytol 68:591–612

    Article  Google Scholar 

  • Bateson W (1913) Problems of genetics. Yale University Press, New Haven

    Google Scholar 

  • Bernard N (1902) Études sur la tubérisation. Rev Gen Bot 14:5–25

    Google Scholar 

  • Bernard N (1909) Remarques sur l’immunité chez les plantes. Bull Inst Pasteur 12:369–386

    Google Scholar 

  • Buchanan M (2009) Collectivist revolution in evolution. Nature Physics 5:531

    Article  CAS  Google Scholar 

  • Buchner P (1965) Endosymbiosis of animals with plant microorganisms (trans: Mueller B). Interscience Publishers, New York

    Google Scholar 

  • Burnet FM (1933) Recent work on the biological nature of bacteriophages. Trans R Soc Trop Med Hyg 26:409–416

    Article  Google Scholar 

  • Caullery M (1952) Parasitism and symbiosis (trans: Averilm Lysaght). Sidgwick and Jackson, London

    Google Scholar 

  • D’ Herelle F (1926) The bacteriophage and its behavior (trans: Smith GH). Williams and Wilkins, Baltimore

    Google Scholar 

  • D’Herelle F (1931) Bacterial mutations. YJBM 4:55–57

    Google Scholar 

  • Darwin C (1859) On the origin of species, with an introduction by Ernst Mayr, facsimile edition of 1859. Harvard University Press, Cambridge 1964

  • Daubin V, Ochman H (2004) Start-up entities in the origin of new genes. Curr Opin Genet Dev 6:616–619

    Article  Google Scholar 

  • De Bary A (1879) Die Erscheinung der Symbiose, Vortrag auf der Versammlung der Naturforsher und Aertze zu Cassel. Verlag von Karl J. Trubner, Strassburg, pp. 1–30, 21–22

  • De Bary A (1887) Comparative morphology and biology of the fungi mycetozoa and bacteria (trans: Garnsey HEF, revised: Balfour IB). The Clarendon Press, Oxford

    Google Scholar 

  • Dennett D, Coyne J, Dawkins R (2009) Darwin was right. New Sci 201:24

    Article  Google Scholar 

  • Dubos R (1961) Integrative and creative aspects of infection. In: Pollard M (ed) Perspectives in virology, vol 2. Burgess Publishing, Minneapolis, pp 200–205

    Google Scholar 

  • East EM (1934) The nucleus-plasma problem, Am Nat 68:289–303, 402–439

    Google Scholar 

  • Gladyshev EA, Meselson M, Arkhipoval IR (2008) Massive horizontal gene transfer in bdelloid rotifers. Science 320:1210–1213

    Article  CAS  PubMed  Google Scholar 

  • Gogarten P, Doolittle WF, Lawrence JG (2002) Prokaryotic evolution in light of gene transfer, molecular biology and evolution 19:2226–2238

  • Goksøyr J (1967) Evolution of eucaryotic cells. Nature 214:1167

    Article  Google Scholar 

  • Goldenfeld N, Woese C (2007) Biology’s next revolution. Nature 445:369

    Article  CAS  PubMed  Google Scholar 

  • Gould SJ (1977) Ontogeny and phylogeny. Harvard University Press, Cambridge, MA

    Google Scholar 

  • Gray MW, Doolittle WF (1982) Has the endosymbiont hypothesis been proven? Micro Rev 46:1–42

    CAS  Google Scholar 

  • Gregory FG (1951) A discussion on symbiosis involving micro-organisms—general discussion. Proc R Soc Lond B 139:202–203

    Article  Google Scholar 

  • Griffith F (1928) The significance of pneumococcal types. J Hygiene 27:113–159

    Article  CAS  Google Scholar 

  • Hambly E, Suttle CA (2005) The viriosphere, diversity, and genetic exchange within phage communities. Curr Opin Microbiol 8:444–450

    Article  CAS  PubMed  Google Scholar 

  • Hartman H, Fedorov A (2002) The origin of the eukaryotic cell: a genomic investigation. PNAS 99:1420–1425

    Article  CAS  PubMed  Google Scholar 

  • Hayes W (1952) Recombination in Bact coli K-12: unidirectional transfer of genetic material. Nature 159:118–119

    Article  Google Scholar 

  • Hayes W (1953) Observations on a transmissible agent determining sexual differentiation in Bact coli. J Gen Micro 8:72–88

    CAS  Google Scholar 

  • Hendrix RW, Lawrence JG, Hatfull GF, Casjens S (2000) The origins and ongoing evolution of viruses. Trends Microbiol 8:504–507

    Article  CAS  PubMed  Google Scholar 

  • Hotopp JCD et al (2007) Widespread horizontal gene transfer from intracellular bacteria to multicellular eukaryotes. Science 317:1753–1756

    Article  PubMed  Google Scholar 

  • Huxley J (1942) Evolution: the modern synthesis. Allen and Unwin, London

    Google Scholar 

  • Jain R, Rivera MC, Lake JA (1999) Lateral gene transfer among genomes: the complexity hypothesis. PNAS USA 96:3801–3806

    Article  CAS  PubMed  Google Scholar 

  • Kropotkin P (1915) Mutual aid: a factor of evolution. William Heinemann, London

    Google Scholar 

  • Kurland CG (2005) Paradigm lost. In: Sapp J (ed) Microbial phylogeny and evolution. Oxford University Press, New York, pp 207–223

    Google Scholar 

  • Lawrence JG, Ochman H (1998) Molecular archaeology of the Escherichia coli genome. PNAS USA 95:9413–9417

    Article  CAS  PubMed  Google Scholar 

  • Lawton G (2009) Uprooting Darwin’s tree. New Scientist 201:34–39

    Article  Google Scholar 

  • Lederberg J (1952) Cell genetics and hereditary symbiosis. Phys Rev 32:403–430

    CAS  Google Scholar 

  • Lederberg J, Tatum E (1946) Gene recombination in Escherichia coli. Nature 158:558

    Article  Google Scholar 

  • Limoges C (1994) Milne-Edwards, Darwin, Durkheim and division of labor: a case study in reciprocal conceptual exchanges between the social and natural sciences. In: Cohen IB (ed) The relations between the natural sciences and the social sciences. Princeton University Press, Princeton, pp 317–343

    Google Scholar 

  • Lin GG, Li JM (2009) Sequence identity between the genomes of humans and viruses. Intervirology 52:196–200

    Article  PubMed  Google Scholar 

  • Löwer R, Löwer J, Kurth R (1999) The viruses in all of us: characteristics and biological significance of human endogenous retrovirus sequences. PNAS 93:5177–5184

    Article  Google Scholar 

  • Maynard Smith J, Szathmáry E (1999) The origins of life. From the birth of life to the origin of language. Oxford University Press, New York

    Google Scholar 

  • Mérejkovsky C (1920) La Plante considére comme un complexe symbiotique. Bulletin de la Société Naturelles 6:17–98

    Google Scholar 

  • Merezhkowsky C (1910) Theorie der zwei Plasmaarten als Grundlage der Symbiogenese, einer neuen Lehre von der Entstehung der Organismen. Biol Zent Bl 30: 277–303; 321–347; 353–367

  • Meyer KF (1925) The `bacterial symbiosis’ in the concretion deposits of certain operculate land mollusks of the families Cyclostomatidae and Annularidea. J Infect Dis 36:1–107

    Google Scholar 

  • Nardon P, Grenier A-M (1991) Serial endosymbiosis theory and weevil evolution: the role of symbiosis. In: Margulis M, Fester R (eds) Symbiosis as a source of evolutionary innovation. The MIT Press, Cambridge, pp 153–169

    Google Scholar 

  • Nikoh N, Tanaka K, Shibata F, Kondo N, Hizume M, Shimada M, Fukatsu T (2008) Wolbachia genome integrated in an insect chromosome: evolution and fate of horizontally transferred endosymbiont genes. Genome Res 18:272–280

    Article  CAS  PubMed  Google Scholar 

  • Odum EP (1959) Fundamentals of ecology. WB Saunders, Philadephlia

    Google Scholar 

  • Portier P (1918) Les symbiotes. Masson, Paris

    Google Scholar 

  • Raff RA, Mahler HR (1972) The non symbiotic origin of mitochondria. Science 177:575–582

    Article  CAS  PubMed  Google Scholar 

  • Raven P (1970) A multiple origin for plastids and mitochondria. Science 169:641–646

    Article  CAS  PubMed  Google Scholar 

  • Reinheimer H (1915) Symbiogenesis: the universal law of progressive evolution. Knapp, Drewett and Sons, Westminister

    Google Scholar 

  • Ryan F (2007) Viruses as symbionts. Symbiosis 44:11–21

    CAS  Google Scholar 

  • Sagan L (1967) On the origin of mitosing cells. J Theor Biol 14:225–274

    Article  CAS  Google Scholar 

  • Sapp J (1987) Beyond the gene: cytoplasmic inheritance and the struggle for authority in the field of heredity. Oxford University Press, New York

    Google Scholar 

  • Sapp J (1994) Evolution by association: a history of symbiosis. Oxford University Press, New York

    Google Scholar 

  • Sapp J (1998) Freewheeling centrioles. Hist Phil Life Sci 20:255–290

    CAS  Google Scholar 

  • Sapp J (2002) Paul Buchner and hereditary symbiosis in insects. Intl Micro 5:145–160

    Article  Google Scholar 

  • Sapp J (2006) Mitochondria and their host: morphology to molecular phylogeny. In: Martin W, Müller M (eds) Mitochondria and hydrogenosomes. Springer Verlag, Heidelberg, pp 57–84

    Google Scholar 

  • Sapp J (2009) The new foundations of evolution. On the tree of life. Oxford University Press, New York

    Google Scholar 

  • Sapp J, Carrapiço F, Zolotonosov M (2002) Symbiogenesis: the hidden face of Constantin Merezhkowsky. Hist Phil Life Sci 24(2002):413–440

    Article  Google Scholar 

  • Schimper AFW (1883) Ueber die Entwicklung der Schlorophyllkörner und Farbkörper. Bot Zeitung 4:105–114

    Google Scholar 

  • Spencer H (1899) The principles of biology, vol 2. Appelton and Co, New York

    Google Scholar 

  • Stanier RY (1970) Some aspects of the biology of cells and their possible evolutionary significance. In: Charles HP, Knight BC (eds) Organization and control in prokaryotic cells. Twentieth symposium of the society for general microbiology. Cambridge University Press, Cambridge, pp 1–38

    Google Scholar 

  • Taylor FJR (1986) An overview of the status of evolutionary cell symbiosis theories. Ann NY Acad Sci 503:1–16

    Article  Google Scholar 

  • Uzzel T, Spolsky C (1974) Mitochondria and plastids as endosymbionts: a revival of special creation? Am Sci 62:334–343

    Google Scholar 

  • van Beneden PJ (1873) Un mot sur la vie sociale des animaux inferieurs. Bull Acad Roy Belg, série 2(36):779–796

    Google Scholar 

  • van Beneden PJ (1876) Animal parasites and messmates. Henry S King, London

    Google Scholar 

  • Wallin IE (1927) Symbionticism and the origin of species. William and Wilkins, Baltimore

    Google Scholar 

  • Watasé S (1893) On the nature of cell organization. Biol lect deliv Mar Biol Lab, Wood’s Hole, pp 83–103

  • Werren JH (2005) Heritable microorganisms and reproductive parasitism. In: Sapp J (ed) Microbial evolution and phylogeny: concepts and controversies. Oxford University Press, New York, pp 290–316

    Google Scholar 

  • Wilson EB (1925) The cell in development and heredity. Macmillan, New York

    Google Scholar 

  • Woese CR (2000) Interpreting the universal phylogenetic tree. PNAS USA 97:8392–8396

    Article  CAS  PubMed  Google Scholar 

  • Woese CR (2002) On the evolution of cells. PNAS USA 99:8742–8747

    Article  CAS  PubMed  Google Scholar 

  • Woese CR, Kandler O, Wheelis M (1990) Towards a natural system of organisms: proposal for the domains Archaea, Bacteria, and Eucarya. PNAS USA 87:4576–4579

    Article  CAS  PubMed  Google Scholar 

  • Woolhouse WH (1967) A review of the plastids by JTO Kirk and RAE Tilney-Bassett. New Phytol 66:832–833

    Google Scholar 

  • Zinder N, Lederberg J (1952) Genetic exchange in Salmonella. J Bact 64:679–699

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

I am grateful to Nathalie Gontier and the reviewers for their helpful comments on an earlier version of this paper. I also thank the Social Science and Humantities Research Council of Canada for support of my work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jan Sapp.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sapp, J. Saltational symbiosis. Theory Biosci. 129, 125–133 (2010). https://doi.org/10.1007/s12064-010-0089-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12064-010-0089-5

Keywords

Navigation