Skip to main content

Advertisement

Log in

Procaine inhibits the proliferation and DNA methylation in human hepatoma cells

  • Original Paper
  • Published:
Hepatology International Aims and scope Submit manuscript

Abstract

Purpose

Transcriptional silencing of tumor suppressor genes associated with DNA hypermethylation has been known as a hallmark of human cancer. In this study, we revealed that a local anesthetic, procaine (PCA), possessed growth-inhibitory and demethylating effect on human hepatoma cells in vitro and in vivo.

Methods

The viability of PCA-treated cells with or without trichostatin A (TSA) was investigated. To clarify the mechanism of the antiproliferating effect of PCA, TUNEL assay, FACS analysis, and morphological observation of PCA-treated cells were performed. The expression levels and epigenetic alterations of 4 genes inactivated by DNA hypermethylation in hepatocellular carcinoma (HCC) were examined in hepatoma cells with or without PCA treatment. The growth-inhibitory and demethylating effect of PCA in vivo was tested in nude mice bearing xenograft.

Results

The viability of HLE, HuH7, and HuH6 cells was significantly decreased by PCA treatment. In these cells, the combination treatment with TSA and PCA exhibited stronger reduction of the viability. Inhibition of S/G2/M transition, morphological changes such as vacuolation and no increase in apoptosis rate were observed in the PCA-treated HLE cells. All the genes transcriptionally suppressed by DNA hypermethylation were demethylated and reactivated with PCA treatment. PCA treatment led to partial demethylation and significant reduction in tumor volume in vivo.

Conclusions

These data indicated that PCA had growth-inhibitory and demethylating effects on human hepatoma cells in vitro and in vivo. PCA may be a candidate agent for future therapies for HCC.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Herman JG. Hypermethylation of tumor suppressor genes in cancer. Semin Cancer Biol 1999;9:359–67

    Article  PubMed  CAS  Google Scholar 

  2. Barlow DP. Gametic imprinting in mammals. Science 1995;270:1610–13

    Article  PubMed  CAS  Google Scholar 

  3. Goto T, Monk M. Regulation of X-chromosome inactivation in development in mice and humans. Microbiol Mol Biol Rev 1998;62:362–78

    PubMed  CAS  Google Scholar 

  4. Esteller M, Herman JG. Cancer as an epigenetic disease: DNA methylation and chromatin alterations in human tumours. J Pathol 2002;196:1–7

    Article  PubMed  CAS  Google Scholar 

  5. Baylin SB, Herman JG, Graff JR, Vertino PM, Issa JP. Alterations in DNA methylation: a fundamental aspect of neoplasia. Adv Cancer Res 1998;72:141–96

    Article  PubMed  CAS  Google Scholar 

  6. Jones PA, Laird PW. Cancer epigenetics comes of age. Nat Genet 1999;21:163–7

    Article  PubMed  CAS  Google Scholar 

  7. Bender CM, Pao MM, Jones PA. Inhibition of DNA methylation by 5-aza-2′-deoxycytidine suppresses the growth of human tumor cell lines. Cancer Res 1998;58:95–101

    PubMed  CAS  Google Scholar 

  8. Petti MC, Mandelli F, Zagonel V, De Gregoris C, Merola MC, Latagliata R, et al. Pilot study of 5-aza-2′-deoxycytidine (Decitabine) in the treatment of poor prognosis acute myelogenous leukemia patients: preliminary results. Leukemia 1993;7 Suppl 1:36–41

    PubMed  Google Scholar 

  9. Schwartsmann G, Fernandes MS, Schaan MD, Moschen M, Gerhardt LM, Di Leone L, et al. Decitabine (5-aza-2′-deoxycytidine; DAC) plus daunorubicin as a first line treatment in patients with acute myeloid leukemia: preliminary observations. Leukemia 1997;11 Suppl 1:S28–31

    PubMed  Google Scholar 

  10. Jones PA, Taylor SM. Cellular differentiation, cytidine analogs and DNA methylation. Cell 1980;20:85–93

    Article  PubMed  CAS  Google Scholar 

  11. Scheinbart LS, Johnson MA, Gross LA, Edelstein SR, Richardson BC. Procainamide inhibits DNA methyltransferase in a human T cell line. J Rheumatol 1991;18:530–4

    PubMed  CAS  Google Scholar 

  12. Yung R, Chang S, Hemati N, Johnson K, Richardson B. Mechanisms of drug-induced lupus. IV. Comparison of procainamide and hydralazine with analogs in vitro and in vivo. Arthritis Rheum 1997;40:1436–43

    Article  PubMed  CAS  Google Scholar 

  13. Lin X, Asgari K, Putzi MJ, Gage WR, Yu X, Cornblatt BS, et al. Reversal of GSTP1 CpG island hypermethylation and reactivation of pi-class glutathione S-transferase (GSTP1) expression in human prostate cancer cells by treatment with procainamide. Cancer Res 2001;61:8611–6

    PubMed  CAS  Google Scholar 

  14. Segura-Pacheco B, Trejo-Becerril C, Perez-Cardenas E, Taja-Chayeb L, Mariscal I, Chavez A, et al. Reactivation of tumor suppressor genes by the cardiovascular drugs hydralazine and procainamide and their potential use in cancer therapy. Clin Cancer Res 2003;9:1596–603

    PubMed  CAS  Google Scholar 

  15. Villar-Garea A, Fraga MF, Espada J, Esteller M. Procaine is a DNA-demethylating agent with growth-inhibitory effects in human cancer cells. Cancer Res 2003;63:4984–9

    PubMed  CAS  Google Scholar 

  16. Liew CT, Li HM, Lo KW, Leow CK, Chan JY, Hin LY, et al. High frequency of p16INK4A gene alterations in hepatocellular carcinoma. Oncogene 1999;18:789–95

    Article  PubMed  CAS  Google Scholar 

  17. Fukai K, Yokosuka O, Chiba T, Hirasawa Y, Tada M, Imazeki F, et al. Hepatocyte growth factor activator inhibitor 2/placental bikunin (HAI-2/PB) gene is frequently hypermethylated in human hepatocellular carcinoma. Cancer Res 2003;63:8674–9

    PubMed  CAS  Google Scholar 

  18. Iwata N, Yamamoto H, Sasaki S, Itoh F, Suzuki H, Kikuchi T, et al. Frequent hypermethylation of CpG islands and loss of expression of the 14-3-3 sigma gene in human hepatocellular carcinoma. Oncogene 2000;19:5298–302

    Article  PubMed  CAS  Google Scholar 

  19. Tada M, Yokosuka O, Fukai K, Chiba T, Imazeki F, Tokuhisa T, et al. Hypermethylation of NAD(P)H: quinone oxidoreductase 1 (NQO1) gene in human hepatocellular carcinoma. J Hepatol 2005;42:511–9

    Article  PubMed  CAS  Google Scholar 

  20. Santini V, Kantarjian HM, Issa JP. Changes in DNA methylation in neoplasia: pathophysiology and therapeutic implications. Ann Intern Med 2001;134:573–86

    PubMed  CAS  Google Scholar 

  21. Zhu WG, Lakshmanan RR, Beal MD, Otterson GA. DNA methyltransferase inhibition enhances apoptosis induced by histone deacetylase inhibitors. Cancer Res 2001;61:1327–33

    PubMed  CAS  Google Scholar 

  22. Primeau M, Gagnon J, Momparler RL. Synergistic antineoplastic action of DNA methylation inhibitor 5-aza-2′-deoxycytidine and histone deacetylase inhibitor depsipeptide on human breast carcinoma cells. Int J Cancer 2003;103:177–84

    Article  PubMed  CAS  Google Scholar 

  23. Chiba T, Yokosuka O, Arai M, Tada M, Fukai K, Imazeki F, et al. Identification of genes up-regulated by histone deacetylase inhibition with cDNA microarray and exploration of epigenetic alterations on hepatoma cells. J Hepatol 2004;41:436–45

    Article  PubMed  CAS  Google Scholar 

  24. Yang WC, Strasser FF, Pomerat CM. Mechanism of drug-induced vacuolization in tissue culture. Exp Cell Res 1965;38:495–506

    Article  PubMed  CAS  Google Scholar 

  25. Chuang JC, Yoo CB, Kwan JM, Li TW, Liang G, Yang AS, et al. Comparison of biological effects of non-nucleoside DNA methylation inhibitors versus 5-aza-2′-deoxycytidine. Mol Cancer Ther 2005;4:1515–20

    Article  PubMed  CAS  Google Scholar 

  26. Stresemann C, Brueckner B, Musch T, Stopper H, Lyko F. Functional diversity of DNA methyltransferase inhibitors in human cancer cell lines. Cancer Res 2006;66:2794–800

    Article  PubMed  CAS  Google Scholar 

  27. Laird PW, Jackson-Grusby L, Fazeli A, Dickinson SL, Jung WE, Li E, et al. Suppression of intestinal neoplasia by DNA hypomethylation. Cell 1995;81:197–205

    Article  PubMed  CAS  Google Scholar 

  28. Lantry LE, Zhang Z, Crist KA, Wang Y, Kelloff GJ, Lubet RA, et al. 5-Aza-2′-deoxycytidine is chemopreventive in a 4-(methyl-nitrosamino)-1-(3-pyridyl)-1-butanone-induced primary mouse lung tumor model. Carcinogenesis 1999;20:343–6

    Article  PubMed  CAS  Google Scholar 

  29. Tsong TY, Greenberg M, Kanehisa MI. Anesthetic action of membrane lipids. Biochemistry 1977;16:3115–21

    Article  PubMed  CAS  Google Scholar 

  30. Carlsen SA, Till JE, Ling V. Modulation of membrane drug permeability in Chinese hamster ovary cells. Biochim Biophys Acta 1976;455:900–12

    Article  PubMed  CAS  Google Scholar 

  31. Eichhorn JH, Peterkofsky B. Local anesthetic-induced inhibition of collagen secretion in cultured cells under conditions where microtubules are not depolymerized by these agents. J Cell Biol 1979;81:26–42

    Article  PubMed  CAS  Google Scholar 

  32. Mizuno S, Ishida A. Selective enhancement of bleomycin cytotoxicity by local anesthetics. Biochem Biophys Res Commun 1982;105:425–31

    Article  PubMed  CAS  Google Scholar 

  33. Esposito M, Fulco RA, Collecchi P, Zicca A, Cadoni A, Merlo F, et al. Improved therapeutic index of cisplatin by procaine hydrochloride. J Natl Cancer Inst 1990;82:677–84

    Article  PubMed  CAS  Google Scholar 

  34. Mizuno S, Ishida A. Selective enhancement of the cytotoxicity of the bleomycin derivative, peplomycin, by local anesthetics alone and combined with hyperthermia. Cancer Res 1982;42:4726–9

    PubMed  CAS  Google Scholar 

  35. Szmuness W. Hepatocellular carcinoma and the hepatitis B virus: evidence for a causal association. Prog Med Virol 1978;24:40–69

    PubMed  CAS  Google Scholar 

  36. Esteller M, Corn PG, Urena JM, Gabrielson E, Baylin SB, Herman JG. Inactivation of glutathione S-transferase P1 gene by promoter hypermethylation in human neoplasia. Cancer Res 1998;58:4515–8

    PubMed  CAS  Google Scholar 

  37. Tchou JC, Lin X, Freije D, Isaacs WB, Brooks JD, Rashid A, et al. GSTP1 CpG island DNA hypermethylation in hepatocellular carcinomas. Int J Oncol 2000;16:663–76

    PubMed  CAS  Google Scholar 

  38. Kanai Y, Ushijima S, Hui AM, Ochiai A, Tsuda H, Sakamoto M, et al. The E-cadherin gene is silenced by CpG methylation in human hepatocellular carcinomas. Int J Cancer 1997;71:355–9

    Article  PubMed  CAS  Google Scholar 

  39. Yoshikawa H, Matsubara K, Qian GS, Jackson P, Groopman JD, Manning JE, et al. SOCS-1, a negative regulator of the JAK/STAT pathway, is silenced by methylation in human hepatocellular carcinoma and shows growth-suppression activity. Nat Genet 2001;28:29–35

    Article  PubMed  CAS  Google Scholar 

  40. Chlebowski RT, Block JB, Cundiff D, Dietrich MF. Doxorubicin cytotoxicity enhanced by local anesthetics in a human melanoma cell line. Cancer Treat Rep 1982;66:121–5

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Osamu Yokosuka.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Tada, M., Imazeki, F., Fukai, K. et al. Procaine inhibits the proliferation and DNA methylation in human hepatoma cells. Hepatol Int 1, 355–364 (2007). https://doi.org/10.1007/s12072-007-9014-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12072-007-9014-5

Keywords

Navigation