Skip to main content
Log in

The TRPV4-TAZ Mechanotransduction Signaling Axis in Matrix Stiffness- and TGFβ1-Induced Epithelial-Mesenchymal Transition

  • Published:
Cellular and Molecular Bioengineering Aims and scope Submit manuscript

Abstract

Introduction

The implantation of biomaterials into soft tissue leads to the development of foreign body response, a non-specific inflammatory condition that is characterized by the presence of fibrotic tissue. Epithelial–mesenchymal transition (EMT) is a key event in development, fibrosis, and oncogenesis. Emerging data support a role for both a mechanical signal and a biochemical signal in EMT. We hypothesized that transient receptor potential vanilloid 4 (TRPV4), a mechanosensitive channel, is a mediator of EMT.

Methods

Normal human primary epidermal keratinocytes (NHEKs) were seeded on collagen-coated plastic plates or varied stiffness polyacrylamide gels in the presence or absence of TGFβ1. Immunofluorescence, immunoblot, and polymerase chain reaction analysis were performed to determine expression level of EMT markers and signaling proteins. Knock-down of TRPV4 function was achieved by siRNA transfection or by GSK2193874 treatment.

Results

We found that knock-down of TRPV4 blocked both matrix stiffness- and TGFβ1-induced EMT in NHEKs. In a murine skin fibrosis model, TRPV4 deletion resulted in decreased expression of the mesenchymal marker, α-SMA, and increased expression of epithelial marker, E-cadherin. Mechanistically, our data showed that: (i) TRPV4 was essential for the nuclear translocation of TAZ in response to matrix stiffness and TGFβ1; (ii) Antagonism of TRPV4 inhibited both matrix stiffness-induced and TGFβ1-induced expression of TAZ proteins; and (iii) TRPV4 antagonism suppressed both matrix stiffness-induced and TGFβ1-induced activation of Smad2/3, but not of AKT.

Conclusions

These data identify a novel role for TRPV4-TAZ mechanotransduction signaling axis in regulating EMT in NHEKs in response to both matrix stiffness and TGFβ1.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5

Similar content being viewed by others

References

  1. Adapala, R. K., R. J. Thoppil, D. J. Luther, et al. TRPV4 channels mediate cardiac fibroblast differentiation by integrating mechanical and soluble signals. J. Mol. Cell. Cardiol. 54:45–52, 2013.

    Article  Google Scholar 

  2. Aragona, M., T. Panciera, A. Manfrin, et al. A mechanical checkpoint controls multicellular growth through YAP/TAZ regulation by actin-processing factors. Cell 154:1047–1059, 2013.

    Article  Google Scholar 

  3. Azimi, I., H. Beilby, F. M. Davis, et al. Altered purinergic receptor-Ca2+ signaling associated with hypoxia-induced epithelial–mesenchymal transition in breast cancer cells. Mol. Oncol. 10:166–178, 2016.

    Article  Google Scholar 

  4. Bakin, A. V., A. K. Tomlinson, N. A. Bhowmick, et al. Phosphatidylinositol 3-kinase function is required for transforming growth factor beta-mediated epithelial to mesenchymal transition and cell migration. J. Biol. Chem. 275:36803–36810, 2000.

    Article  Google Scholar 

  5. Barker, T. H., M. M. Dysart, A. C. Brown, et al. Synergistic effects of particulate matter and substrate stiffness on epithelial-to-mesenchymal transition. Res. Rep. Health Eff. Inst. 182:3–41, 2014.

    Google Scholar 

  6. Berridge, M. J., M. D. Bootman, and H. L. Roderick. Calcium signalling: dynamics, homeostasis and remodelling. Nat. Rev. Mol. Cell Biol. 4:517–529, 2003.

    Article  Google Scholar 

  7. Bordeleau, F., B. N. Mason, E. M. Lollis, et al. Matrix stiffening promotes a tumor vasculature phenotype. Proc. Natl. Acad. Sci. U.S.A. 114:492–497, 2017.

    Article  Google Scholar 

  8. Brown, A. C., V. F. Fiore, T. A. Sulchek, et al. Physical and chemical microenvironmental cues orthogonally control the degree and duration of fibrosis-associated epithelial-to-mesenchymal transitions. J. Pathol. 229:25–35, 2013.

    Article  Google Scholar 

  9. Chaudhuri, O., S. T. Koshy, C. Branco da Cunha, et al. Extracellular matrix stiffness and composition jointly regulate the induction of malignant phenotypes in mammary epithelium. Nat. Mater. 13:970–978, 2014.

    Article  Google Scholar 

  10. Chen, Y., Q. Fang, Z. Wang, et al. Transient receptor potential vanilloid 4 ion channel functions as a pruriceptor in epidermal keratinocytes to evoke histaminergic itch. J. Biol. Chem. 291:10252–10262, 2016.

    Article  Google Scholar 

  11. Chen, X. F., H. J. Zhang, H. B. Wang, et al. Transforming growth factor-β1 induces epithelial-to-mesenchymal transition in human lung cancer cells via PI3 K/Akt and MEK/Erk1/2 signaling pathways. Mol. Biol. Rep. 39:3549–3556, 2012.

    Article  Google Scholar 

  12. Choi, J., S. Y. Park, and C. K. Joo. Transforming growth factor-beta1 represses E-cadherin production via slug expression in lens epithelial cells. Invest. Ophthalmol. Vis. Sci. 48:2708–2718, 2007.

    Article  Google Scholar 

  13. Davis, F. M., I. Azimi, R. A. Faville, et al. Induction of epithelial–mesenchymal transition (EMT) in breast cancer cells is calcium signal dependent. Oncogene 33:2307–2316, 2014.

    Article  Google Scholar 

  14. Degryse, A. L., H. Tanjore, X. C. Xu, et al. TGFβ signaling in lung epithelium regulates bleomycin-induced alveolar injury and fibroblast recruitment. Am. J. Physiol. Lung Cell. Mol. Physiol. 300:L887–897, 2011.

    Article  Google Scholar 

  15. Discher, D. E., P. Janmey, and Y. L. Wang. Tissue cells feel and respond to the stiffness of their substrate. Science 310:1139–1143, 2005.

    Article  Google Scholar 

  16. Dupont, S., L. Morsut, M. Aragona, et al. Role of YAP/TAZ in mechanotransduction. Nature 474:179–183, 2011.

    Article  Google Scholar 

  17. Everaerts, W., B. Nilius, and G. Owsianik. The vanilloid transient receptor potential channel TRPV4: from structure to disease. Prog. Biophys. Mol. Biol. 103:2–17, 2010.

    Article  Google Scholar 

  18. Everaerts, W., X. Zhen, D. Ghosh, et al. Inhibition of the cation channel TRPV4 improves bladder function in mice and rats with cyclophosphamide-induced cystitis. Proc. Natl. Acad. Sci. U.S.A. 107:19084–19089, 2010.

    Article  Google Scholar 

  19. Fukawa, T., H. Kajiya, S. Ozeki, et al. Reactive oxygen species stimulates epithelial mesenchymal transition in normal human epidermal keratinocytes via TGF-beta secretion. Exp. Cell Res. 318:1926–1932, 2012.

    Article  Google Scholar 

  20. Garcia-Elias, A., S. Mrkonjić, C. Jung, et al. The TRPV4 channel. Handb. Exp. Pharmacol. 222:293–319, 2014.

    Article  Google Scholar 

  21. Georges, P. C., J. J. Hui, Z. Gombos, et al. Increased stiffness of the rat liver precedes matrix deposition: implications for fibrosis. Am. J. Physiol. Gastrointest. Liver Physiol. 293:G1147–1154, 2007.

    Article  Google Scholar 

  22. Goswami, R., J. Cohen, S. Sharma, et al. TRPV4 ion channel is associated with scleroderma. J. Invest. Dermatol. 137:962–965, 2017.

    Article  Google Scholar 

  23. Guan, R., X. Wang, X. Zhao, et al. Emodin ameliorates bleomycin-induced pulmonary fibrosis in rats by suppressing epithelial–mesenchymal transition and fibroblast activation. Sci. Rep. 6:35696, 2016.

    Article  Google Scholar 

  24. Hackett, T. L., S. M. Warner, D. Stefanowicz, et al. Induction of epithelial–mesenchymal transition in primary airway epithelial cells from patients with asthma by transforming growth factor-beta1. Am. J. Respir. Crit. Care Med. 180:122–133, 2009.

    Article  Google Scholar 

  25. Hdud, I. M., A. Mobasheri, and P. T. Loughna. Effect of osmotic stress on the expression of TRPV4 and BKCa channels and possible interaction with ERK1/2 and p38 in cultured equine chondrocytes. Am. J. Physiol. Cell Physiol. 306:C1050–1057, 2014.

    Article  Google Scholar 

  26. Huang, C., S. Akaishi, and R. Ogawa. Mechanosignaling pathways in cutaneous scarring. Arch. Dermatol. Res. 304:589–597, 2012.

    Article  Google Scholar 

  27. Humphrey, J. D., E. R. Dufresne, and M. A. Schwartz. Mechanotransduction and extracellular matrix homeostasis. Nat. Rev. Mol. Cell Biol. 15:802–812, 2014.

    Article  Google Scholar 

  28. Iamshanova, O., A. FiorioPla, and N. Prevarskaya. Molecular mechanisms of tumour invasion: regulation by calcium signals. J. Physiol. 595:3063–3075, 2017.

    Article  Google Scholar 

  29. Janssen, L. J., S. Mukherjee, and K. Ask. Calcium homeostasis and ionic mechanisms in pulmonary fibroblasts. Am. J. Respir. Cell Mol. Biol. 53:135–148, 2015.

    Article  Google Scholar 

  30. Kida, N., T. Sokabe, M. Kashio, et al. Importance of transient receptor potential vanilloid 4 (TRPV4) in epidermal barrier function in human skin keratinocytes. Pflugers Arch. 463:715–725, 2012.

    Article  Google Scholar 

  31. Kolosova, I., D. Nethery, and J. A. Kern. Role of Smad2/3 and p38 MAP kinase in TGF-β1-induced epithelial–mesenchymal transition of pulmonary epithelial cells. J. Cell. Physiol. 226:1248–1254, 2011.

    Article  Google Scholar 

  32. Krainock, M., O. Toubat, S. Danopoulos, et al. Epicardial epithelial-to-mesenchymal transition in heart development and disease. J. Clin. Med. 5(2):7, 2016.

    Article  Google Scholar 

  33. Kumar, S. Cellular mechanotransduction: stiffness does matter. Nat. Mater. 13:918–920, 2014.

    Article  Google Scholar 

  34. Lai, W., L. Liu, Y. Zeng, et al. KCNN4 channels participate in the EMT induced by PRL-3 in colorectal cancer. Med. Oncol. 30:566, 2013.

    Article  Google Scholar 

  35. Lamouille, S., J. Xu, and R. Derynck. Molecular mechanisms of epithelial–mesenchymal transition. Nat. Rev. Mol. Cell Biol. 15:178–196, 2014.

    Article  Google Scholar 

  36. Lei, Q. Y., H. Zhang, B. Zhao, et al. TAZ promotes cell proliferation and epithelial–mesenchymal transition and is inhibited by the hippo pathway. Mol. Cell. Biol. 28:2426–2436, 2008.

    Article  Google Scholar 

  37. Leight, J. L., M. A. Wozniak, S. Chen, et al. Matrix rigidity regulates a switch between TGF-β1-induced apoptosis and epithelial–mesenchymal transition. Mol. Biol. Cell 23:781–791, 2012.

    Article  Google Scholar 

  38. Li, Z., Y. Wang, Y. Zhu, et al. The Hippo transducer TAZ promotes epithelial to mesenchymal transition and cancer stem cell maintenance in oral cancer. Mol. Oncol. 9:1091–1105, 2015.

    Article  Google Scholar 

  39. Liu, F., D. Lagares, K. M. Choi, et al. Mechanosignaling through YAP and TAZ drives fibroblast activation and fibrosis. Am. J. Physiol. Lung Cell. Mol. Physiol. 308:L344–L357, 2015.

    Article  Google Scholar 

  40. Mai, X., J. Shang, S. Liang, et al. Blockade of Orai1 store-operated calcium entry protects against renal fibrosis. J. Am. Soc. Nephrol. 27:3063–3078, 2016.

    Article  Google Scholar 

  41. Masszi, A., L. Fan, L. Rosivall, et al. Integrity of cell-cell contacts is a critical regulator of TGF-beta 1-induced epithelial-to-myofibroblast transition: role for beta-catenin. Am. J. Pathol. 165:1955–1967, 2004.

    Article  Google Scholar 

  42. Mauviel, A., F. Nallet-Staub, and X. Varelas. Integrating developmental signals: a Hippo in the (path)way. Oncogene 31:1743–1756, 2012.

    Article  Google Scholar 

  43. Mendez, M. G., and P. A. Janmey. Transcription factor regulation by mechanical stress. Int. J. Biochem. Cell Biol. 44:728–732, 2012.

    Article  Google Scholar 

  44. Miranda, M. Z., J. F. Bialik, P. Speight, et al. TGF-β1 regulates the expression and transcriptional activity of TAZ via a Smad3-independent, myocardin-related transcription factor-mediated mechanism. J. Biol. Chem. 2017. https://doi.org/10.1074/jbc.M117.780502.

    Google Scholar 

  45. Moore, C., F. Cevikbas, H. A. Pasolli, et al. UVB radiation generates sunburn pain and affects skin by activating epidermal TRPV4 ion channels and triggering endothelin-1 signaling. Proc. Natl. Acad. Sci. U.S.A. 110:E3225–3234, 2013.

    Article  Google Scholar 

  46. Nasrollahi, S., and A. Pathak. Topographic confinement of epithelial clusters induces epithelial-to-mesenchymal transition in compliant matrices. Sci. Rep. 6:18831, 2016.

    Article  Google Scholar 

  47. Nawshad, A., D. Lagamba, A. Polad, et al. Transforming growth factor-beta signaling during epithelial–mesenchymal transformation: implications for embryogenesis and tumor metastasis. Cells Tissues Organs 179:11–23, 2005.

    Article  Google Scholar 

  48. Nayak, P. S., Y. Wang, T. Najrana, et al. Mechanotransduction via TRPV4 regulates inflammation and differentiation in fetal mouse distal lung epithelial cells. Respir. Res. 16:60, 2015.

    Article  Google Scholar 

  49. Nieves-Cintrón, M., G. C. Amberg, M. F. Navedo, et al. The control of Ca2+ influx and NFATc3 signaling in arterial smooth muscle during hypertension. Proc. Natl. Acad. Sci. U.S.A. 105:15623–15628, 2008.

    Article  Google Scholar 

  50. Nikitorowicz-Buniak, J., C. P. Denton, D. Abraham, et al. Partially evoked epithelial-mesenchymal transition (EMT) is associated with increased TGFβ signaling within lesional scleroderma skin. PLoS ONE 10:e0134092, 2015.

    Article  Google Scholar 

  51. Noguchi, S., A. Saito, Y. Mikami, et al. TAZ contributes to pulmonary fibrosis by activating profibrotic functions of lung fibroblasts. Sci. Rep. 7:42595, 2017.

    Article  Google Scholar 

  52. Nowrin, K., S. S. Sohal, G. Peterson, et al. Epithelial–mesenchymal transition as a fundamental underlying pathogenic process in COPD airways: fibrosis, remodeling and cancer. Expert Rev. Respir. Med. 8:547–559, 2014.

    Article  Google Scholar 

  53. O’Connor, J. W., P. N. Riley, S. M. Nalluri, et al. Matrix rigidity mediates TGFβ1-induced epithelial-myofibroblast transition by controlling cytoskeletal organization and MRTF-A localization. J. Cell. Physiol. 230:1829–1839, 2015.

    Article  Google Scholar 

  54. O’Kane, D., M. V. Jackson, A. Kissenpfennig, et al. SMAD inhibition attenuates epithelial to mesenchymal transition by primary keratinocytes in vitro. Exp. Dermatol. 23:497–503, 2014.

    Article  Google Scholar 

  55. Paszek, M. J., N. Zahir, K. R. Johnson, et al. Tensional homeostasis and the malignant phenotype. Cancer Cell 8:241–254, 2005.

    Article  Google Scholar 

  56. Peinado, H., M. Quintanilla, and A. Cano. Transforming growth factor beta-1 induces snail transcription factor in epithelial cell lines: mechanisms for epithelial mesenchymal transitions. J. Biol. Chem. 278:21113–21123, 2003.

    Article  Google Scholar 

  57. Piersma, B., R. A. Bank, and M. Boersema. Signaling in fibrosis: TGF-β, WNT, and YAP/TAZ converge. Front. Med. (Lausanne) 2:59, 2015.

    Google Scholar 

  58. Plant, T. D., and R. Strotmann. TRPV4. Handb. Exp. Pharmacol. 179:189–205, 2007.

    Article  Google Scholar 

  59. Polimeni, M., G. R. Gulino, E. Gazzano, et al. Multi-walled carbon nanotubes directly induce epithelial–mesenchymal transition in human bronchial epithelial cells via the TGF-β-mediated Akt/GSK-3β/SNAIL-1 signalling pathway. Part. Fibre Toxicol. 13:27, 2016.

    Article  Google Scholar 

  60. Rahaman, S. O., L. M. Grove, S. Paruchuri, et al. TRPV4 mediates myofibroblast differentiation and pulmonary fibrosis in mice. J. Clin. Invest. 124:5225–5238, 2014.

    Article  Google Scholar 

  61. Rice, A. J., E. Cortes, D. Lachowski, et al. Matrix stiffness induces epithelial–mesenchymal transition and promotes chemoresistance in pancreatic cancer cells. Oncogenesis 6:e352, 2017.

    Article  Google Scholar 

  62. Roderick, H. L., and S. J. Cook. Ca2+ signalling checkpoints in cancer: remodelling Ca2+ for cancer cell proliferation and survival. Nat. Rev. Cancer 8:361–375, 2008.

    Article  Google Scholar 

  63. Saito, A., and T. Nagase. Hippo and TGF-β interplay in the lung field. Am. J. Physiol. Lung Cell. Mol. Physiol. 309:L756–L767, 2015.

    Google Scholar 

  64. Santana, A., B. Saxena, N. A. Noble, et al. Increased expression of transforming growth factor beta isoforms (beta 1, beta 2, beta 3) in bleomycin-induced pulmonary fibrosis. Am. J. Respir. Cell Mol. Biol. 13:34–44, 1995.

    Article  Google Scholar 

  65. Sharma, S., R. Goswami, M. Merth, et al. TRPV4 ion channel is a novel regulator of dermal myofibroblast differentiation. Am. J. Physiol. Cell Physiol. 312:C562–C572, 2017.

    Article  Google Scholar 

  66. Sokabe, T., and M. Tominaga. The TRPV4 cation channel: a molecule linking skin temperature and barrier function. Commun Integr Biol 3:619–621, 2010.

    Article  Google Scholar 

  67. Speight, P., H. Nakano, T. J. Kelley, et al. Differential topical susceptibility to TGFβ in intact and injured regions of the epithelium: key role in myofibroblast transition. Mol. Biol. Cell 24:3326–3336, 2013.

    Article  Google Scholar 

  68. Stone, R. C., I. Pastar, N. Ojeh, et al. Epithelial–mesenchymal transition in tissue repair and fibrosis. Cell Tissue Res. 365:495–506, 2016.

    Article  Google Scholar 

  69. Sulk, M., S. Seeliger, J. Aubert, et al. Distribution and expression of non-neuronal transient receptor potential (TRPV) ion channels in rosacea. J. Invest. Dermatol. 132:1253–1262, 2012.

    Article  Google Scholar 

  70. Suzuki, M., A. Mizuno, K. Kodaira, et al. Impaired pressure sensation in mice lacking TRPV4. J. Biol. Chem. 278:22664–22668, 2003.

    Article  Google Scholar 

  71. Szeto, S. G., M. Narimatsu, M. Lu, et al. YAP/TAZ are mechanoregulators of TGF-β-Smad signaling and renal fibrogenesis. J. Am. Soc. Nephrol. 27:3117–3128, 2016.

    Article  Google Scholar 

  72. Tanjore, H., X. C. Xu, V. V. Polosukhin, et al. Contribution of epithelial-derived fibroblasts to bleomycin-induced lung fibrosis. Am. J. Respir. Crit. Care Med. 180:657–665, 2009.

    Article  Google Scholar 

  73. Tennakoon, A. H., T. Izawa, M. Kuwamura, et al. Pathogenesis of type 2 epithelial to mesenchymal transition (EMT) in renal and hepatic fibrosis. J. Clin. Med. 5(1):4, 2015.

    Article  Google Scholar 

  74. Thorneloe, K. S., M. Cheung, W. Bao, et al. An orally active TRPV4 channel blocker prevents and resolves pulmonary edema induced by heart failure. Sci. Transl. Med. 4:159ra148, 2012.

    Article  Google Scholar 

  75. Trimboli, A. J., K. Fukino, A. de Bruin, et al. Direct evidence for epithelial–mesenchymal transitions in breast cancer. Cancer Res. 68:937–945, 2008.

    Article  Google Scholar 

  76. Tschumperlin, D. J. Fibroblasts and the ground they walk on. Physiology (Bethesda) 28:380–390, 2013.

    Google Scholar 

  77. Tschumperlin, D. J., F. Liu, and A. M. Tager. Biomechanical regulation of mesenchymal cell function. Curr. Opin. Rheumatol. 25:92–100, 2013.

    Article  Google Scholar 

  78. Varelas, X., R. Sakuma, P. Samavarchi-Tehrani, et al. TAZ controls Smad nucleocytoplasmic shuttling and regulates human embryonic stem-cell self-renewal. Nat. Cell Biol. 10:837–848, 2008.

    Article  Google Scholar 

  79. Wang, Q., Z. Xu, Q. An, et al. TAZ promotes epithelial to mesenchymal transition via the upregulation of connective tissue growth factor expression in neuroblastoma cells. Mol. Med. Rep. 11:982–988, 2015.

    Article  Google Scholar 

  80. Wei, S. C., L. Fattet, J. H. Tsai, et al. Matrix stiffness drives epithelial–mesenchymal transition and tumour metastasis through a TWIST1-G3BP2 mechanotransduction pathway. Nat. Cell Biol. 17:678–688, 2015.

    Article  Google Scholar 

  81. Wen, L., C. Liang, E. Chen, et al. Regulation of multi-drug resistance in hepatocellular carcinoma cells is TRPC6/calcium dependent. Sci. Rep. 6:23269, 2016.

    Article  Google Scholar 

  82. Wipff, P. J., D. B. Rifkin, J. J. Meister, et al. Myofibroblast contraction activates latent TGF-beta1 from the extracellular matrix. J. Cell Biol. 179:1311–1323, 2007.

    Article  Google Scholar 

  83. Xu, J., S. Lamouille, and R. Derynck. TGF-beta-induced epithelial to mesenchymal transition. Cell Res. 19:156–172, 2009.

    Article  Google Scholar 

  84. Yamamoto, T., S. Takagawa, I. Katayama, et al. Animal model of sclerotic skin. I: Local injections of bleomycin induce sclerotic skin mimicking scleroderma. J. Invest. Dermatol. 112:456–462, 1999.

    Article  Google Scholar 

  85. Yang, H. W., S. A. Lee, J. M. Shin, et al. Glucocorticoids ameliorate TGF-β1-mediated epithelial-to-mesenchymal transition of airway epithelium through MAPK and Snail/Slug signaling pathways. Sci. Rep. 7:3486, 2017.

    Article  Google Scholar 

  86. Yang, N., C. D. Morrison, P. Liu, et al. TAZ induces growth factor-independent proliferation through activation of EGFR ligand amphiregulin. Cell Cycle 11:2922–2930, 2012.

    Article  Google Scholar 

  87. Yeh, Y. C., W. C. Wei, Y. K. Wang, et al. Transforming growth factor-(beta)1 induces Smad3-dependent (beta)1 integrin gene expression in epithelial-to-mesenchymal transition during chronic tubulointerstitial fibrosis. Am. J. Pathol. 177:1743–1754, 2010.

    Article  Google Scholar 

  88. Yeung, T., P. C. Georges, L. A. Flanagan, et al. Effects of substrate stiffness on cell morphology, cytoskeletal structure, and adhesion. Cell Motil. Cytoskeleton 60:24–34, 2005.

    Article  Google Scholar 

  89. Zeisberg, M., and E. G. Neilson. Biomarkers for epithelial–mesenchymal transitions. J. Clin. Invest. 119:1429–1437, 2009.

    Article  Google Scholar 

  90. Zhang, D. X., S. A. Mendoza, A. H. Bubolz, et al. Transient receptor potential vanilloid type 4-deficient mice exhibit impaired endothelium-dependent relaxation induced by acetylcholine in vitro and in vivo. Hypertension 53:532–538, 2009.

    Article  Google Scholar 

  91. Zhao, X. H., C. Laschinger, P. Arora, et al. Force activates smooth muscle alpha-actin promoter activity through the Rho signaling pathway. J. Cell Sci. 120:1801–1809, 2007.

    Article  Google Scholar 

  92. Zhou, C. F., D. C. Zhou, J. X. Zhang, et al. Bleomycin-induced epithelial–mesenchymal transition in sclerotic skin of mice: possible role of oxidative stress in the pathogenesis. Toxicol. Appl. Pharmacol. 277:250–258, 2014.

    Article  Google Scholar 

Download references

ACKNOWLEDGMENTS

Startup grant from University of Maryland, NIH (1R01EB024556-01), and NSF (CMMI-1662776) grants to Shaik O. Rahaman.

AUTHOR CONTRIBUTIONS

SS and SOR conceived the study, designed and performed the experiments, and wrote the manuscript. RG assisted with experiments and analysis of data, and maintained the animal colony. All authors reviewed the results and approved the final content of the manuscript.

Conflict of interest

Shweta Sharma, Rishov Goswami, and Shaik O. Rahaman declare that they have no conflicts of interest.

ETHICAL APPROVAL

The study protocol was approved by the University of Maryland Review Committee, and all experiments were performed in accordance with the IACUC guidelines.

INFORMED CONSENT

This article does not contain any studies with human participants performed by any of the authors.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shaik O. Rahaman.

Additional information

Associate Editor James L. McGrath oversaw the review of this article.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary Fig.

 1 TRPV4 antagonism suppresses Ca2+ influx and modulates expression of matrix stiffness and TGFβ1-induced ECAD and α-SMA. (A) FlexStation 3 recording of Calcium 6 dye-loaded NHEK monolayers assessing effects of TRPV4 selective antagonist, GSK219, on Ca2+ influx induced by calcium ionophore, A23 (2 μM) or TRPV4 selective agonist, GSK101 (20 nM). Bar graph is showing the quantified results (mean ± SEM). All experiments were performed 3 times in quadruplicate. **p < 0.01; 1-way ANOVA. (B and C) NHEKs were plated on collagen-coated (10 μg/mL) plastic plates and were incubated with or without GSK219 for 24 h. qRT-PCR analysis was performed to determine ECAD, GAPDH, and Vimentin mRNA levels using SYBR Green gene Expression Assay. Ct values were normalized to GAPDH levels. **p < 0.01; 1-way ANOVA. (D) NHEKs were plated on soft (1 kPa) or stiff (25 kPa) polyacrylamide hydrogels coated with collagen (10 μg/mL), and were incubated with or without TGFβ1 (5 ng/mL) for 96 h. For this experiment, we refreshed the media with GSK219 (5 nM) every 24 h. The data shown is one of the representative images from four different fields per condition to assess the capacity of TRPV4 inhibition (by GSK219) to inhibit matrix stiffness and TGFβ1-induced increases in the expression of ECAD and α-SMA. ECAD (red), α-SMA (green), and DAPI (blue) stains are shown. Scale bars: 10 µm. (E) Quantitation of results shown in D. Data are expressed as mean ± SEM of three independent experiments, n = 20 cells/condition. ns = non-significant; **p < 0.01, ***p < 0.001; 1-way ANOVA. hpf: high power field. (PDF 3096 kb)

Supplementary Fig.

 2 TRPV4 inhibition by siRNA modulates expression of matrix stiffness and TGFβ1-induced ECAD and α-SMA. (A) NHEKs were plated on soft (1 kPa) or stiff (25 kPa) collagen-coated (10 μg/mL) polyacrylamide hydrogels, and were transfected with scrambled siRNA (Scr) or TRPV4 specific siRNA (si-TRPV4) for 96 h. ECAD (red), α-SMA (green), and DAPI (blue) stains are shown. Scale bars: 10 µm. (B) Quantitation of results shown in A. Data are expressed as mean ± SEM of three independent experiments, n = 20 cells/condition. ns = non-significant; *p < 0.05, **p < 0.01, ***p < 0.001; 1-way ANOVA. hpf: high power field. (PDF 6799 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sharma, S., Goswami, R. & Rahaman, S.O. The TRPV4-TAZ Mechanotransduction Signaling Axis in Matrix Stiffness- and TGFβ1-Induced Epithelial-Mesenchymal Transition. Cel. Mol. Bioeng. 12, 139–152 (2019). https://doi.org/10.1007/s12195-018-00565-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12195-018-00565-w

Keywords

Navigation