Skip to main content
Log in

The Evolution of Chromosome Arrangements in Carex (Cyperaceae)

  • Published:
The Botanical Review Aims and scope Submit manuscript

Abstract

Sedges (Carex: Cyperaceae) exhibit remarkable agmatoploid chromosome series between and within species. This chromosomal diversity is due in large part to the structure of the holocentric chromosomes: fragments that would not be heritable in organisms with monocentric chromosomes have the potential to produce viable gametes in organisms with holocentric chromosomes. The rapid rate of chromosome evolution in the genus and high species diversification rate in the order (Cyperales Hutch., sensu Dahlgren) together suggest that chromosome evolution may play an important role in the evolution of species diversity in Carex. Yet the other genera of the Cyperaceae and their sister group, the Juncaceae, do not show the degree of chromosomal variation found in Carex, despite the fact that diffuse centromeres are a synapomorphy for the entire clade. Moreover, fission and fusion apparently account for the majority of chromosome number changes in Carex, with relatively little duplication of whole chromosomes, whereas polyploidy is relatively important in the other sedge genera. In this paper, we review the cytologic and taxonomic literature on chromosome evolution in Carex and identify unanswered questions and directions for future research. In the end, an integration of biosystematic, cytogenetic, and genomic studies across the Cyperaceae will be needed to address the question of what role chromosome evolution plays in species diversification within Carex and the Cyperaceae as a whole.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

Literature Cited

  • Albertson, D. G. 1993. Mapping chromosome rearrangement breakpoints to the physical map of Caenorhabditis elegans by fluorescent in situ hybridization. Genetics 134: 211–219.

    PubMed  CAS  Google Scholar 

  • Ayala, F. J. & M. Coluzzi. 2005. Chromosome speciation: humans, Drosophila, and mosquitoes. Proc. Natl. Acad. U.S.A. 102: 6535–6542.

    Article  CAS  Google Scholar 

  • Battaglia, E. & J. W. Boyes. 1955. Post-reductional meiosis: its mechanism and causes. Caryologia 8: 87–134.

    Google Scholar 

  • Brown, R. C. & B. E. Lemmon. 2000. The cytoskeleton and polarization during pollen development in Carex blanda (Cyperaceae). American J. Bot. 87: 1–11.

    Article  Google Scholar 

  • Buchwitz, B. J., K. Ahmad, L. L. Moore, M. B. Roth & S. Henikoff. 1999. A histone-H3-like protein in C. elegans. Nature (London) 401: 547–548.

    Article  CAS  Google Scholar 

  • Burnham, K. P., & D. R. Anderson. 2002. Model selection and multimodel inference: a practical information-theoretic approach. Springer, New York.

    Google Scholar 

  • Butlin, R. K. 2005. Recombination and speciation. Mol. Ecol. 14: 2621–2635.

    Article  PubMed  CAS  Google Scholar 

  • Cayouette, J. & P. M. Catling. 1992. Hybridization in the genus Carex with special reference to North America. The Botanical Review 58: 351–438.

    Article  Google Scholar 

  • Cayouette, J. & P. Morisset. 1985. Chromosome studies on natural hybrids between maritime species of Carex (sections Phacocystis and Cryptocarpae) in northeastern North America, and their taxonomic implications. Canadian J. Bot. 63: 1957–1982.

    Google Scholar 

  • ————. 1986a. Chromosome studies on the Carex salina complex (Cyperaceae, section Cryptocarpae) in northeastern North American. Cytologia 51: 817–856.

    Google Scholar 

  • ————. 1986b. Chromosome studies on Carex paleacea Wahl., Carex nigra (L.) Reichard, and Carex aquatilis Wahl. in northeastern North America. Cytologia 51: 857–884.

    Google Scholar 

  • Coyne, J. A. & H. A. Orr. 2004. Speciation. Sinauer Associates, Sunderland.

    Google Scholar 

  • Crins, W. J. 1990. Phylogenetic considerations below the sectional level in Carex. Can. J. Bot. 68: 1433–1440.

    Google Scholar 

  • Crins, W. J. & P. W. Ball. 1988. Sectional limits and phylogenetic considerations in Carex section Ceratocystis (Cyperaceae). Brittonia 40: 38–47.

    Article  Google Scholar 

  • Dahlgren, R., H. T. Clifford, & P. Yeo. 1985. The families of the Monocotyledons: structure, evolution, and taxonomy. Springer-Verlag, Berlin.

    Google Scholar 

  • Davies, E. W. 1956. Cytology, evolution and origin of the aneuploid series in the genus Carex. Hereditas 42: 349–365.

    Article  Google Scholar 

  • De Castro, D. 1950. Notes on two cytological problems of the genus Luzula DC. Genét. Ibér. 2: 201–209.

    Google Scholar 

  • Dernburg, A. F. 2001. Here, there, and everywhere: kinetochore function on holocentric chromosomes. J. Cell Biol. 153: F33–F38.

    Article  PubMed  CAS  Google Scholar 

  • Faulkner, J. S. 1972. Chromosome studies on Carex section Acutae in north-west Europe. Bot. J. Linn. Soc. 65: 271–301.

    Google Scholar 

  • ————. 1973. Experimental hybridization of north-west European species in Carex section Acutae (Cyperaceae). Bot. J. Linn. Soc. 67: 233–253.

    Article  Google Scholar 

  • Flach, M. 1966. Diffuse centromeres in a dicotyledoneous plant. Nature (London) 209: 1369–1370.

    Article  Google Scholar 

  • Ford, B. A., M. Iranpour, R. F. C. Naczi, J. R. Starr & C. A. Jerome. 2006. Phylogeny of Carex subg. Vignea (Cyperaceae) based on non-coding nrDNA sequence data. Syst. Bot. 31: 70–82.

    Article  Google Scholar 

  • Grant, V. E. 1981. Plant Speciation, Edition 2. Columbia University Press, New York.

    Google Scholar 

  • Greilhuber, J. 1995. Chromosomes of the monocotyledons (general aspects). Pp. 379–414 in P. J. Rudall, P. J. Cribb, D. F. Culer & C. J. Humphries (ed.), Monocotyledons: Systematics and Evolution. Royal Botanic Gardens, Kew.

    Google Scholar 

  • Guerra, M. & M. A. García. 2004. Heterochromatin and rDNA sites distribution in the holocentric chromosomes of Cuscuta approximata Bab. (Convolvulaceae). Genome 47: 134–140.

    Article  PubMed  CAS  Google Scholar 

  • Håkansson, A. 1954. Meiosis and pollen mitosis in x-rayed and untreated spikelets of Eleocharis palustris. Hereditas (Lund) 15: 325–345.

    Google Scholar 

  • Harmon, L. J., & J. B. Losos. 2005. The effect of intraspecific sample size on type I and type II error rates in comparative studies. Evolution 59: 2705–2710.

    PubMed  Google Scholar 

  • Haskell, G. 1952. Polyploidy, ecology and the British Flora. J. Ecol. 40: 265–282.

    Article  Google Scholar 

  • Heilborn, O. 1924. Chromosome numbers and dimensions, species-formation and phylogeny in the genus Carex. Hereditas 5: 129–216.

    Article  Google Scholar 

  • ————. 1928. Chromosome studies in Cyperaceae. Hereditas 11: 182–192.

    Article  Google Scholar 

  • ————. 1932. Aneuploidy and polyploidy in Carex. Svensk Bot. Tidskr. 26: 137–145.

    Google Scholar 

  • Hey, J. 2004. What's so hot about recombination hotspots? PLoS Biology 2: e190.

    Article  PubMed  CAS  Google Scholar 

  • Hipp, A. L. 2007. Non-uniform processes of chromosome evolution in sedges (Carex: Cyperaceae). Evolution 61:2175–2194.

    Article  PubMed  Google Scholar 

  • Hipp, A. L., P. E. Rothrock & A. A. Reznicek. 2006. Phylogeny and classification of Carex section Ovales (Cyperaceae). International Journal of Plant Sciences 167: 1029–1048.

    Article  Google Scholar 

  • Hipp, A. L., P. E. Rothrock, A. A. Reznicek & P. E. Berry. 2007. Changes in chromosome number associated with speciation in sedges: A phylogenetic study in Carex section Ovales (Cyperaceae). In J. T. Columbus, E. A. Friar, J. M. Porter, L. M. Prince and M. G. Simpson, eds. Monocots: Comparative biology and evolution (Poales). Aliso 23:193–203.

  • Hoshino, T. 1981. Karyomorphological and cytogenetical studies on aneuploidy in Carex. J. Sci. HIroshima Univ., Ser. B, Div. 2, Bot. 17: 155–238.

    Google Scholar 

  • ————. 1992. Cytogeographical study of four aneuploids of Carex oxyandra Kudo in Japan. Bot. Mag. (Tokyo) 105: 639–648.

    Article  Google Scholar 

  • Hoshino, T. & T. Shimizu. 1986. Cytological studies on degenerative nuclei at pollen development of Carex ciliato-marginata. Bot. Mag. (Tokyo) 99: 185–190.

    Article  Google Scholar 

  • Hoshino, T. & K. Okamura. 1994. Cytological studies on meiotic configurations on intraspecific aneuploids of Carex blepharicarpa (Cyperaceae) in Japan. Journal of Plant Research 107: 1–8.

    Article  Google Scholar 

  • Hoshino, T. & A. Onimatsu. 1994. Cytological studies of Carex duvaliana (Cyperaceae) with special reference to meiotic configurations of intraspecific aneuploids. J. Jap. Bot. 69: 37–41.

    Google Scholar 

  • Hoshino, T. & M. J. Waterway. 1994. Cytogeography and meiotic chromosome configurations of six intraspecific aneuploids of Carex conica Boott (Cyperaceae) in Japan. Journal of Plant Research 107: 131–138.

    Article  Google Scholar 

  • Hoshino, T., K. Aosaki & A. Onimatsu. 1993. Cytological studies of Carex stenostachys (Cyperaceae) with special reference to meiotic configurations in intraspecific aneuploids. La Kromosomo II 71–72: 2451–2455.

    Google Scholar 

  • Hoshino, T., S. Hayashi & A. Onimatsu. 1994. Meiotic chromosome configurations of intraspecific aneuploids of Carex sikokiana (Cyperaceae) in Japan. J. Jap. Bot. 69: 142–146.

    Google Scholar 

  • Hoshino, T., K. Furuta & H. Hatooka. 1999. Pollen development and postreductional meiosis in Carex. Abstract, XVI International Botanical Congress.

  • Huelsenbeck, J. P., R. Nielsen, & J. P. Bollback. 2003. Stochastic mapping of morphological characters. Systematic Biology 52: 131–158.

    Article  PubMed  Google Scholar 

  • Juel, H. O. 1900. Beiträge zur Kenntnis der Tetradenteilung. Jahrb. Wiss. Bot. 35: 626–659.

    Google Scholar 

  • La Cour, L. F. 1952. The Luzula system analyzed by X-ray. Heredity 6: 77–81.

    Article  Google Scholar 

  • Leitch, I. J. & M. D. Bennett. 2004. Genomic downsizing in polyploid plants. Biol. J. Linn. Soc. 82: 651–663.

    Article  Google Scholar 

  • Lexer, C., M. E. Welch, J. L. Durphy & L. H. Rieseberg. 2003. Natural selection for salt tolerance quantitative trait loci (QTLs) in wild sunflower hybrids: Implications for the origin of Helianthus paradoxus, a diploid hybrid species. Mol. Ecol. 12: 1225–1235.

    Article  PubMed  CAS  Google Scholar 

  • Löve, A. E. 1981. Chromosome number reports LXXIII. Taxon 30: 829–861.

    Google Scholar 

  • ————. 1982. IOPB chromosome number reports LXXV. Taxon 31: 342–368.

    Google Scholar 

  • Löve, A., D. Löve & M. Raymond. 1957. Cytotaxonomy of Carex section Capillares. Can. J. Bot. 35: 715–761.

    Article  Google Scholar 

  • Luceño, M. 1993. Chromosome studies on Carex (L.) section Mitratae Kükenth. (Cyperaceae) in the Iberian Peninsula. Cytologia 58: 321–330.

    Google Scholar 

  • ————. 1994. Cytotaxonomic studies in Iberian, Balearic, North African, and Macaronesian species of Carex (Cyperaceae): II. Can. J. Bot. 72: 587–596.

    Article  Google Scholar 

  • Luceño, M. & S. Castroviejo. 1991. Agmatoploidy in Carex laevigata (Cyperaceae): Fusion and fission of chromosomes as the mechanism of cytogenetic evolution in Iberian populations. Pl. Syst. Evol. 177: 149–160.

    Article  Google Scholar 

  • ————. 1993. Cytotaxonomic studies in the sections Spirostachyae (Drejer) Bailey and Ceratocystis Dumort. of the genus Carex L. (Cyperaceae), with special reference to Iberian and North Aftrican taxa. Bot. J. Linn. Soc. 112: 335–350.

    Google Scholar 

  • Luceño, M., A. L. L. Vanzela & M. Guerra. 1998. Cytotaxonomic studies in Brazilian Rhynchospora (Cyperaceae), a genus exhibiting holocentric chromosomes. Can. J. Bot. 76: 440–449.

    Article  Google Scholar 

  • Lutzoni, F., M. Pagel, & V. Reeb. 2001. Major fungal lineages are derived from lichen symbiotic ancestors. Nature 411: 937–940.

    Article  PubMed  CAS  Google Scholar 

  • Maddox, P. S., K. Oegema, A. Desai, & I. M. Cheeseman. 2004. “Holo”er than thou: chromosome segregation and kinetochore function in C. elegans. Chromosome Res. 12: 641–653.

    Article  PubMed  CAS  Google Scholar 

  • Magallon, S. A. & M. J. Sanderson. 2001. Absolute diversification rates in angiosperm clades. Evolution 55: 1762–1780.

    PubMed  CAS  Google Scholar 

  • Malheiros-Gardé, N. & A. Gardé. 1950. Chromosome number in Luzula multiflora Lej. Genét Ibér. 4: 91–94.

    Google Scholar 

  • Martins, E. P., and T. F. Hansen. 1997. Phylogenies and the comparative method: A general approach to incorporating phylogenetic information into analysis of interspecific data. American Naturalist 149: 646–667.

    Article  Google Scholar 

  • Murphy, W. J., D. M. Larkin, A. Everts-van der Wind, G. Bourque, G. Tesler, L. Auvil, J. E. Beever, B. P. Chowdhary, F. Galibert, L. Gatzke, C. Hitte, S. N. Meyers, D. Milan, E. A. Ostrander, G. Pape, H. G. Parker, T. Raudsepp, M. B. Rogatcheva, L. B. Schook, L. C. Skow, M. Welge, J. E. Womack, S. J. O'Brien, P. A. Pevzner, & H. A. Lewin. 2005. Dynamics of mammalian chromosome evolution inferred from multispecies comparative maps. Science (Wash. D. C.) 309: 613–617.

    Article  CAS  Google Scholar 

  • Naczi, R. F. C. 1992. Systematics of Carex Section Griseae (Cyperaceae). Botany. Ph.D. Dissertation, University of Michigan, Ann Arbor.

    Google Scholar 

  • ————. 1999. Chromosome numbers of some eastern North American species of Carex and Eleocharis (Cyperaceae). Contr. Univ. Michigan Herbarium 22: 105–119.

    Google Scholar 

  • Nagaki, K., K. Kashihara & M. Murata. 2005. Visualization of diffuse centromeres with centromere-specific histone H3 in the holocentric plant Luzula nivea. Pl. Cell 17: 1886–1893.

    Article  CAS  Google Scholar 

  • Nijalingappa, B. H. M. & D. L. Bai. 1990. Cytological studies in some South Indian species of Carex. Cytologia 55: 373–380.

    Google Scholar 

  • Nishikawa, K., Y. Furuta & K. Ishitobi. 1984. Chromosomal evolution in genus Carex as viewed from nuclear DNA content, with special reference to its aneuploidy. Jap. J. Gen. 59: 465–472.

    Article  Google Scholar 

  • Nokkala, S., A. Laukkanen & C. Nokkala. 2002. Mitotic and meiotic chromosomes in Somatochlora metallica (Cordulidae, Odonata). The absence of localized centromeres and inverted meiosis. Hereditas 136: 7–12.

    Article  PubMed  Google Scholar 

  • Pagel, M. 1997. Inferring evolutionary processes from phylogenies. Zoologica Scripta 26: 331–348.

    Article  Google Scholar 

  • ————. 1999. The maximum likelihood approach to reconstructing ancestral character states of discrete characters on phylogenies. Syst. Biol. 48: 612–622.

    Article  Google Scholar 

  • Pardo-Manuel de Villena, F., & C. Sapienza. 2001. Female meiosis drives karyotypic evolution in mammals. Genetics 159: 1179–1189.

    PubMed  CAS  Google Scholar 

  • Pazy, B. & U. Plitmann. 1994. Holocentric chromosome behaviour in Cuscuta (Cuscutaceae). Pl. Syst. Evol. 191: 105–109.

    Article  Google Scholar 

  • Perez, R., J. S. Rufas, J. A. Suja, J. Page & F. Panzera. 2000. Meiosis in holocentric chromosomes: Orientation and segregation of an autosome and sex chromosomes in Triatoma infestans (Heteroptera). Chromosome Research 8: 17–25.

    Article  PubMed  CAS  Google Scholar 

  • Reznicek, A. A. 1990. Evolution in sedges (Carex, Cyperaceae). Can. J. Bot. 68: 1409–1432.

    Google Scholar 

  • Rieseberg, L. H. 2001. Chromosomal rearrangements and speciation. Trends Ecol. Evol. 16: 351–358.

    Article  PubMed  Google Scholar 

  • Roalson, E. H. 2008. A synopsis of chromosome number variation in the Cyperaceae. The Botanical Review 74:209–393.

    Article  Google Scholar 

  • Roalson, E. H., A. G. McCubbin & R. Whitkus 2007. Chromosome evolution in the Cyperales. In J. T. Columbus, E. A. Friar, J. M. Porter, L. M. Prince & M. G. Simpson (eds.), Monocots: comparative biology and evolution (Poales). Aliso 23:62–71.

  • Roalson, E. H., J. T. Columbus & E. A. Friar. 2001. Phylogenetic relationships in Cariceae (Cyperaceae) based on ITS (nrDNA) and trnT-L-F (cpDNA) region sequences: Assessment of subgeneric and sectional relationships in Carex with emphasis on section Acrocystis. Syst. Bot. 26: 318–341.

    Google Scholar 

  • Rothrock, P. E. & A. A. Reznicek. 1996. Chromosome numbers in Carex section Ovales (Cyperaceae) from Eastern North America. Sida 17: 251–258.

    Google Scholar 

  • ————. 1998. Chromosome numbers in Carex section Ovales (Cyperaceae): Additions, variations, and corrections. Sida 18: 587–592.

    Google Scholar 

  • Schmid, B. 1982. Karyology and hybridization in the Carex flava complex in Switzerland. Feddes Repert. 93: 23–59.

    Article  Google Scholar 

  • Sharma, A. K. & A. K. Bal. 1956. A cytological investigation of some members of the family Cyperaceae. Fyton 6: 7–22.

    Google Scholar 

  • Sheikh, S. A., K. Kondo & Y. Hoshi. 1995. Study of diffused centromeric nature of Drosera chromosomes. Cytologia 60: 43–47.

    Google Scholar 

  • Stebbins, G. L. 1950. Variation and Evolution in Plants. Columbia University Press, New York.

    Google Scholar 

  • Tanaka, N. 1937. Chromosome studies in Cyperaceae, I. Cytologia, Fujii Jubilee Volume: 814–821.

  • ————. 1939. Chromosome studies in Cyperaceae, IV. Chromosome numbers of Carex species. Cytologia 10: 51–58.

    Google Scholar 

  • ————. 1940a. Chromosome studies in Cyperaceae, VI. Cytologia 10: 348–362.

    Google Scholar 

  • ————. 1940b. Chromosome studies in Cyperaceae, VIII: Meiosis in diploid and tetraploid forms of Carex siderosticta Hance. Cytologia 10: 282–310.

    Google Scholar 

  • ————. 1940c. Chromosome studies in Cyperaceae, X: Aneuploid plants of Carex multifolia Ohwi. Botanic Magazine (Tokyo) 54: 438–446.

    Google Scholar 

  • ————. 1941a. Chromosome studies in Cyperaceae, XI. Jap. J. Bot. 11: 213–219.

    Google Scholar 

  • ————. 1941b. Chromosome studies in Cyperaceae, 15. Bot. Mag. (Tokyo) 55: 218–225.

    Google Scholar 

  • ————. 1948. The problem of aneuploidy (Chromosome studies in Cyperaceae, with special reference to the problem of aneuploidy). Biological Contributions in Japan 4: 1–327.

    Google Scholar 

  • ————. 1949. Chromosome studies in the genus Carex with special reference to aneuploidy and polyploidy. Cytologia 15: 15–29.

    Google Scholar 

  • Tanaka, N. & N. Tanaka. 1977. Chromosome studies in Chionographis (Liliaceae). I. On the holokinetic nature of chromosomes in Chionographis japonica Maxim. Cytologia 42: 754–763.

    Google Scholar 

  • Turner, T. L., M. W. Hahn & S. V. Nuzhdin. 2005. Genomic Islands of Speciation in Anopheles gambiae. PLoS Biology 3: e285.

    Article  PubMed  CAS  Google Scholar 

  • Vanzela, A. L. L., M. Luceño & M. Guerra. 2000. Karyotype evolution and cytotaxonomy in Brazilian species of Rhynchospora Vahl (Cyperaceae). Bot. J. Linn. Soc. 134: 557–566.

    Article  Google Scholar 

  • Wahl, H. A. 1940. Chromosome numbers and meiosis in the genus Carex. Am. J. Bot. 27: 458–470.

    Article  Google Scholar 

  • Wang, B. & A. H. Porter. 2004. An AFLP-based interspecific linkage map of sympatric, hybridizing Colias butterflies. Genetics 168: 215–225.

    Article  PubMed  CAS  Google Scholar 

  • Waterway, M. J., T. Hoshino & T. Masaki. 2008. Phylogeny, species richness, and ecological specialization in Cyperaceae tribe Cariceae. Botanical Review (in press).

  • White, M. J. D. 1978. Modes of Speciation. W.H. Freeman & Co., New York.

    Google Scholar 

  • Whitkus, R. 1981. Chromosome numbers of some northern New Jersey carices. Rhodora 83: 461–464.

    Google Scholar 

  • ————. 1988. Experimental hybridization among chromosome races of Carex pachystachya and the related species Carex macloviana and Carex preslii (Cyperaceae). Syst. Bot. 13: 146–153.

    Article  Google Scholar 

  • ————. 1991. Chromosome counts of Carex section Ovales. Bot. Gaz. 152: 224–230.

    Article  Google Scholar 

  • Yan-Cheng, T. & X. Qiu-Yun. 1989. Cytological studies of Carex siderosticta Hance (Cyperaceae) and its importance in phytogeography. Cathaya 1: 49–60.

    Google Scholar 

  • Yano, O. & T. Hoshino. 2005. Molecular phylogeny and chromosomal evolution of Japanese Schoenoplectus (Cyperaceae), based on ITS and ETS 1f sequences. Acta Phytotax. Geobot. 56: 183–195.

    Google Scholar 

  • Yano, O., T. Katsuyama, H. Tsubota & T. Hoshino. 2004. Molecular phylogeny of Japanese Eleocharis (Cyperaceae) based on ITS sequence data, and chromosomal evolution. Journal of Plant Research 117: 409–419.

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgements

The authors thank the organizers of the Cyperaceae: Cariceae symposium at the XVII International Botanical Congress (2005)—Bruce Ford, Matthias Hendrichs, and Julian Starr—for inviting us to participate, and Wayt Thomas, Julian Starr, and Tony Reznicek for handling the manuscripts for the proceedings. Rita Hassert, Nancy Faller, and Jaime Weber of The Morton Arboretum provided substantial help in obtaining references for this paper. Library access provided through associate positions in the Botany Departments of The Field Museum and The University of Wisconsin–Madison were extremely helpful. This paper has benefited from discussions with and feedback from Clement Hamilton, Takuji Hoshino, and Richard Whitkus, as well as comments on this paper from Tony Reznicek and two anonymous reviewers.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Andrew L. Hipp.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hipp, A.L., Rothrock, P.E. & Roalson, E.H. The Evolution of Chromosome Arrangements in Carex (Cyperaceae). Bot. Rev 75, 96–109 (2009). https://doi.org/10.1007/s12229-008-9022-8

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12229-008-9022-8

Keywords

Navigation