Skip to main content
Log in

The Immense Diversity of Floral Monosymmetry and Asymmetry Across Angiosperms

  • Published:
The Botanical Review Aims and scope Submit manuscript

Abstract

Floral monosymmetry and asymmetry are traced through the angiosperm orders and families. Both are diverse and widespread in angiosperms. The systematic distribution of the different forms of monosymmetry and asymmetry indicates that both evolved numerous times. Elaborate forms occur in highly synorganized flowers. Less elaborate forms occur by curvature of organs and by simplicity with minimal organ numbers. Elaborate forms of asymmetry evolved from elaborate monosymmetry. Less elaborate form come about by curvature or torsion of organs, by imbricate aestivation of perianth organs, or also by simplicity. Floral monosymmetry appears to be a key innovation in some groups (e.g., Orchidaceae, Fabaceae, Lamiales), but not in others. Floral asymmetry appears as a key innovation in Phaseoleae (Fabaceae). Simple patterns of monosymmetry appear easily “reverted” to polysymmetry, whereas elaborate monosymmetry is difficult to lose without disruption of floral function (e.g., Orchidaceae). Monosymmetry and asymmetry can be expressed at different stages of floral (and fruit) development and may be transient in some taxa. The two symmetries are most common in bee-pollinated flowers, and appear to be especially prone to develop in some specialized biological situations: monosymmetry, e.g., with buzz-pollinated flowers or with oil flowers, and asymmetry also with buzz-pollinated flowers, both based on the particular collection mechanisms by the pollinating bees. Floral monosymmetry has developed into a model trait in evo-devo studies, whereas floral asymmetry to date has not been tackled in molecular genetic studies.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Literature Cited

  • Aagaard, J. E., R. G. Olmstead, J. H. Willis & P. C. Phillips. 2005. Duplication of floral regulatory genes in Lamiales. American Journal of Botany 92: 1284–1293.

    Article  PubMed  CAS  Google Scholar 

  • Abbe, E. C. 1935. Studies in the phylogeny of the Betulaceae. I. Floral and inflorescence anatomy and morphology. Botanical Gazette (Crawfordsville) 97: 1–67.

    Article  Google Scholar 

  • ——— 1972. The inflorescence and flower in male Myrica esculenta var. farquhariana. Botanical Gazette (Crawfordsville) 133: 206–213.

    Article  Google Scholar 

  • ——— 1974. Flowers and inflorescences of the “Amentiferae”. Botanical Review 40: 159–261.

    Article  Google Scholar 

  • ——— & T. T. Earle. 1940. Inflorescence, floral anatomy and morphology of Leitneria floridana. Bulletin of the Torrey Botanical Club 67: 173–193.

    Article  Google Scholar 

  • Albers, F. & J. J. A. Van der Walt. 2007. Geraniaceae. In: K. Kubitzki (ed). The families and genera of vascular plants, 9: 157–167. Springer, Berlin.

    Google Scholar 

  • Amaral, M. C. E. 1991. Phylogenetische Systematik der Ochnaceae. Botanische Jahrbücher für Systematik 113: 105–196.

    Google Scholar 

  • Ampornpan, L. & J. E. Armstrong. 2002. Floral ontogeny of Salpiglossis (Solanaceae) and the oblique gynoecium. Journal of the Torrey Botanical Society 129: 85–95.

    Article  Google Scholar 

  • Anderberg, A. A., B. G. Baldwin, R. G. Bayer, I. Breitwieser, C. Jeffrey, M. O. Dillon, P. Eldenäs, V. Funk, N. Garcia-Jacas, D. J. N. Hind, P. O. Karis, H. W. Lack, G. Nesom, B. Nordenstam, C. Oberprieler, J. L. Panero, C. Puttock, H. Robinson, T. F. Stuessy, A. Susanna, E. Urtubey, R. Vogt, J. Ward & L. E. Watson. 2007. Compositae. In: J. W. Kadereit & C. Jeffrey (eds). The families and genera of vascular plants, 8: 61–588. Springer, Berlin.

    Google Scholar 

  • Andersson, L. 1998a. Heliconiaceae. In: K. Kubitzki (ed). The families and genera of vascular plants, 4: 226–230. Springer, Berlin.

    Google Scholar 

  • ——— 1998b. Musaceae. In: K. Kubitzki (ed). The families and genera of vascular plants, 4: 296–301. Springer, Berlin.

    Google Scholar 

  • ——— 1998c. Strelitziaceae. In: K. Kubitzki (ed). The families and genera of vascular plants, 4: 451–455. Springer, Berlin.

    Google Scholar 

  • APG (Angiosperm Phylogeny Group). 2003. An update of the Angiosperm Phylogeny Group classification for the orders and families of flowering plants: APG II. Botanical Journal of the Linnean Society 141: 399–436.

    Article  Google Scholar 

  • ———. 2009. An update of the Angiosperm Phylogeny Group classification for the orders and families of flowering plants: APG III. Botanical Journal of the Linnean Society 161: 105–121.

    Article  Google Scholar 

  • Appel, O. & I. A. Al-Shehbaz. 2003. Cruciferae. In: K. Kubitzki (ed). The families and genera of vascular plants, 5: 75–174. Springer, Berlin.

    Google Scholar 

  • Ashton, P. S. 2003. Dipterocarpaceae. In: K. Kubitzki & C. Bayer (eds). The families and genera of vascular plants, 5: 182–197. Springer, Berlin.

    Google Scholar 

  • Ayers, T. J. 1990. Systematics of Heterotoma (Campanulaceae) and the evolution of nectar spurs in the New World Lobelioideae. Systematic Botany 15: 296–327.

    Article  Google Scholar 

  • Bachelier, J. B. & P. K. Endress. 2007. Development of inflorescences, cupules, and flowers in Amphipterygium, and comparison with Pistacia (Anacardiaceae). International Journal of Plant Sciences 168: 1237–1253.

    Article  Google Scholar 

  • ——— & ———. 2009. Comparative floral structure of Anacardiaceae and Burseraceae (Sapindales), with a special focus on gynoecium structure and evolution. Botanical Journal of the Linnean Society 159: 499–571.

    Article  Google Scholar 

  • Barrett, S. C. H., L. K. Jesson & A. M. Baker. 2000. The evolution and function of stylar polymorphisms in flowering plants. Annals of Botany 85(Supplement A): 253–265.

    Article  Google Scholar 

  • Barthlott, W. 1993. Cactaceae. In: K. Kubitzki, J. G. Rohwer, & V. Bittrich (eds). The families and genera of vascular plants, 2: 161–196. Springer, Berlin.

    Google Scholar 

  • Bartish, I. V. & U. Swenson. 2004. Elaeagnaceae. In: K. Kubitzki (ed). The families and genera of vascular plants, 6: 131–134. Springer, Berlin.

    Google Scholar 

  • Bartlett, M. E. & C. D. Specht. 2010. Evidence for the involvement of GLOBOSA-like gene duplications and expression divergence in the evolution of floral morpholgoy in the Zingiberales. New Phytologist 187: 521–541.

    Article  PubMed  CAS  Google Scholar 

  • ——— & ———. 2011. Changes in expression pattern of the TEOSINTE BRANCHED1-like genes in the Zingiberales provide a mechanism for evolutionary shifts in symmetry across the order. American Journal of Botany 98: 227–243.

    Article  PubMed  CAS  Google Scholar 

  • Baum, D. A. 1998. The evolution of plant development. Current Opinion in Plant Biology 1: 79–86.

    Article  PubMed  CAS  Google Scholar 

  • Baxter, C. E. L., M. M. R. Costa & E. S. Coen. 2007. Diversification and co-option of RAD-like genes in the evolution of floral asymmetry. Plant Journal 52: 105–113.

    Article  PubMed  CAS  Google Scholar 

  • Bayer, C. 2003. Sarcolaenaceae. In: K. Kubitzki & C. Bayer (eds). The families and genera of vascular plants, 5: 345–352. Springer, Berlin.

    Google Scholar 

  • ——— & K. Kubitzki. 2003. Malvaceae. In: K. Kubitzki & C. Bayer (eds). The families and genera of vascular plants, 5: 225–311. Springer, Berlin.

    Google Scholar 

  • Bayer, E. 1998. Alstroemeriaceae. In: K. Kubitzki (ed). The families and genera of vascular plants, 3: 79–82. Springer, Berlin.

    Google Scholar 

  • Beattie, A. J. 1969. Studies in the pollination ecology of Viola. I. The pollen-content of stigmatic cavities. Watsonia 7: 142–156.

    Google Scholar 

  • Behnke, H.-D. 1997. Sarcobataceae—a new family of Caryophyllales. Taxon 46: 495–507.

    Article  Google Scholar 

  • Bello, M. A., P. J. Rudall, F. González & J. L. Fernándo-Alonso. 2004. Floral morphology and development in Aragoa (Plantaginaceae) and related members of the order Lamiales. International Journal of Plant Sciences 165: 723–738.

    Article  Google Scholar 

  • ———, J. A. Hawkins & P. J. Rudall. 2007. Floral morphology and development in Quillajaceae and Surianaceae (Fabales), the species-poor relatives of Leguminosae and Polygalaceae. Annals of Botany 1000: 1491–1505.

    Article  Google Scholar 

  • Bittrich, V. 1993. Caryophyllaceae. In: K. Kubitzki, J. G. Rohwer, & V. Bittrich (eds). The families and genera of vascular plants, 2: 206–236. Springer, Berlin.

    Google Scholar 

  • ——— & U. Kühn. 1993. Nyctaginaceae. In: K. Kubitzki, J. G. Rohwer, & V. Bittrich (eds). The families and genera of vascular plants, 2: 473–486. Springer, Berlin.

    Google Scholar 

  • Bogle, A. L. 1989. The floral morphology, vascular anatomy, and ontogeny of the Rhodoleioideae (Hamamelidaceae) and their significance in relation to the ‘lower’ hamamelids. In: P. R. Crane & S. Blackmore (eds). Evolution, systematics, and fossil history of the Hamamelidae, 1: 201–226. Clarendon, Oxford.

    Google Scholar 

  • Brandis, D. 1893. Combretaceae. In: A. Engler & K. Prantl (eds). Die natürlichen Pflanzenfamilien, III, 7: 106–130. Engelmann, Leipzig.

    Google Scholar 

  • Brantjes, N. B. M. 1982. Pollen placement and reproductive isolation between two Brazilian Polygala species (Polygalaceae). Plant Systematics and Evolution 141: 41–52.

    Article  Google Scholar 

  • ——— 1983. Regulated pollen issue in Isotoma, Campanulaceae, and evolution of secondary pollen presentation. Acta Botanica Neerlandica 32: 213–222.

    Google Scholar 

  • Brizuela, M. M., P. S. Hoc, V. S. Di Stilio, M. A. Agulló & R. A. Palacios. 1993. Biología floral de Macroptilium bracteatum (Leguminosae, Phaseoleae). Darwiniana 32: 41–57.

    Google Scholar 

  • Broholm, S. K., S. Tähtiharju, R. A. E. Laitinen, V. A. Albert, T. H. Teeri & P. Elomaa. 2008. A TCP domain transcription factor controls flower type specification along the radial axis of the Gerbera (Asteraceae) inflorescences. Proccedings of the National Academy of Sciences of the U. S. A. 105: 9117–9122.

    Article  CAS  Google Scholar 

  • Bruyns, P. V. 1985. Notes on ceropegias of the Cape Province. Bradleya 3: 1–47.

    Google Scholar 

  • Buchmann, S. L. 1983. Buzz pollination in angiosperms. Pp 73–113. In: C. E. Jones & R. J. Little (eds). Handbook of experimental pollination biology. Scientific and Academic Editions, New York.

    Google Scholar 

  • Burtt, B. L. 1988. A new shrubby genus of African Umbelliferae. Notes Royal Botanic Garden Edinburgh 45: 493–501.

    Google Scholar 

  • Busch, A. & S. Zachgo. 2007. Control of corolla monosymmetry in the Brassicaceae Iberis amara. Proceedings of the National Academy of Sciences of the U. S. A. 104: 16714–16719.

    Article  CAS  Google Scholar 

  • ——— & ———. 2009. Flower symmetry evolution: Towards understanding the abominable mystery of angiosperm radiation. BioEssays 31: 1181–1190.

    Article  PubMed  CAS  Google Scholar 

  • Buschmann, H., C. O. Fabri, M. Hauptmann, P. Hutzler, T. Laux, C. W. Lloyd & A. R. Schäffner. 2004. Helical growth of the Arabidopsis mutant tortifolia1 reveals a plant-specific microtubule-associated protein. Current Biology 14: 1515–1521.

    Article  PubMed  CAS  Google Scholar 

  • Buzgo, M. 2001. Flower structure and development of Araceae compared with alismatids and Acoraceae. Botanical Journal of the Linnean Society 136: 393–425.

    Article  Google Scholar 

  • ——— & P. K. Endress. 2000. Floral structure and development of Acoraceae and its systematic relationships with basal angiosperms. International Journal of Plant Sciences 161: 23–41.

    Article  PubMed  Google Scholar 

  • Caris, P. L., K. P. Geuten, S. B. Janssens & E. F. Smets. 2006. Floral development in three species of Impatiens (Balsaminaceae). American Journal of Botany 93: 1–14.

    Article  Google Scholar 

  • Carlquist, S. 1978. Wood anatomy and relationships of Bataceae, Gyrostemonaceae, and Stylobasiaceae. Allertonia 1: 297–330.

    Google Scholar 

  • Carolin, R. C. 1959. Floral structure and anatomy in the family Goodeniaceae Dumort. Proceedings of the Linnean Society of New South Wales 84: 242–255.

    Google Scholar 

  • ——— 1993. Portulacaceae. In: K. Kubitzki, J. G. Rohwer, & V. Bittrich (eds). The families and genera of vascular plants, 2: 544–555. Springer, Berlin.

    Google Scholar 

  • ——— 2007a. Goodeniaceae. In: J. W. Kadereit & C. Jeffrey (eds). The families and genera of vascular plants, 8: 589–598. Springer, Berlin.

    Google Scholar 

  • ——— 2007b. Stylidiaceae. In: J. W. Kadereit & C. Jeffrey (eds). The families and genera of vascular plants, 8: 614–619. Springer, Berlin.

    Google Scholar 

  • Castañeda-Posadas, C. & S. R. S. Cevallos-Ferriz. 2007. Swietenia (Meliaceae) flower in Late Oligocene—Early Miocene amber from Simojovel de Allende, Chiapas, Mexico. American Journal of Botany 94: 1821–1827.

    Article  PubMed  Google Scholar 

  • Champluvier, D. 1997. Brachystephanus glaberrimus (Acanthaceae), espèce nouvelle gynomonoïque de la dorsale Congo-Nil (Congo, Rwanda, Uganda). Bulletin du Jardin Botanique de Belgique 66: 187–200.

    Article  Google Scholar 

  • Chapman, M. A., J. H. Leebens-Mack & J. M. Burke. 2008. Positive selection and expression divergence following gene duplication in the sunflower CYCLOIDEA gene family. Molecular Biology and Evolution 25: 1260–1273.

    Article  PubMed  CAS  Google Scholar 

  • Cheek, M. & L. Dorr. 2007. Sterculiaceae. Pp 1–134. In: H. J. Beentje & S. A. Ghazanfar (eds). Flora of tropical East Africa. Royal Botanic Gardens, Kew.

    Google Scholar 

  • Church, A. H. 1908. Types of floral mechanism. Clarendon, Oxford.

    Google Scholar 

  • Citerne, H. & Q. C. B. Cronk. 1999. The origin of the peloric Sinningia. The New Plantsman 6: 219–222.

    Google Scholar 

  • Citerne, H. L., M. Möller & Q. C. B. Cronk. 2000. Diversity of cycloidea-like genes in Gesneriaceae in relation to floral symmetry. Annals of Botany 86: 167–176.

    Article  CAS  Google Scholar 

  • ———, R. T. Pennington & Q. C. B. Cronk. 2006. An apparent reversal in floral symmetry in the legume Cadia is a homeotic transformation. Proceedings of the National Academy of Sciences of the United States of America 103: 12017–12020.

    Article  PubMed  CAS  Google Scholar 

  • ———, D. Luo, R. T. Pennington, E. Coen & Q. C. B. Cronk. 2003. A phylogenomic investigation of CYCLOIDEA-like TCP genes in the Leguminosae. Plant Physiology 131: 1042–1053.

    Article  PubMed  CAS  Google Scholar 

  • Citerne, H., F. Jabbour, S. Nadot & C. Damerval. 2010. The evolution of floral symmetry. Advances in Botanical Research 54: 86–137.

    Article  CAS  Google Scholar 

  • Clark, J. & E. Coen. 2002. The cycloidea gene can respond to a common dorsoventral prepattern in Antirrhinum. Plant Journal 30: 639–648.

    Article  PubMed  CAS  Google Scholar 

  • Clark, J. L., E. H. Roalson, R. A. Pritchard, C. L. Coleman, V.-H. Teoh & J. Matos. 2011. Independent origin of radial floral symmetry in the Gloxinieae (Gesnerioideae: Gesneriaceae) is supported by the rediscovery of Phinaea pulchella in Cuba. Systematic Botany 36: 757–767.

    Article  Google Scholar 

  • Classen-Bockhoff, R. 1992. (Prä-)Disposition, Variation und Bewährung am Beispiel der Infloreszenzblumenbildung. Mitteilungen aus dem Hamburgischen Zoologischen Museum und Institut 89. Ergänzungsband 1: 37–72.

    Google Scholar 

  • ——— 1996. A survey of flower-like inflorescences in the Rubiaceae. Opera Botanica Belgica 7: 329–367.

    Google Scholar 

  • ——— 2007. Floral construction and pollination biology in Lamiaceae. Annals of Botany 100: 359–360.

    Article  Google Scholar 

  • ——— & A. Heller. 2008. Floral synorganization and secondary pollen presentation in four Marantaceae from Costa Rica. International Journal of Plant Sciences 169: 745–760.

    Article  Google Scholar 

  • ———, T. Speck, E. Tweraser, P. Wester, S. Thimm & M. Reith. 2004. The staminal lever mechanism in Salvia L. (Lamiaceae): a key innovation for adaptive radiation? Organisms. Diversity and Evolution 4: 189–205.

    Article  Google Scholar 

  • Clifford, H. T. 1998. Doryanthaceae. In: K. Kubitzki (ed). The families and genera of vascular plants, 3: 236–238. Springer, Berlin.

    Google Scholar 

  • ——— & J. G. Conran. 1998. Blandfordiaceae. In: K. Kubitzki (ed). Families and genera of vascular plants, 3: 148–150. Springer, Berlin.

    Google Scholar 

  • Clifford, H. A. T., R. J. F. Henderson & J. G. Conran. 1998. Hemerocallidaceae. In: K. Kubitzki (ed). The families and genera of vascular plants, 3: 245–253. Springer, Berlin.

    Google Scholar 

  • Cocucci, A. A. 1991. Pollination biology of Nierembergia (Solanaceae). Plant Systematics and Evolution 174: 17–35.

    Article  Google Scholar 

  • Cocucci, A. E. & A. M. Anton. 1988. The grass flower: suggestions on its origin and evolution. Flora 181: 353–362.

    Google Scholar 

  • Coen, E. S. 1996. Floral symmetry. EMBO Journal 15: 6777–6788.

    PubMed  CAS  Google Scholar 

  • ——— & J. M. Nugent. 1994. Evolution of flowers and inflorescences. Development 120 (Suppl.): 107–116.

  • ———, ———, D. Luo, D. Bradley, P. Cubas, M. Chadwick, L. Copsey & R. Carpenter. 1995. Evolution of floral symmetry. Philosophical Transactions of the Royal Society of London B 350: 35–38.

    Article  Google Scholar 

  • Conran, J. G. 1998. Anthericaceae. In: K. Kubitzki (ed). The families and genera of vascular plants, 3: 114–121. Springer, Berlin.

    Google Scholar 

  • ——— & H. T. Clifford. 1998. Philesiaceae. In: K. Kubitzki (ed). The families and genera of vascular plants, 3: 409–411. Springer, Berlin.

    Google Scholar 

  • ——— & M. N. Tamura. 1998. Convallariaceae. In: K. Kubitzki (ed). The families and genera of vascular plants, 3: 186–198. Springer, Berlin.

    Google Scholar 

  • Cook, C. D. K. 1998a. Hydrocharitaceae. In: K. Kubitzki (ed). The families and genera of vascular plants, 4: 234–248. Springer, Berlin.

    Google Scholar 

  • ——— 1998b. Pontederiaceae. In: K. Kubitzki (ed). The families and genera of vascular plants, 4: 395–403. Springer, Berlin.

    Google Scholar 

  • ——— & R. Rutishauser. 2007. Podostemaceae. In: K. Kubitzki (ed). The families and genera of vascular plants, 9: 304–344. Springer, Berlin.

    Google Scholar 

  • Cornehls, G. 1927. Über Orientierungsbewegungen dorsiventraler Blüten. Jahrbücher für Wissenschaftliche Botanik 67: 174–221.

    Google Scholar 

  • Correll, D. S. & H. B. Correll. 1982. Flora of the Bahama archipelago. Cramer, Vaduz.

    Google Scholar 

  • Costa, M. M. R., S. Fox, A. I. Hanna, C. Baxter & E. Coen. 2005. Evolution of regulatory interactions controlling floral asymmetry. Development 132: 5093–5101.

    Article  PubMed  CAS  Google Scholar 

  • Crepet, W. L. 2008. The fossil record of angiosperms: requiem or renaissance? Annals of the Missouri Botanical Garden 95: 3–33.

    Article  Google Scholar 

  • Cubas, P. 2004. Floral zygomorphy, the recurring evolution of a successful trait. Bioessays 26: 1175–1184.

    Article  PubMed  CAS  Google Scholar 

  • ———, C. Vincent & E. Coen. 1999a. An epigenetic mutation responsible for natural variation in floral symmetry. Nature 401: 157–161.

    Article  PubMed  CAS  Google Scholar 

  • ———, N. Lauter, J. Doebley & E. Coen. 1999b. The TCP domain: a motif found in proteins regulating plant growth and development. Plant Journal 18: 215–222.

    Article  PubMed  CAS  Google Scholar 

  • ———, E. Coen & J. F. Martinez-Zapater. 2001. Ancient asymmetries in the evolution of flowers. Current Biology 11: 1050–1052.

    Article  PubMed  CAS  Google Scholar 

  • Dafni, A. & P. G. Kevan. 1996. Floral symmetry and nectar guides: ontogenetic constraints from floral development, colour pattern rules and functional significance. Botanical Journal of the Linnean Society 120: 371–377.

    Article  Google Scholar 

  • Dahlgren, R. M. T., H. T. Clifford & P. F. Yeo. 1985. The families of the monocotyledons. Structure, evolution and taxonomy. Springer, Berlin.

    Google Scholar 

  • Damerval, C. & S. Nadot. 2007. Evolution of perianth and stamen characteristics with respect to floral symmetry in Ranunculales. Annals of Botany 100: 631–640.

    Article  PubMed  Google Scholar 

  • ———, M. L. Guilloux, M. Jager & C. Charon. 2007. Diversity and evolution of CYCLOIDEA-like TCP genes in relation to flower development in Papaveraceae. Plant Physiology 143: 759–772.

    Article  PubMed  CAS  Google Scholar 

  • Davies, B., M. Cartolano & Z. Schwarz-Sommer. 2006. Flower development: the Antirrhinum perspective. Advances in Botanical Research 44: 280–321.

    Article  CAS  Google Scholar 

  • Davis, C. C. & W. R. Anderson. 2010. A complete generic phylogeny of Malpighiaceae inferred from nucleotide sequence data and morphology. American Journal of Botany 97: 2031–2048.

    Article  PubMed  Google Scholar 

  • ——— & M. W. Chase. 2004. Elatinaceae are sister to Malpighiaceae; Peridiscaceae belong to Saxifragales. American Journal of Botany 91: 262–273.

    Article  PubMed  Google Scholar 

  • ———, C. O. Webb, K. J. Wurdack, C. A. Jaramillo & M. J. Donoghue. 2005. Explosive radiation of Malpighiales supports a mid-Cretaceous origin of modern tropical rain forests. American Naturalist 165: E36–E65.

    Article  PubMed  Google Scholar 

  • de Candolle, A.-P. 1813. Théorie élémentaire de la botanique ou exposition des principes de la classification naturelle et de l’art de décrire et d’étudier les végétaux. Déterville, Paris.

    Google Scholar 

  • ——— 1819. Théorie élémentaire de la botanique. Déterville, Paris.

    Google Scholar 

  • ——— 1827. Organographie végétale, Vol. II. Déterville, Paris.

    Google Scholar 

  • De Laet, J., D. Clinckemaillie, S. Jansen & E. Smets. 1995. Floral ontogeny in the Plumbaginaceae. Journal of Plant Research 108: 289–304.

    Article  Google Scholar 

  • de Oliveira, P. E. & M. Sazima. 1990. Pollination biology of two species of Kielmeyera (Guttiferae) from the Brazilian cerrado vegetation. Plant Systematics and Evolution 172: 35–49.

    Article  Google Scholar 

  • Delpino, F. 1887. Zigomorfia florale e sue cause. Malpighia 1: 245–262.

    Google Scholar 

  • Deroin, T. 1985. Contribution à la morphologie comparée du gynécée des Annonaceae-Monodoroideae. Bulletin du Muséum National d’Histoire Naturelle, Pairs, Sér 4, 7, B, Adansonia: 167–176.

  • ——— 1992. Anatomie florale de Humbertia madagascariensis Lam. Contribution à la morphologie comparée de la fleur et du fruit des Convolvulaceae. Bulletin du Muséum National de l’Histoire Naturelle, Paris, Sér. 4, B, Adansonia, 14: 235–255.

  • ——— 1996. Deux espèces malgaches nouvelles du genre Hildebrandtia Vatke (Convolvulaceae). Candollea 51: 147–155.

    Google Scholar 

  • Devi, D. R. 1991. Floral anatomy of Hypseocharis (Oxalidaceae) with a discussion on its systematic position. Plant Systematics and Evolution 177: 161–164.

    Article  Google Scholar 

  • Devi, S. 1952. Studies in the order Parietales III. Vascular anatomy of the flower of Carica papaya with special reference to the structure of the gynoecium. Proceedings of the Indian Academy of Sciences B 36: 59–69.

    Google Scholar 

  • Dickison, W. C. 1990. The morphology and relationships of Medusagyne (Medusagynaceae). Plant Systematics and Evolution 171: 27–55.

    Article  Google Scholar 

  • ——— & E. M. Sweitzer. 1970. The morphology and relationship of Barbeya oleoides. American Journal of Botany 57: 468–476.

    Article  Google Scholar 

  • Donoghue, M. J., R. H. Ree & D. A. Baum. 1998. Phylogeny and the evolution of flower symmetry in the Asteridae. Trends in Plant Science 3: 311–317.

    Article  Google Scholar 

  • ———, C. D. Bell & R. C. Winkworth. 2003. The evolution of reproductive characters in Dipsacales. International Journal of Plant Sciences 164(Suppl): S453–S464.

    Article  Google Scholar 

  • Douglas, A. W. 1997. The developmental basis of morphological diversification and synorganization in flowers of Conospermeae (Stirlingia and Conosperminae: Proteaceae). International Journal of Plant Sciences 158(Suppl): S13–S48.

    Article  Google Scholar 

  • ——— & S. C. Tucker. 1996. Comparative floral ontogenies among Persoonioideae including Bellendena (Proteaceae). American Journal of Botany 83: 1528–1555.

    Article  Google Scholar 

  • Doyle, J. A., H. Eklund & P. S. Herendeen. 2003. Floral evolution in Chloranthaceae: implications of a morphological phylogenetic analysis. International Journal of Plant Sciences 164(Suppl): S365–S382.

    Article  Google Scholar 

  • ———, H. Sauquet, T. Scharaschkin & A. Le Thomas. 2004. Phylogeny, molecular and fossil dating, and biogeographic history of Annonaceae and Myristicaceae (Magnoliales). International Journal of Plant Sciences 165(Suppl): S55–S67.

    Article  CAS  Google Scholar 

  • Dransfield, J. & N. W. Uhl. 1998. Palmae. In: K. Kubitzki (ed). The families and genera of vascular plants, 4: 306–389. Springer, Berlin.

    Google Scholar 

  • Drude, O. 1897. Umbelliferae (Apiaceae, Doldengewächse). In: A. Engler & K. Prantl (eds). Die natürlichen Pflanzenfamilien, III, 8: 63–250. Engelmann, Leipzig.

    Google Scholar 

  • Du, Z. Y. & Y. Z. Wang. 2008. Significance of RT-PCR patterns of CYC-like genes in Oreocharis benthamii (Gesneriaceae). Journal of Systematics and Evolution 46: 23–31.

    Google Scholar 

  • Dulberger, R. 1981. The floral biology of Cassia didymobotrya and C. auriculata (Caesalpiniaceae). American Journal of Botany 68: 1350–1360.

    Article  Google Scholar 

  • ——— & R. Ornduff. 1980. Floral morphology and reproductive biology of four species of Cyanella (Tecophilaeaceae). New Phytologist 86: 45–56.

    Article  Google Scholar 

  • Eckardt, T. 1937. Untersuchungen über Morphologie, Entwicklungsgeschichte und systematische Bedeutung des pseudomonomeren Gynoeceums. Nova Acta Leopoldina, neue Folge, 5, 26: 1–112.

  • ——— 1955. Nachweis der Blattbürtigkeit (“Phyllosporie”) grundständiger Samenanlagen bei Centrospermen. Berichte der Deutschen Botanischen Gesellschaft 68: 167–182.

    Google Scholar 

  • ——— 1957. Zur systematischen Stellung von Eucommia ulmoides. Berichte der Deutschen Botanischen Gesellschaft 69: 487–498.

    Google Scholar 

  • Eichler, A. W. 1875. Blüthendiagramme. I. Engelmann, Leipzig.

    Google Scholar 

  • ——— 1878. Blüthendiagramme. II, Engelmann, Leipzig.

    Google Scholar 

  • Endress, M. E. & V. Bittrich. 1993. Molluginaceae. In: K. Kubitzki, J. G. Rohwer, & V. Bittrich (eds). The families and genera of vascular plants, 2: 419–426. Springer, Berlin.

    Google Scholar 

  • ——— & P. V. Bruyns. 2000. A revised classification of the Apocynaceae s.l. Botanical Review 66: 1–56.

    Article  Google Scholar 

  • Endress, P. K. 1967. Systematische Studie über die verwandtschaftlichen Beziehungen zwischen den Hamamelidaceen und Betulaceen. Botanische Jahrbücher für Systematik 87: 431–525.

    Google Scholar 

  • ——— 1972. Zur vergleichenden Entwicklungsmorphologie, Embryologie und Systematik bei Laurales. Botanische Jahrbücher für Systematik 92: 331–428.

    Google Scholar 

  • ——— 1980. Ontogeny, function and evolution of extreme floral construction in Monimiaceae. Plant Systematics and Evolution 134: 79–120.

    Article  Google Scholar 

  • ——— 1986a. Floral structure, systematics and phylogeny in Trochodendrales. Annals of the Missouri Botanical Garden 73: 297–324.

    Article  Google Scholar 

  • ——— 1986b. Reproductive structures and phylogenetic significance of extant primitive angiosperms. Plant Systematics and Evolution 152: 1–28.

    Article  Google Scholar 

  • ——— 1987. The Chloranthaceae: reproductive structures and phylogenetic position. Botanische Jahrbücher für Systematik 109: 153–226.

    Google Scholar 

  • ——— 1989. Chaotic floral phyllotaxis and reduced perianth in Achlys (Berberidaceae). Botanica Acta 102: 159–163.

    Google Scholar 

  • ——— 1992. Evolution and floral diversity—The phylogenetic surroundings of Arabidopsis and Antirrhinum. International Journal of Plant Sciences 153(Suppl): S106–S122.

    Article  Google Scholar 

  • ——— 1994. Diversity and evolutionary biology of tropical flowers. Cambridge University Press, Cambridge.

    Google Scholar 

  • ——— 1995. Major evolutionary traits of monocot flowers. Pp 43–79. In: P. J. Rudall, P. J. Cribb, D. F. Cutler, & C. J. Humphries (eds). Monocotyledons: systematics and evolution. Royal Botanic Gardens, Kew.

    Google Scholar 

  • ——— 1998. Antirrhinum and Asteridae—evolutionary changes of floral symmetry. Symposium Series, Society of Experimental Biology 53: 133–140.

    Google Scholar 

  • ——— 1999. Symmetry in flowers: diversity and evolution. International Journal of Plant Sciences 160(Suppl, 6): S3–S23.

    Article  PubMed  Google Scholar 

  • ——— 2001a. Evolution of floral symmetry. Current Opinion in Plant Biology 4: 86–91.

    Article  PubMed  CAS  Google Scholar 

  • ——— 2001b. The flowers in extant basal angiosperms and inferences on ancestral flowers. International Journal of Plant Sciences 162: 1111–1140.

    Article  Google Scholar 

  • ——— 2002. Morphology and angiosperm systematics in the molecular era. Botanical Review 68: 545–570.

    Article  Google Scholar 

  • ——— 2004. Structure and relationships of basal relictual angiosperms. Australian Systematic Botany 17: 343–366.

    Article  Google Scholar 

  • ——— 2005. Carpels of Brasenia (Cabombaceae) are completely ascidiate despite a long stigmatic crest. Annals of Botany 96: 209–215.

    Article  PubMed  Google Scholar 

  • ——— 2006. Angiosperm floral evolution: morphological developmental framework. Advances in Botanical Research 44: 1–61.

    Article  Google Scholar 

  • ——— 2008a. Perianth biology in the basal grade of extant angiosperms. International Journal of Plant Sciences 169: 844–862.

    Article  Google Scholar 

  • ——— 2008b. The whole and the parts: relationships between floral architecture and floral organ shape, and their repercussions on the interpretation of fragmentary floral fossils. Annals of the Missouri Botanical Garden 95: 101–120.

    Article  Google Scholar 

  • ——— 2010. Flower structure and trends of evolution in eudicots and their major subclades. Annals of the Missouri Botanical Garden 97: 541–583.

    Article  Google Scholar 

  • ——— 2011. Evolutionary diversification of the flowers in angiosperms. American Journal of Botany 98: 370–396.

    Article  PubMed  Google Scholar 

  • ——— & J. A. Doyle. 2009. Reconstructing the ancestral angiosperm flower and its initial specializations. American Journal of Botany 96: 22–66.

    Article  PubMed  Google Scholar 

  • ——— & D. H. Lorence. 2004. Heterodichogamy of a novel type in Hernandia (Hernandiaceae) and its structural basis. International Journal of Plant Sciences 165: 753–763.

    Article  Google Scholar 

  • ——— & M. L. Matthews. 2006. First steps towards a floral structural characterization of the major rosid subclades. Plant Systematics and Evolution 260: 223–251.

    Google Scholar 

  • Engler, A. 1930. Saxifragaceae. In: A. Engler & K. Prantl (eds). Die natürlichen Pflanzenfamilien, ed. 2, 18a: 74–226. Engelmann, Leipzig.

    Google Scholar 

  • ——— 1931. Rutaceae. In: A. Engler & K. Prantl (eds). Die natürlichen Pflanzenfamilien, ed. 2, 19a: 187–359. Engelmann, Leipzig.

    Google Scholar 

  • ——— & L. Diels. 1899. Monographien afrikanischer Pflanzenfamilien und—gattungen III. Combretaceae, Engelmann, Leipzig.

    Google Scholar 

  • Erbar, C. 1992. Floral development of two species of Stylidium (Stylidiaceae) and some remarks on the systematic position of the family Stylidiaceae. Canadian Journal of Botany 70: 258–271.

    Article  Google Scholar 

  • ——— & P. Leins. 1999. Secondary pollen presentation and a curious rupture of the style in Spigelia (Spigeliaceae, Gentianales). Plant Biology 1: 389–402.

    Article  Google Scholar 

  • Ernst, R. & J. Arditti. 1994. Resupination. In: J. Arditti (ed). Orchid biology. Reviews and perspectives, VI: 135–188. Wiley, New York.

    Google Scholar 

  • Etcheverry, A. V., M. M. Alemán & T. F. Fleming. 2008. Flower morphology, pollination biology and mating system of the complex flower of Vigna caracalla (Fabaceae: Papilionoideae). Annals of Botany 102: 305–316.

    Article  PubMed  Google Scholar 

  • Eyde, R. H. 1963. Morphological and palaeobotanical studies on the Nyssaceae. I. A survey of the modern species and their fruits. Journal of the Arnold Arboretum 44: 1–54.

    Google Scholar 

  • ——— 1968. Flowers, fruits, and phylogeny of Alangiaceae. Journal of the Arnold Arboretum 49: 167–192.

    Google Scholar 

  • ——— & J. T. Morgan. 1973. Floral structure and evolution in Lopezieae (Onagraceae). American Journal of Botany 60: 771–787.

    Article  Google Scholar 

  • Faden, R. B. 1998. Commelinaceae. In: K. Kubitzki (ed). The families and genera of vascular plants, 4: 109–128. Springer, Berlin.

    Google Scholar 

  • Fagerlind, F. 1945. Bau des Gynöceums, der Samenanlage und des Embryosackes bei einigen Repräsentanten der Familie Icacinaceae. Svensk Botanisk Tidskrift 39: 346–364.

    Google Scholar 

  • Fang, D., S.-M. Ku, Y.-G. Wei, D.-H. Qin & C.-I. Peng. 2006. Three new taxa of Begonia (sect. Coelocentrum, Begoniaceae) from limestone areas in Guangxi, China. Botanical Studies 47: 97–110.

  • Fay, M. F. & T. Hall. 2007. Gethyum atropurpureum. Alliaceae. Curtis’s Botanical Magazine 24: 121–126.

    Article  Google Scholar 

  • Feehan, J. 1985. Explosive flower opening in ornithophily: a study of pollination mechanisms in some Central African Loranthaceae. Botanical Journal of the Linnean Society 90: 129–144.

    Article  Google Scholar 

  • Feng, X. Z., Z. Zhao, Z. X. Tian, S. Xu, Y. Luo, Z. Cai, Y. Wang, J. Yang, Z. Wang, L. Weng, J. Chen, L. Zheng, X. Guo, J. Luo, S. Sato, S. Tabata, W. Ma, X. Cao, X. Hu, C. Sun & D. Luo. 2006. Control of petal shape and floral zygomorphy in Lotus japonicus. Proceedings of the National Academy of Sciences of the United States of America 103: 4970–4975.

    Article  PubMed  CAS  Google Scholar 

  • Fenster, C. B., W. S. Armbruster & M. R. Dudash. 2009. Specialization of flowers: is floral orientation an overlooked first step? New Phytologist 183: 502–506.

    Article  PubMed  Google Scholar 

  • Fischer, E. 2004. Balsaminaceae. In: K. Kubitzki (ed). The families and genera of vascular plants, 6: 20–25. Springer, Berlin.

    Google Scholar 

  • Flores, E. M. & M. F. Moseley. 1990. Anatomy and aspects of development of the staminate inflorescences and florets of seven species of Allocasuarina (Casuarinaceae). American Journal of Botany 77: 795–808.

    Article  Google Scholar 

  • Friedman, W. E., S. C. H. Barrett, P. K. Diggle, V. F. Irish & L. Hufford. 2008. Whither plant evo-devo? New Phytologist 178: 468–472.

    Article  PubMed  Google Scholar 

  • Friis, I. 1993. Urticaceae. In: K. Kubitzki, J. G. Rohwer, & V. Bittrich (eds). The families and genera of vascular plants, 2: 612–630. Springer, Berlin.

    Google Scholar 

  • Froebe, H. A. 1980. Randmusterbildung und Synorganisation bei strahlenden Apiaceendolden. Plant Systematics and Evolution 133: 223–237.

    Article  Google Scholar 

  • Fryxell, P. A. 1983. Floral symmetry and zygomorphy in Malvaceae. American Journal of Botany 70, 5, 2: 58.

  • Fukuoka, N. 1972. Taxonomic study of the Caprifoliaceae. Memoirs of the Faculty of Science, Kyoto University, Ser Biol 6: 15–58.

    Google Scholar 

  • Gao, J.-Y., P.-Y. Ren, Z.-H. Yang & Q.-J. Li. 2006. The pollination ecology of Paraboea rufescens (Gesneriaceae): a buzz-pollinated tropical herb with mirror-image flowers. Annals of Botany 97: 371–376.

    Article  PubMed  Google Scholar 

  • Gao, Q., J.-H. Tao, Y.-Z. Wang & Z.-H. Li. 2008. Expression differentiation of CYC-like floral symmetry genes correlated with their protein sequence divergence in Chirita heterotricha (Gesneriaceae). Development, Genes and Evolution 218: 341–351.

    Article  CAS  Google Scholar 

  • Gegear, R. J. & T. M. Laverty. 1995. Effect of flower complexity on relearning flower-handling skills in bumble bees. Canadian Journal of Zoology 73: 2052–2058.

    Article  Google Scholar 

  • George, A. S. 2003. Gyrostemonaceae. In: K. Kubitzki & C. Bayer (eds). The families and genera of vascular plants, 5: 213–217. Springer, Berlin.

    Google Scholar 

  • Geuten, K., A. Becker, K. Kaufmann, P. Caris, S. Janssens, T. Viaene, G. Theissen & E. Smets. 2006. Petaloidy and petal identy MADS-box genes in the balsaminoid genera Impatiens and Marcgravia. Plant Journal 47: 501–518.

    Article  PubMed  CAS  Google Scholar 

  • Gill, G. E., Jr., R. T. Fowler & S. A. Mori. 1998. Pollination biology of Symphonia globulifera (Clusiaceae) in Central French Guiana. Biotropica 30: 139–144.

    Article  Google Scholar 

  • Giurfa, M., A. Dafni & P. R. Neal. 1999. Floral symmetry and its role in plant-pollinator systems. International Journal of Plant Sciences 160(Suppl): S41–S50.

    Article  PubMed  Google Scholar 

  • Goebel, K. 1908. Über Symmetrieverhältnisse in Blüten. Pp 151–166. In: K. Linsbauer (ed). Wiesner-Festschrift. Konegen, Wien.

    Google Scholar 

  • ——— 1920. Die Entfaltungsbewegungen der Pflanzen und deren teleologische Deutung. Fischer, Jena.

    Book  Google Scholar 

  • Goetghebeur, P. 1998. Cyperaceae. In: K. Kubitzki (ed). The families and genera of vascular plants, 4: 141–190. Springer, Berlin.

    Google Scholar 

  • Goldblatt, P., J. C. Manning & P. Rudall. 1998. Iridaceae. In: K. Kubitzki (ed). The families and genera of vascular plants, 3: 295–333. Springer, Berlin.

    Google Scholar 

  • ———, P. Bernhardt, P. Vogan & J. C. Manning. 2004. Pollination by fungus gnats (Diptera: Mycetophilidae) and self-recognition sites in Tolmiea menziesii (Saxifragaceae). Plant Systematics and Evolution 244: 55–67.

    Article  Google Scholar 

  • Gómez, J. M., F. Perfectti & J. P. M. Camacho. 2006. Natural selection on Erysimum mediohispanicum flower shape: insights into the evolution of zygomorphy. American Naturalist 168: 531–545.

    Article  PubMed  Google Scholar 

  • González, A. M. 1993. Anatomia y vascularizacion floral de Piriqueta racemosa, Turnera hassleriana y Turnera joelii (Turneraceae). Bonplandia 7: 143–184.

    Google Scholar 

  • González, F. & D. W. Stevenson. 2000. Perianth development and systematics of Aristolochia. Flora 195: 370–391.

    Google Scholar 

  • ——— & P. J. Rudall. 2010. Flower and fruit characters in the early-divergent lamiid family Metteniusaceae, with particular reference to the evolution of pseudomonomery. American Journal of Botany 97: 191–206.

    Article  PubMed  Google Scholar 

  • Gottsberger, G. & I. Silberbauer-Gottsberger. 1988. Evolution of flower structures and pollination in Neotropical Cassiinae (Caesalpiniaceae) species. Phyton (Austria) 28: 293–320.

    Google Scholar 

  • Graham, S. A. 2007. Lythraceae. In: K. Kubitzki (ed). The families and genera of vascular plants, 9: 226–246. Springer, Berlin.

    Google Scholar 

  • Graham, S. W. & S. C. H. Barrett. 1995. Phylogenetic systematics of the Pontederiales: implications for breeding-system evolution. Pp 415–441. In: P. J. Rudall, P. J. Cribb, D. F. Cutler, & C. J. Humphries (eds). Monocotyledons: systematics and evolution. Royal Botanic Gardens, Kew.

    Google Scholar 

  • Grant, V. & K. A. Grant. 1965. Flower pollination in the phlox family. Columbia University Press, New York.

    Google Scholar 

  • Groppo, M., J. R. Pirani, M. L. F. Salatino, S. R. Blanco & J. A. Kallunki. 2008. Phylogeny of Rutaceae based on two noncoding regions from cpDNA. American Journal of Botany 95: 985–1005.

    Article  PubMed  CAS  Google Scholar 

  • Gürke, M. 1893. Borraginaceae. In: A. Engler & K. Prantl (eds). Die natürlichen Pflanzenfamilien, IV, 3a: 71–131. Engelmann, Leipzig.

    Google Scholar 

  • Hamann, U. 1966. Embryologische, morphologisch-anatomische und systematische Untersuchungen an Philydraceen. Willdenowia Beihefte 4: 1–178.

    Google Scholar 

  • ——— 1975. Neue Untersuchungen zur Embryologie und Systematik der Centrolepidaceae. Botanische Jahrbücher für Systematik 96: 154–191.

    Google Scholar 

  • ——— 1998. Philydraceae. In: K. Kubitzki (ed). The families and genera of vascular plants, 4: 389–394. Springer, Berlin.

    Google Scholar 

  • Hardy, C. R. & R. B. Faden. 2004. Plowmanianthus, a new genus of Commelinaceae with five new species from tropical America. Systematic Botany 29: 316–333.

    Article  Google Scholar 

  • ——— & D. W. Stevenson. 2000a. Development of the gametophytes, flower, and floral vasculature in Cochliostema odoratissimum (Commelinaceae). Botanical Journal of the Linnean Society 134: 131–157.

    Google Scholar 

  • ——— & ———. 2000b. Floral organogenesis in some species of Tradescantia and Callisia (Commelinaceae). International Journal of Plant Sciences 161: 551–562.

    Article  Google Scholar 

  • ———, ——— & H. G. Kiss. 2000. Development of the gametophytes, flower, and floral vasculature in Dichorisandra thyrsiflora (Commelinaceae). American Journal of Botany 87: 1228–1239.

    Article  PubMed  CAS  Google Scholar 

  • ———, J. I. Davis & D. W. Stevenson. 2004. Floral organogenesis in Plowmanianthus (Commelinaceae). International Journal of Plant Sciences 165: 511–519.

    Article  Google Scholar 

  • Harms, H. 1940. Meliaceae. In: A. Engler & K. Prantl (eds). Die natürlichen Pflanzenfamilien, ed. 2, 19b1: 1–172. Engelmann, Leipzig.

    Google Scholar 

  • Harris, E. M. 1995. Inflorescences and floral ontogeny in Asteraceae: A synthesis of historical and current concepts. Botanical Review 61: 93–278.

    Article  Google Scholar 

  • Harrison, C. J., M. Möller & Q. C. B. Cronk. 1999. Evolution and development of floral diversity in Streptocarpus and Saintpaulia. Annals of Botany 84: 49–60.

    Article  Google Scholar 

  • Hashimoto, T. 2002. Molecular genetic analysis of left-right handedness in plants. Philosophical Transactions of the Royal Society of London B 357: 799–808.

    Article  CAS  Google Scholar 

  • Haynes, R. R., D. H. Les & L. B. Holm-Nielsen. 1998a. Juncaginaceae. In: K. Kubitzki (ed). The families and genera of vascular plants, 4: 260–263. Springer, Berlin.

    Google Scholar 

  • ———, L. B. Holm-Nielsen & D. H. Les. 1998b. Najadaceae. In: K. Kubitzki (ed). The families and genera of vascular plants, 4: 301–306. Springer, Berlin.

    Google Scholar 

  • ———, D. H. Les & L. B. Holm-Nielsen. 1998c. Potamogetonaceae. In: K. Kubitzki (ed). The families and genera of vascular plants, 4: 408–415. Springer, Berlin.

    Google Scholar 

  • ———, ——— & ———. 1998d. Zannichelliaceae. In: K. Kubitzki (ed). The families and genera of vascular plants, 4: 470–474. Springer, Berlin.

    Google Scholar 

  • Heinricher, E. 1907. Potentilla aurea L. mit zygomorphen oder auch asymmetrischen Blüten und Vererbbarkeit dieser Eigentümlichkeit. Zeitschrift des Ferdinandeums, III Folge 52: 281–286.

    Google Scholar 

  • Hellwig, F. H. 2007. Calyceraceae. In: J. W. Kadereit & C. Jeffrey (eds). The families and genera of vascular plants, 8: 19–25. Springer, Berlin.

    Google Scholar 

  • Herber, B. E. 2003. Thymelaeaceae. In: K. Kubitzki & C. Bayer (eds). The families and genera of vascular plants, 5: 373–396. Springer, Berlin.

    Google Scholar 

  • Herrera, J., M. Arista & P. L. Ortiz. 2008. Perianth organization and intra-specific floral variability. Plant Biology 10: 704–710.

    Article  PubMed  CAS  Google Scholar 

  • Hildebrand, F. 1886. Die Beeinflussung durch die Lage zum Horizont bei den Blüthentheilen einiger Cleome-Arten. Berichte der Deutschen Botanischen Gesellschaft 4: 329–337.

    Google Scholar 

  • Hileman, L. C. & D. A. Baum. 2003. Why do paralogs persist? Molecular evolution of CYCLOIDEA and related floral symmetry genes in Antirrhineae (Veronicaceae). Molecular Biology and Evolution 20: 591–600.

    Article  PubMed  CAS  Google Scholar 

  • ———, E. M. Kramer & D. A. Baum. 2003. Differential regulation of symmetry genes and the evolution of floral morphologies. Proceedings of the National Academy of Sciences of the United States of America 100: 12814–12819.

    Article  PubMed  CAS  Google Scholar 

  • Hilger, H. H. 1984. Wachstum und Ausbildungsformen des Gynoeceums von Rochelia (Boraginaceae). Plant Systematics and Evolution 146: 123–139.

    Article  Google Scholar 

  • ——— 1987. Flower and fruit development in Wigandia caracasana (Hydrophyllaceae). American Journal of Botany 74: 250–259.

    Article  Google Scholar 

  • Horn, J. W. 2006. Evolution of floral symmetry and foliar organs in Hibbertia (Dilleniaceae). Botany 2006. Abstract (on-line).

  • ——— 2007. Dilleniaceae. In: K. Kubitzki (ed). Families and genera of vascular plants, 9: 132–154. Springer, Berlin.

    Google Scholar 

  • ——— 2009. Phylogenetics of Dilleniaceae using sequence data from four plastid loci (rbcL, infA, rps4, rpl16 intron). International Journal of Plant Sciences 170: 794–813.

    Article  CAS  Google Scholar 

  • Ho, T. N. & S. W. Liu. 2001. A world-wide monograph of Gentiana. Science Press, Beijing.

  • Hoso, M., T. Asami & M. Hori. 2007. Right-handed snakes: convergent evolution of asymmetry for functional specialization. Biology Letters 3: 169–172.

    Article  PubMed  Google Scholar 

  • Howarth, D. G. & M. J. Donoghue. 2005. Duplications in CYC-like genes from Dipsacales correlate with floral form. International Journal of Plant Sciences 166: 357–370.

    Article  CAS  Google Scholar 

  • ——— & ———. 2006. Phylogenetic analysis of the “ECE” (CYC/TB1) clade reveals duplications predating the core eudicots. Proceedings of the National Academy of Sciences of the U. S. A. 103: 9101–9106.

    Article  CAS  Google Scholar 

  • ——— & ———. 2008. Phylogeny and expression of DIV-like and RAD-like genes (MYB transcription factors) and their role in floral symmetry shifts in Dipsacales and core eudicots. Botany 2008, Abstracts (on-line).

  • ———, T. Martins, E. Chimney & M. J. Donoghue. 2011. Diversification of CYCLOIDEA expression in the evolution of bilateral flower symmetry in Caprifoliaceae and Lonicera (Dipsacales). Annals of Botany 107: 1521–1532.

    Article  PubMed  CAS  Google Scholar 

  • Huang, S.-Q., Y. Takahashi & A. Dafni. 2002. Why does the flower stalk of Pulsatilla cernua (Ranunculaceae) bend during anthesis? American Journal of Botany 89: 1599–1603.

    Article  PubMed  Google Scholar 

  • Huber, K. A. 1980. Morphologische und entwicklungsgeschichtliche Untersuchungen an Blüten und Blütenständen von Solanaceen und von Nolana paradoxa Lindl. (Nolanaceae). Dissertationes Botanicae 55: 1–252.

    Google Scholar 

  • Hufford, L. D. 1989. Structure of the inflorescence and flower of Petalonyx linearis (Loasaceae). Plant Systematics and Evolution 163: 211–226.

    Article  Google Scholar 

  • Hufford, L. 2004. Hydrangeaceae. In: K. Kubitzki (ed). The families and genera of vascular plants, 6: 202–215. Springer, Berlin.

    Google Scholar 

  • Hunziker, A. 2001. Genera Solanacearum. The genera of Solanaceae illustrated, arranged according to a new system. Gantner, Ruggell.

    Google Scholar 

  • Igersheim, A. & P. K. Endress. 1997. Gynoecium diversity and systematics of the Magnoliales and winteroids. Botanical Journal of the Linnean Society 124: 213–271.

    Article  Google Scholar 

  • ———, M. Buzgo & P. K. Endress. 2001. Gynoecium diversity and systematics in basal monocots. Botanical Journal of the Linnean Society 136: 1–65.

    Article  Google Scholar 

  • Jabbour, F., C. Damerval & S. Nadot. 2008. Evolutionary trends of Asteridae: Is polyandry an alternative to zygomorphy? Annals of Botany 102: 153–165.

    Article  PubMed  Google Scholar 

  • ———, L. P. Ronse De Craene, S. Nadot & C. Damerval. 2009a. Establishment of zygomorphy on an ontogenetic spiral and evolution of perianth in the tribe Delphinieae (Ranunculaceae). Annals of Botany 104: 809–822.

    Article  PubMed  Google Scholar 

  • ———, S. Nadot & C. Damerval. 2009b. Evolution of floral symmetry: A state of the art. Comptes Rendus Biologies 332: 219–231.

    Article  PubMed  CAS  Google Scholar 

  • Jeffrey, C. 2007. Compositae. Introduction with key to tribes. In: J. W. Kadereit & C. Jeffrey (eds). The families and genera of vascular plants, 8: 61–87. Springer, Berlin.

    Google Scholar 

  • Jesson, L. K. & S. C. H. Barrett. 2002. Enantiostyly in Wachendorfia (Haemodoraceae): the influence of reproductive systems on the maintenance of the polymorphism. American Journal of Botany 89: 253–262.

    Article  PubMed  Google Scholar 

  • ——— & ———. 2003. The comparative biology of mirror-image flowers. International Journal of Plant Sciences 164(Suppl.): S237–S249.

    Article  Google Scholar 

  • ———, ——— & T. Day. 2003a. A theoretical investigation of the evolution and maintenance of mirror-image flowers. American Naturalist 161: 916–930.

    Article  PubMed  Google Scholar 

  • ———, J. Kang, S. L. Wagner, S. C. H. Barrett & N. G. Dengler. 2003b. The development of enantiostyly. American Journal of Botany 90: 183–195.

    Article  PubMed  Google Scholar 

  • Kaldewey, H. 1962. Plagio- und Diageotropismus der Sprosse und Blätter, einschliesslich Epinastie, Hyponastie, Entfaltungsbewegungen. In: W. Ruhland (ed). Encyclopedia of plant physiology, XVII, 2: 200–321. Springer, Berlin.

    Google Scholar 

  • Kalisz, S., R. H. Ree & R. D. Sargent. 2006. Linking floral symmetry genes to breeding system evolution. Trends in Plant Science 11: 568–573.

    Article  PubMed  CAS  Google Scholar 

  • Kallunki, J. A. & J. R. Pirani. 1998. Synopses of Angostura Roem. & Schult. and Conchocarpus J.C. Mikan (Rutaceae). Kew Bulletin 53: 257–334.

    Article  Google Scholar 

  • Kampny, C. M. 1995. Pollination and flower diversity in Scrophulariaceae. Botanical Review 61: 350–366.

    Article  Google Scholar 

  • Karehed, J. 2001. Multiple origin of the tropical forest tree family Icacinaceae. American Journal of Botany 88: 2259–2274.

    Article  PubMed  CAS  Google Scholar 

  • Kawasaki, M. L. 2007. Vochysiaceae. In: K. Kubitzki (ed). Families and genera of vascular plants, 9: 480–487. Springer, Berlin.

    Google Scholar 

  • Kers, L. E. 2003. Capparaceae. In: K. Kubitzki & C. Bayer (eds). The families and genera of vascular plants, 5: 36–56. Springer, Berlin.

    Google Scholar 

  • Kessler, P. J. A. 1993. Menispermaceae. In: K. Kubitzki, J. G. Rohwer, & V. Bittrich (eds). The families and genera of vascular plants, 2: 402–418. Springer, Berlin.

    Google Scholar 

  • Kim, M., M.-L. Cui, P. Cubas, A. Gillies, K. Lee, M. A. Chapman, R. J. Abbott & E. Coen. 2008. Regulatory genes control a key morphological and ecological trait transferred between species. Science 322: 1116–1119.

    Article  PubMed  CAS  Google Scholar 

  • Kirchoff, B. K. 1983. Floral organogenesis in five genera of the Marantaceae and in Canna (Cannaceae). American Journal of Botany 70: 508–523.

    Article  Google Scholar 

  • ——— 2003. Shape matters: Hofmeister’s rule, primordium shape, and flower orientation. International Journal of Plant Sciences 164: 505–517.

    Article  Google Scholar 

  • Klackenberg, J. 2002. Section Exaceae. Pp 66–94. In: L. Struwe & V. A. Albert (eds). Gentianaceae: Systematics and natural history. Cambridge University Press, Cambridge.

    Google Scholar 

  • Knuth, R. 1931. Geraniaceae. In: A. Engler & K. Prantl (eds). Die natürlichen Pflanzenfamilien, ed. 2, 19a: 43–66. Engelmann, Leipzig.

    Google Scholar 

  • Kocyan, A. & P. K. Endress. 2001a. Floral structure and development and systematic aspects of some ‘lower’ Asparagales. Plant Systematics and Evolution 229: 187–216.

    Article  Google Scholar 

  • ——— & ———. 2001b. Floral structure and development of Apostasia and Neuwiedia (Apostasioideae) and their relationships to other Orchidaceae. International Journal of Plant Sciences 162: 847–867.

    Article  Google Scholar 

  • Kölsch, A. & S. Gleissberg. 2006. Diversification of CYCLOIDEA-like TCP genes in the basal eudicot families Fumariaceae and Papaveraceae s.str. Plant Biology 8: 680–687.

    Article  PubMed  CAS  Google Scholar 

  • Kong, H.-Z., A.-M. Lu & P. K. Endress. 2002. Floral organogenesis in Chloranthus sessilifolius (Chloranthaceae): with special emphasis on the morphological nature of the androecium of Chloranthus. Plant Systematics and Evolution 232: 181–188.

    Article  Google Scholar 

  • Kral, R. 1998. Xyridaceae. In: K. Kubitzki (ed). The families and genera of vascular plants, 4, 461–469. Springer, Berlin.

    Google Scholar 

  • Krasser, F. 1893. Melastomataceae. In: A. Engler & K. Prantl (eds). Die natürlichen Pflanzenfamilien, III, 7: 130–199. Engelmann, Leipzig.

    Google Scholar 

  • Kress, W. J. 1990. The phylogeny and classification of the Zingiberales. Annals of the Missouri Botanical Garden 77: 698–721.

    Article  Google Scholar 

  • Kubitzki, K. 1963. Zur Kenntnis des unilokularen Cornaceen-Gynözeums (Cornaceen-Studien I). Berichte der Deutschen Botanischen Gesellschaft 76: 33–39.

    Google Scholar 

  • ——— 1978. Caraipa and Mahurea (Bonnetiaceae). Memoirs of the New York Botanical Garden 29: 82–138.

    Google Scholar 

  • ——— 1993. Cecropiaceae. In: K. Kubitzki, J. G. Rohwer & V. Bittrich (eds.), The families and genera of vascular plants, 2: 243–246. Springer, Berlin.

  • ——— 1998a. Agapanthaceae. In: K. Kubitzki (ed). The families and genera of vascular plants, 3: 58–60. Springer, Berlin.

    Google Scholar 

  • ——— 1998b. Hostaceae. In: K. Kubitzki (ed). The families and genera of vascular plants, 3: 256–260. Springer, Berlin.

    Google Scholar 

  • ——— 1998c. Typhaceae. In: K. Kubitzki (ed). The families and genera of vascular plants, 4: 457–461. Springer, Berlin.

    Google Scholar 

  • ——— 2003. Salvadoraceae. In: K. Kubitzki & C. Bayer (eds). The families and genera of vascular plants, 5: 342–344. Springer, Berlin.

    Google Scholar 

  • Kühn, U. 1993. Chenopodiaceae. In: K. Kubitzki, J. G. Rohwer, & V. Bittrich (eds). The families and genera of vascular plants, 2: 253–280. Springer, Berlin.

    Google Scholar 

  • Kuijt, J. 1988. Monograph of the Eremolepidaceae. Systematic Botany Monographs 18: 1–60.

    Article  Google Scholar 

  • ——— 2007. 105b. Loranthaceae. In: M. J. Jansen-Jacobs (ed). Flora of the Guianas A, 25: 7–69. Royal Botanic Gardens, Kew.

    Google Scholar 

  • Kunze, G. 1976. Die Bildung von Pseudanthien bei den Angiospermen in morphologischer, ökologischer und phylogenetischer Hinsicht. Unpublished “Staatsexamens” thesis, University of Freiburg, Germany.

  • Kuo, J. & A. J. McComb. 1998a. Cymodoceaceae. In: K. Kubitzki (ed). The families and genera of vascular plants, 4: 133–140. Springer, Berlin.

    Google Scholar 

  • ——— & ———. 1998b. Posidoniaceae. In: K. Kubitzki (ed). The families and genera of vascular plants, 4: 404–408. Springer, Berlin.

    Google Scholar 

  • ——— & ———. 1998c. Zosteraceae. In: K. Kubitzki (ed). The families and genera of vascular plants, 4: 496–502. Springer, Berlin.

    Google Scholar 

  • Kurzweil, H. & A. Kocyan. 2002. Ontogeny of orchid flowers. In: T. Kull & J. Arditti (eds). Orchid biology: reviews and perspectives, 8: 83–138. Kluwer, Dordrecht.

    Google Scholar 

  • Lam, H. J. 1932. Beiträge zur Morphologie der Burseraceae, insbesondere der Canarieae II. Weitere Tendenzen in Blütenstand, Blüte, Frucht und Vegetationsorganen; Anatomisches; Schlussbetrachtung und Zusammenfassung. Annales du Jardin Botanique de Buitenzorg 43: 97–226.

    Google Scholar 

  • Lammers, T. G. 2007. Campanulaceae. In: J. W. Kadereit & C. Jeffrey (eds). The families and genera of vascular plants, 8: 26–56. Springer, Berlin.

    Google Scholar 

  • Landolt, E. 1998. Lemnaceae. In: K. Kubitzki (ed). The families and genera of vascular plants, 4: 264–270. Springer, Berlin.

    Google Scholar 

  • Langström, E. & B. Oxelman. 2003. Phylogeny of Echiochilon (Echiochileae, Boraginaceae) based on ITS sequences and morphology. Taxon 52: 725–735.

    Article  Google Scholar 

  • Larsen, K. 1998a. Costaceae. In: K. Kubitzki (ed). The families and genera of vascular plants, 4: 128–132. Springer, Berlin.

    Google Scholar 

  • ——— 1998b. Lowiaceae. In: K. Kubitzki (ed). The families and genera of vascular plants, 4: 275–277. Springer, Berlin.

    Google Scholar 

  • ———, J. M. Lock, H. Maas & P. J. M. Maas. 1998. Zingiberaceae. In: K. Kubitzki (ed). The families and genera of vascular plants, 4: 474–495. Springer, Berlin.

    Google Scholar 

  • Lehrer, M. 1999. Shape perception in the honeybee: symmetry as a global framework. International Journal of Plant Sciences 160(Suppl): S51–S65.

    Article  PubMed  Google Scholar 

  • Leins, P. 1969. The flower morphology of Emblingia. Botanical Journal of the Linnean Society 62: 172–175.

    Google Scholar 

  • ——— & C. Erbar. 1982. Das monokarpellate Gynoeceum von Monodora crispata (Annonaceae). Beiträge zur Biologie der Pflanzen 57: 1–13.

    Google Scholar 

  • ——— & ———. 2000. Die frühesten Entwicklungsstadien der Blüten bei den Asteraceae. Botanische Jahrbücher für Systematik 122: 503–515.

    Google Scholar 

  • ——— & ———. 2005. Floral morphological studies in the South African Cyphia stenopetala Diels (Cyphiaceae). International Journal of Plant Sciences 166: 207–217.

    Article  Google Scholar 

  • ——— & P. Galle. 1971. Entwicklungsgeschichtliche Untersuchungen an Cucurbitaceen-Blüten. Österreichische Botanische Zeitschrift 119: 531–548.

    Article  Google Scholar 

  • Leppik, E. E. 1972. Origin and evolution of bilateral symmetry in flowers. Evolutionary Biology 5: 49–85.

    Article  Google Scholar 

  • Levin, M. 2005. Left-right asymmetry in embryonic development: a comprehensive review. Mechanisms of Development 122: 3–25.

    Article  PubMed  CAS  Google Scholar 

  • ——— & A. R. Palmer. 2007. Left-right patterning from the inside out: widespread evidence for intracellular control. BioEssays 29(3): 271–287.

    Article  PubMed  CAS  Google Scholar 

  • Li, Q.-J., Z.-F. Xu, W. J. Kress, Y.-M. Xia, L. Zhang, X.-B. Deng, J.-Y. Gao & Z.-L. Bai. 2001. Flexible style that encourages outcrossing. Nature 410: 432.

    Article  PubMed  CAS  Google Scholar 

  • Lidén, M. 1993. Fumariaceae. In: K. Kubitzki, J. G. Rohwer, & V. Bittrich (eds). The families and genera of vascular plants, 2: 310–318. Springer, Berlin.

    Google Scholar 

  • Linder, H. P. 2007. Melianthaceae. In: K. Kubitzki (ed). The families and genera of vascular plants, 9: 250–259. Springer, Berlin.

    Google Scholar 

  • ———, B. G. Briggs & L. A. S. Johnson. 1998. Restionaceae. In: K. Kubitzki (ed). The families and genera of vascular plants, 4: 425–445. Springer, Berlin.

    Google Scholar 

  • Litt, A. & M. Cheek. 2002. Korupodendron songweanum, a new genus and species of Vochysiaceae from West-Central Africa. Brittonia 54: 13–17.

    Article  Google Scholar 

  • ——— & D. W. Stevenson. 2003a. Floral development and morphology of Vochysiaceae. I. The structure of the gynoecium. American Journal of Botany 90: 1533–1547.

    Article  PubMed  Google Scholar 

  • ——— & ———. 2003b. Floral development and morphology of Vochysiaceae. II. The position of the single fertile stamen. American Journal of Botany 90: 1548–1559.

    Article  PubMed  Google Scholar 

  • Liu, M., B.-E. Van Wyk & P. M. Tilney. 2004. Ontogeny of the fruits of two anomalous African woody genera, Polemanniopsis and Steganotaenia (Apiaceae), and their phylogenetic relationship. Edinburgh Journal of Botany 60: 249–257.

    Google Scholar 

  • Lleras, E. 1972. Review of the genus Haploclathra (Bonnetiaceae). Memoirs of the Nerw York Botanical Garden 22: 129–136.

    Google Scholar 

  • Lloyd, D. G. & C. J. Webb. 1992. The evolution of heterostyly. Pp 179–208. In: S. C. H. Barrett (ed). Evolution and function of heterostyly. Springer, Berlin.

    Google Scholar 

  • Luo, D., R. Carpenter, C. Vincent, L. Copsey & E. Coen. 1996. Origin of floral asymmetry in Antirrhinum. Nature 383: 794–799.

    Article  PubMed  CAS  Google Scholar 

  • ———, ———, ———, J. Clark & E. Coen. 1999. Control of organ asymmetry in flowers of Antirrhinum. Cell 99: 367–376.

    Article  PubMed  CAS  Google Scholar 

  • Maas-van de Kamer, H. 1998. Burmanniaceae. In: K. Kubitzki (ed). The families and genera of vascular plants, 3: 154–164. Springer, Berlin.

    Google Scholar 

  • ——— & T. Weustenfeld. 1998. Triuridaceae. In: K. Kubitzki (ed). The families and genera of vascular plants, 3: 452–458. Springer, Berlin.

    Google Scholar 

  • Mabberley, D. 2000. Arthur Henry Church. The anatomy of flowers, Merrell, London.

    Google Scholar 

  • Machado, I. C. & M. Sazima. 2008. Pollination and breeding system of Melochia tomentosa L. (Malvaceae), a keystone floral resource in the Brazilian Caatinga. Flora 203: 484–490.

    Article  Google Scholar 

  • Machado, I. C. S., I. Sazima & M. Sazima. 1998. Bat pollination of the terrestrial herb Irlbachia alata (Gentianaceae) in northeastern Brazil. Plant Systematics and Evolution 209: 231–237.

    Article  Google Scholar 

  • Maguire, B. 1972. Bonnetiaceae. Memoirs of the New York Botanical Garden 23: 131–165.

    Google Scholar 

  • Mair, O. 1977. Zur Entwicklungsgeschichte monosymmetrischer Dicotylen-Blüten. Dissertationes Botanicae 38: 1–90.

    Google Scholar 

  • Malcomber, S. T. & E. A. Kellogg. 2004. Heterogeneous expression patterns and separate roles of the SEPALLATA gene LEAFY HULL STERILE1 in grasses. Plant Cell 16: 1692–1706.

    Article  PubMed  CAS  Google Scholar 

  • Marazzi, B. & P. K. Endress. 2008. Patterns and development of floral asymmetry in Senna (Leguminosae, Cassiinae). American Journal of Botany 95: 22–40.

    Article  PubMed  Google Scholar 

  • ———, ———, L. Paganucci de Queiroz & E. Conti. 2006. Phylogenetic relationships within Senna (Leguminosae, Cassiinae) based on three chloroplast DNA regions: patterns in the evolution of floral symmetry and extrafloral nectaries. American Journal of Botany 93: 288–303.

    Article  PubMed  CAS  Google Scholar 

  • ———, E. Conti & P. K. Endress. 2007. Diversity in anthers and stigmas in the buzz-pollinated genus Senna (Leguminosae, Cassiinae). International Journal of Plant Sciences 168: 371–391.

    Article  Google Scholar 

  • Matthews, M. L. & P. K. Endress. 2002. Comparative floral structure and systematics in Oxalidales (Oxalidaceae, Connaraceae, Cephalotaceae, Brunelliaceae, Cunoniaceae, Elaeocarpaceae, Tremandraceae). Botanical Journal of the Linnean Society 140: 321–381.

    Article  Google Scholar 

  • ——— & ———. 2004. Comparative floral structure and systematics in Cucurbitales (Corynocarpaceae, Coriariaceae, Datiscaceae, Tetramelaceae, Begoniaceae, Cucurbitaceae, Anisophylleaceae). Botanical Journal of the Linnean Society 145: 129–185.

    Article  Google Scholar 

  • ——— & ———. 2005a. Comparative floral structure in Celastrales (Celastraceae, Parnassiaceae, Lepidobotryaceae). Botanical Journal of the Linnean Society 149: 129–194.

    Article  Google Scholar 

  • ——— & ———. 2005b. Comparative floral structure in Crossosomatales (Crossosomataceae, Stachyuraceae, Staphyleaceae, Aphloiaceae, Geissolomataceae, Ixerbaceae, Strasburgeriaceae). Botanical Journal of the Linnean Society 147: 1–46.

    Article  Google Scholar 

  • ——— & ———. 2008. Comparative floral structure and systematics in Chrysobalanaceae sensu lato (Chrysobalanaceae, Dichapetalaceae, Euphroniaceae, and Trigoniaceae; Malpighiales). Botanical Journal of the Linnean Society 157: 249–309.

    Article  Google Scholar 

  • ——— & ———. 2011. Comparative floral structure and systematics in Rhizophoraceae, Erythroxylaceae, and the potentially related Ctenolophonaceae, Linaceae, Irvingiaceae, and Caryocaraceae (Malpighiales). Botanical Journal of the Linnean Society 166: 331–416.

    Article  Google Scholar 

  • Mayo, S. J., J. Bogner & P. C. Boyce. 1997. The genera of Araceae. Royal Botanic Gardens, Kew.

    Google Scholar 

  • ———, ——— & ———. 1998. Araceae. In: K. Kubitzki (ed). The families and genera of vascular plants, 4: 26–74. Springer, Berlin.

    Google Scholar 

  • Mayr, E. M. & A. Weber. 2006. Calceolariaceae: floral development and systematic implications. American Journal of Botany 93: 327–343.

    Article  PubMed  Google Scholar 

  • McMahon, M. M. 2005. Phylogenetic relationships and floral evolution in the papilionoid legume clade Amorpheae. Brittonia 57: 397–411.

    Article  Google Scholar 

  • Meerow, A. W. 2010. Convergence or reticulation? Mosaic evolution in the canalized American Amaryllidaceae. Pp 145–168. In: O. Seberg, G. Petersen, A. S. Barfod, & J. I. Davis (eds). Diversity, phylogeny, and evolution in the monocotyledons. Aarhus University Press, Aarhus.

    Google Scholar 

  • ——— & D. A. Snijman. 1998. Amaryllidaceae. In: K. Kubitzki (ed). The families and genera of vascular plants, 3: 83–110. Springer, Berlin.

    Google Scholar 

  • Mehta, I. J. & M. F., Jr. Moseley. 1981. The floral anatomy of Koeberlinia Zucc.: Systematic implications. American Journal of Botany 68: 482–497.

    Article  Google Scholar 

  • Melchior, H. 1925. Violaceae. In: A. Engler & K. Prantl (eds). Die natürlichen Pflanzenfamilien, ed. 2, 21: 329–377. Engelmann, Leipzig.

    Google Scholar 

  • Mlot, C. 1998. Plant biology in the genome era. Science 281: 331–332.

    Article  PubMed  CAS  Google Scholar 

  • Möller, A. P. 2000. Developmental stability and pollination. Oecologia 123: 149–157.

    Article  Google Scholar 

  • Möller, M., M. Clokie, P. Cubas & Q. Cronk. 1999. Integrating molecular phylogenies and developmental genetics: a Gesneriaceae case study. Pp 375–402. In: P. M. Hollingsworth, R. J. Bateman, & R. J. Gornall (eds). Molecular systematics and plant evolution. Taylor & Francis, London.

    Google Scholar 

  • Mondragón-Palomino, M. & G. Theissen. 2009. Why are orchid flowers so diverse? Reduction of evolutionary constraints by paralogues of class B floral homeotic genes. Annals of Botany 104: 583–594.

    Article  PubMed  Google Scholar 

  • ———, L. Hiese, A. Härter, M. A. Koch & G. Theissen. 2009. Positive selection and ancient duplications in the evolution of class B floral homeotic genes of orchids and grasses. BMC Evolutionary Biology 2009, 9:1.

  • Müller-Doblies, D. 1970. Über die Verwandtschaft von Typha und Sparganium im Infloreszenz- und Blütenbau. Botanische Jahrbücher für Systematik 89: 451–562.

    Google Scholar 

  • Murbeck, S. 1912. Untersuchungen über den Blütenbau der Papaveraceen. Kungliga Svenska Vetenskapsakademiens Handlingar 50(1): 1–168.

    Google Scholar 

  • ——— 1941. Das Androeceum der Rosaceen. Lunds Universitets Arsskrift, n.F, Avd. 2, 37, 7: 1–56.

  • Murty, Y. S. & S. Gupta. 1978. Morphological studies in Meliaceae II. A reinvestigation of floral anatomy of members of Swietenieae and Trichilieae. Proceedings of the Indian Academy of Sciences B 87: 55–64.

    Article  Google Scholar 

  • Nair, N. C. & K. S. Nathawat. 1958. Vascular anatomy of some flowers of Zygophyllaceae. Journal of the Indian Botanical Society 10: 175–180.

  • ——— & T. C. Joseph. 1957. Floral morphology and embryology of Samadera indica. Botanical Gazette (Crawfordsville) 119: 104–115.

    Article  Google Scholar 

  • Narayana, L. L. 1958. Floral anatomy of Meliaceae—I. Journal of the Indian Botanical Society 37: 365–374.

    Google Scholar 

  • ——— 1963. A contribution to the floral anatomy and embryology of Linaceae. Journal of the Indian Botanical Society 43: 343–357.

    Google Scholar 

  • ——— 1966. A contribution to the floral anatomy of Oxalidaceae. Journal of Japanese Botany 41: 321–328.

    Google Scholar 

  • ——— & D. Rao. 1969. Contributions to the floral anatomy of Humiriaceae 1. Journal of Japanese Botany 44: 328–335.

    Google Scholar 

  • ——— & ———. 1971. Contributions to the floral anatomy of Linaceae II. Phytomorphology 21: 64–67.

    Google Scholar 

  • Neal, P. R., A. Dafni & M. Giurfa. 1998. Floral symmetry and its role in plant-pollinator systems: terminology, distribution, and hypotheses. Annual Review of Ecology and Systematics 29: 345–373.

    Article  Google Scholar 

  • Neinhuis, C. & P. L. Ibisch. 1998. Corsiaceae. In: K. Kubitzki (ed). The families and genera of vascular plants, 3: 198–201. Springer, Berlin.

    Google Scholar 

  • Niedenzu, F. 1893. Myrtaceae. In: A. Engler & K. Prantl (eds). Die natürlichen Pflanzenfamilien, III, 7: 57–105. Engelmann, Leipzig.

    Google Scholar 

  • Noll, F. 1888. Über die normale Stellung zygomorpher Blüten und ihre Orientirungsbewegungen zur Erreichung derselben. Arbeiten des Botanischen Instituts in Würzburg 3: 189–252. 315–371. Engelmann, Leipzig.

    Google Scholar 

  • Nordenstam, B. 1998. Colchicaceae. In: K. Kubitzki (ed). Families and genera of vascular plants, 3: 175–185. Springer, Berlin.

    Google Scholar 

  • Oliveira, P. E. 1996. Biologia floral de Salvertia convallariodora (Vochysiaceae): uma espécie de cerrado polinizada por mariposas. Revista Brasileira de Botanica 19: 49–53.

    Google Scholar 

  • Olmstead, R. G., C. W. dePamphilis, A. D. Wolfe, N. D. Young, W. J. Elisens & P. A. Reeves. 2001. Disintegration of the Scrophulariaceae. American Journal of Botany 88: 348–361.

    Article  PubMed  CAS  Google Scholar 

  • Olson, M. E. 2003. Ontogenetic origins of floral bilateral symmetry in Moringaceae (Brassicales). American Journal of Botany 90: 49–71.

    Article  PubMed  Google Scholar 

  • Ottley, A. M. 1944. The American loti with special consideration of a proposed new section, Simpeteria. Brittonia 5: 81–123.

    Article  Google Scholar 

  • Oxelman, B., P. Kornhall, R. G. Olmstead & B. Bremer. 2005. Further disintegration of Scrophulariaceae. Taxon 54: 411–425.

    Article  Google Scholar 

  • Pan, J. & H. Ohba. 2001. Chrysosplenium. In: Z. Wu & P. H. Raven (eds). Flora of China, 8: 346–358. Science Press, Beijing and Missouri Botanical Garden, St. Louis, Missouri.

    Google Scholar 

  • Patchell, M. J., M. C. Bolton, P. Mankowski & J. C. Hall. 2011. Comparative floral development in Cleomaceae reveals two distinct pathways leading to monosymmetry. International Journal of Plant Sciences 172: 352–365.

    Article  Google Scholar 

  • Pauw, A. 2005. Inversostyly: a new stylar polymorphism in an oil-secreting plant, Hemimeris racemosa (Scrophulariaceae). American Journal of Botany 92: 1878–1886.

    Article  PubMed  Google Scholar 

  • Philipson, W. R. 1967. Griselinia Forst. fil.—anomaly or link. New Zealand Journal of Botany 5: 134–165.

    Article  Google Scholar 

  • ——— 1987. Corynocarpus J.R. and G. Forst.—an isolated genus. Botanical Journal of the Linnean Society 95: 9–18.

    Article  Google Scholar 

  • ——— & B. C. Stone. 1980. The systematic position of Aralidium Miq.—a multidisciplinary study. 1. Introduction and floral and general anatomy. Taxon 29: 391–403.

    Article  Google Scholar 

  • Pilger, R. 1930. Rapateaceae. In: A. Engler & K. Prantl (eds). Die natürlichen Pflanzenfamilien, ed. 2, 15a, 59–65. Engelmann, Leipzig.

    Google Scholar 

  • Pirani, J. R. & J. A. Kallunki. 2007. Two new species of Galipea (Rutaceae, Galipeae) from Bolivia, Ecuador, and Peru. Brittonia 59: 343–349.

    Article  Google Scholar 

  • Poppendieck, H.-H. 2003. Cochlospermaceae. In: K. Kubitzki & C. Bayer (eds). The families and genera of vascular plants, 5: 71–74. Springer, Berlin.

    Google Scholar 

  • Prance, G. T. 2003. Rhabdodendraceae. In: K. Kubitzki & C. Bayer (eds). The families and genera of vascular plants, 5: 339–341. Springer, Berlin.

    Google Scholar 

  • ——— & F. White. 1988. The genera of Chrysobalanaceae: a study in practical and theoretical taxonomy and its relevance to evolutionary biology. Philosophical Transactions of the Royal Society of London B 320: 1–184.

    Article  Google Scholar 

  • Prenner, G. 2003. Floral ontogeny in Lathyrus latifolius (Fabaceae-Vicieae). Phyton 43: 392–400.

    Google Scholar 

  • ——— 2004a. Floral development in Daviesia cordata (Leguminosae: Papilionoideae: Mirbelieae) and its systematic implications. Australian Journal of Botany 52: 285–291.

    Article  Google Scholar 

  • ——— 2004b. Floral development in Polygala myrtifolia (Polygalaceae) and its similarities with Leguminosae. Plant Systematics and Evolution 249: 67–76.

    Article  Google Scholar 

  • ——— 2004c. Floral ontogeny in Lespedeza thunbergii (Leguminosae: Papilionaceae: Desmodieae): Variations from the unidirectional mode of organ formation. Journal of Plant Research 117: 297–302.

    Article  PubMed  Google Scholar 

  • ——— 2004d. New aspects in floral development of Papilionoideae: Initiated but suppressed bracteoles and variable initiation of sepals. Annals of Botany 93: 537–545.

    Article  PubMed  Google Scholar 

  • ——— 2004e. The asymmetric androecium in Papilionoideae (Leguminosae): Definition, occurrence, and possible systematic value. International Journal of Plant Sciences 165: 499–510.

    Article  Google Scholar 

  • ——— & B. B. Klitgaard. 2008. Towards unlocking the deep nodes of Leguminosae: Floral development and morphology of the enigmatic Duparquetia orchidacea. American Journal of Botany 95: 1349–1365.

    Article  PubMed  Google Scholar 

  • ——— & P. J. Rudall. 2007. Comparative ontogeny of the cyathium in Euphorbia and its allies: exploring the organ-flower-inflorescence boundary. American Journal of Botany 94: 1612–1629.

    Article  PubMed  Google Scholar 

  • ———, S. D. Hopper & P. J. Rudall. 2008. Pseudanthium development in Calycopeplus paucifolius, with particular reference to the evolution of the cyathium in Euphorbieae (Euphorbiaceae-Malpighiales). Australian Systematic Botany 21: 153–161.

    Article  PubMed  Google Scholar 

  • Preston, J. C. & L. C. Hileman. 2009. Developmental genetics of floral symmetry evolution. Trends in Plant Science 14: 147–154.

    Article  PubMed  CAS  Google Scholar 

  • ———, C. C. Martinez & L. C. Hileman. 2011. Gradual disintegration of the floral symmetry gene network is implicated in the evolution of a wind-pollination syndrome. Proceedings of the National Academy of Sciences of the USA 108: 2343–2348.

    Article  PubMed  CAS  Google Scholar 

  • Puri, V. 1978. On some peculiarities of angiosperm carpel. Acta Botanica Indica 6(Suppl): I–XIV.

    Google Scholar 

  • Qiu, Y.-L., L. Li, B. Wang, J.-Y. Xue, T. A. Hendry, R.-Q. Li, J. W. Brown, Y. Liu, G. T. Hudson & Z.-D. Chen. 2010. Angiosperm‚ phylogeny inferred from sequences of four mitochondrial genes. Journal of Systematics and Evolution 48: 391–425.

    Article  Google Scholar 

  • Radcliffe-Smith, A. 2001. Genera Euphorbiacearum. Royal Botanic Gardens, Kew.

    Google Scholar 

  • Rahn, K. 1998. Alliaceae. In: K. Kubitzki (ed). The families and genera of vascular plants, 3: 70–78. Springer, Berlin.

    Google Scholar 

  • Raimann, R. 1893. Onagraceae. In: A. Engler & K. Prantl (eds). Die natürlichen Pflanzenfamilien, III, 7: 199–223. Engelmann, Leipzig.

    Google Scholar 

  • Rankin-Rodríguez, R. & W. Greuter. 2004. A study of differentiation patterns in Capparis sect. Breyniastrum in Cuba, with a nomenclatural and taxonomic survey of Cuban Capparis (Capparaceae). Willdenowia 34: 259–276.

    Article  Google Scholar 

  • Rao, A. N. 1962. Floral anatomy and gametogenesis in Hopea racophloea Dyer. Journal of the Indian Botanical Society 41: 557–562.

    Google Scholar 

  • Rao, C. V. 1952. Floral anatomy of some Malvales and its bearing on the affinities of families included in the order. Journal of the Indian Botanical Society 31: 171–203.

    Google Scholar 

  • ——— 1972. Floral anatomy of Ricinocarpus pinifolius Desf. with some observations on the phylogeny and centre of origin of Euphorbiaceae. Pp 85–91. In: Y. S. Murty, B. M. Johri, H. Y. Mohan Ram, & T. M. Vargese (eds). Advances in plant morphology. Sarita Prakashan, Nauchandi, India.

    Google Scholar 

  • Rao, D. & L. L. Narayana. 1965. Vascular anatomy of Humiriaceae. Current Science 34: 383–384.

    Google Scholar 

  • Rao, V. S. 1949. The morphology of the calyx-tube and origin of perigyny in Turneraceae. Journal of the Indian Botanical Society 21: 153–161.

    Google Scholar 

  • Raya, Á. & J. C. I. Belmonte. 2006. Left-right asymmetry in the vertebrate embryo: from early information to higher-level integration. Nature Reviews Genetics 7: 283–293.

    Article  PubMed  CAS  Google Scholar 

  • Ree, R. H. & M. J. Donoghue. 1999. Inferring rates of change in flower symmetry in asterid angiosperms. Systematic Biology 48: 633–641.

    Article  Google Scholar 

  • ———, H. L. Citerne, M. Lavin & Q. C. B. Cronk. 2004. Heterogeneous selection on LEGCYC paralogs in relation to flower morphology and the phylogeny of Lupinus (Leguminosae). Molecular Biology and Evolution 21: 321–331.

    Article  PubMed  CAS  Google Scholar 

  • Reeves, P. A. & R. G. Olmstead. 1998. Evolution of novel morphological and reproductive traits in a clade containing Antirrhinum majus (Scrophulariaceae). American Journal of Botany 85: 1047–1056.

    Article  PubMed  CAS  Google Scholar 

  • ——— & ———. 2003. Evolution of the TCP gene family in Asteridae: cladistic and network approaches to understanding regulatory gene family diversification and its impact on morphological evolution. Molecular Biology and Evolution 20: 1997–2009.

    Article  PubMed  CAS  Google Scholar 

  • Reinsch, J. 1927. Über die Entstehung der Ästivationsformen von Kelch und Blumenkrone dikotyler Pflanzen und über die Beziehungen der Deckungsweisen zur Gesamtsymmetrie der Blüte. Flora 121: 77–124.

    Google Scholar 

  • Ren, Y., H.-F. Li, L. Zhao & P. K. Endress. 2007. Floral morphogenesis in Euptelea (Eupteleaceae, Ranunculales). Annals of Botany 100: 185–193.

    Article  PubMed  Google Scholar 

  • Renner, S. S. 1993. Phylogeny and classification of the Melastomataceae and Memecylaceae. Nordic Journal of Botany 13: 519–540.

    Article  Google Scholar 

  • Renshaw, A. & S. Burgin. 2008. Enantiomorphy in Banksia (Proteaceae): flowers and fruits. Australian Journal of Botany 56: 342–346.

    Article  Google Scholar 

  • Robbrecht, E. 1988. Tropical woody Rubiaceae. Opera Botanica Belgica 1: 1–272.

    Google Scholar 

  • Robertson, C. 1888. Zygomorphy and its causes. I/II/III. Botanical Gazette (Crawfordsville) 13: 146–151/203–208/224–230.

  • Robyns, W. 1930. L’organisation florale des Solanacées zygomorphes. Mémoires de l’Académie Royale Belgique, Cl. Sci, 11, 8: 1–96.

  • Roels, P. & E. Smets. 1996. A floral ontogenetic study in the Dipsacales. International Journal of Plant Sciences 157: 203–218.

    Article  Google Scholar 

  • Rohweder, O. & K. Huber. 1974. Centrospermen-Studien 7. Beobachtungen und Anmerkungen zur Morphologie und Entwicklungsgeschichte einiger Nyctaginaceae. Botanische Jahrbücher für Systematik 94: 327–359.

    Google Scholar 

  • Rohwer, J. G. 1993a. Moraceae. In: K. Kubitzki, J. G. Rohwer, & V. Bittrich (eds). The families and genera of vascular plants, 2: 438–453. Springer, Berlin.

    Google Scholar 

  • ——— 1993b. Phytolaccaceae. In: K. Kubitzki, J. G. Rohwer, & V. Bittrich (eds). The families and genera of vascular plants, 2: 506–515. Springer, Berlin.

    Google Scholar 

  • Rollins, R. C. 1993. The Cruciferae of continental North America. Stanford University Press, Stanford.

    Google Scholar 

  • Ronse De Craene, L. P. 2004. Floral development of Berberidopsis corallina: a crucial link in the evolution of flowers in the core eudicots. Annals of Botany 94: 741–751.

    Article  PubMed  Google Scholar 

  • ——— 2005. Floral developmental evidence for the systematic position of Batis (Bataceae). American Journal of Botany 92: 752–760.

    Article  PubMed  Google Scholar 

  • ——— & E. Haston. 2006. The systematic relationships of glucosinolate-producing plants and related families: a cladistic investigation based on morphological and molecular characters. Botanical Journal of the Linnean Society 151: 453–494.

    Article  Google Scholar 

  • ——— & E. F. Smets. 1991. Androecium and floral nectaries of Harungana madagascariensis (Clusiaceae). Plant Systematics and Evolution 178: 179–194.

    Google Scholar 

  • ——— & ———. 1999. The floral development and anatomy of Carica papaya L. (Caricaceae). Canadian Journal of Botany 77: 582–598.

    Google Scholar 

  • ——— & ———. 2001. Floral developmental evidence for the systematic relationships of Tropaeolum (Tropaeolaceae). Annals of Botany 88: 879–892.

    Article  Google Scholar 

  • ——— & L. Wanntorp. 2008. Morphology and anatomy of the flower of Meliosma (Sabiaceae): implications for pollination biology. Plant Systematics and Evolution 271: 79–91.

    Article  Google Scholar 

  • ———, J. De Laet & E. F. Smets. 1998. Floral development and anatomy of Moringa oleifera (Moringaceae): what is the evidence for a capparalean or sapindalean affinity? Annals of Botany 82: 273–284.

    Article  Google Scholar 

  • ———, ——— & ———. 1996. Morphological studies in Zygophyllaceae II. The floral development and vascular anatomy of Peganum harmala. American Journal of Botany 83: 201–215.

  • ———, E. Smets & D. Clinckemaillie. 2000. Floral ontogeny and anatomy in Koelreuteria with special emphasis on monosymmetry and septal cavities. Plant Systematics and Evolution 223: 91–107.

    Article  Google Scholar 

  • ———, H. P. Linder, E. F. Smets & T. Dlamini. 2001. Evolution and development of floral diversity of Melianthaceae, an enigmatic southern African family. International Journal of Plant Sciences 162: 59–82.

    Article  Google Scholar 

  • ———, T. Y. A. Yang, P. Schols & E. F. Smets. 2002a. Floral anatomy and systematics of Bretschneidera (Bretschneideracaee). Botanical Journal of the Linnean Society 139: 29–45.

    Article  Google Scholar 

  • ———, H. P. Linder & E. F. Smets. 2002b. Ontogeny and evolution of the flowers of South African Restionaceae with special emphasis on the gynoecium. Plant Systematics and Evolution 231: 225–258.

    Article  Google Scholar 

  • Rudall, P. J. & R. M. Bateman. 2002. Roles of synorganisation, zygomorphy and heterotopy in floral evolution: the gynostemium and labellum of orchids and other lilioid monocots. Biological Reviews 77: 403–441.

    Article  PubMed  Google Scholar 

  • ——— & ———. 2004. Evolution of zygomorphy in monocot flowers: iterative patterns and developmental constraints. New Phytologist 162: 25–44.

    Article  Google Scholar 

  • ———, R. F. Bateman, M. F. Fay & A. Eastman. 2002. Floral anatomy and systematics of Alliaceae with particular reference to Gilliesia, a presumed insect mimic with strongly zygomorphic flowers. American Journal of Botany 89: 1867–1883.

    Article  PubMed  Google Scholar 

  • ———, D. D. Sokoloff, M. V. Remizowa, J. G. Conran, J. I. Davis, T. D. Macfarlane & D. W. Stevenson. 2007. Morphology of Hydatellaceae, an anomalous aquatic family recently recognized as an early-divergent angiosperm lineage. American Journal of Botany 94: 1073–1092.

    Article  PubMed  Google Scholar 

  • ———, R. A. Ryder & W. J. Baker. 2011. Comparative gynoecium structure and multiple origins of apocarpy in coryphoid palms (Arecaceae). International Journal of Plant Sciences 172: 674–690.

    Article  Google Scholar 

  • Rutishauser, R., L. Wanntorp & E. Pfeifer. 2004. Gunnera herteri—developmental morphology of a dwarf from Uruguay and S Brazil (Gunneraceae). Plant Systematics and Evolution 248: 219–241.

    Article  Google Scholar 

  • Saarela, J. M., H. S. Rai, J. A. Doyle, P. K. Endress, S. Mathews, A. D. Marchant, B. G. Briggs & S. W. Graham. 2007. Hydatellaceae identified as a new branch near the base of the angiosperm phylogenetic tree. Nature 446: 312–315.

    Article  PubMed  CAS  Google Scholar 

  • Sargent, R. D. 2004. Floral symmetry affects speciation rates in angiosperms. Proceedings of the Royal Society of London B 271: 603–608.

    Article  Google Scholar 

  • Savile, D. B. O. 1953. Splash-cup dispersal mechanism in Chrysosplenium and Mitella. Science 117: 250–251.

    Article  PubMed  CAS  Google Scholar 

  • ——— 1979. Dispersal by falling water drops in Saxifragaceae. Davidsonia 10: 65–69.

    Google Scholar 

  • Sazima, M. & I. Sazima. 1978. Bat pollination of the passion flower, Passiflora mucronata, in southeastern Brazil. Biotropica 10: 100–109.

    Article  Google Scholar 

  • Schmucker, T. 1931. Über asymmetrisches Verhalten von Hymenopteren an Blüten. Biologisches Zentralblatt 51: 15–18.

    Google Scholar 

  • Schneider, J. V. 2007. Surianaceae. In: K. Kubitzki (ed). The families and genera of vascular plants, 9: 449–455. Springer, Berlin.

    Google Scholar 

  • ———, U. Swenson, R. Samuel, T. F. Stuessy & G. Zizka. 2006. Phylogenetics of Quiinaceae (Malpighiales): evidence from trnL-trnF sequence data and morphology. Plant Systematics and Evolution 257: 189–203.

    Article  CAS  Google Scholar 

  • Schönenberger, J. & P. K. Endress. 1998. Structure and development of the flowers in Mendoncia, Pseudocalyx, and Thunbergia (Acanthaceae) and their systematic implications. International Journal of Plant Sciences 159: 446–465.

    Article  Google Scholar 

  • Schoute, J. C. 1935. On corolla aestivation and phyllotaxis of floral phyllomes. Koninklijke Akademie van Wetenschappen, Verhandeling, Tweede Sectie, 34, 4: 1–77.

    Google Scholar 

  • Scotland, R. W., P. K. Endress & T. J. Lawrence. 1994. Corolla ontogeny and aestivation in the Acanthaceae. Botanical Journal of the Linnean Society 114: 49–65.

    Article  Google Scholar 

  • Sheahan, M. C. 2007. Zygophyllaceae. In: K. Kubitzki (ed). The families and genera of vascular plants, 9: 488–500. Springer, Berlin.

    Google Scholar 

  • Simpson, B. B. 1982. Krameria (Krameriaceae) flowers: orientation and elaiophore morphology. Taxon 31: 517–528.

    Article  Google Scholar 

  • Simpson, M. G. 1990. Phylogeny and classification of the Haemodoraceae. Annals of the Missouri Botanical Garden 77: 722–784.

    Article  Google Scholar 

  • ——— 1998. Haemodoraceae. In: K. Kubitzki (ed). The families and genera of vascular plants, 4: 212–222. Springer, Berlin.

    Google Scholar 

  • ——— & P. J. Rudall. 1998. Tecophilaeaceae. In: K. Kubitzki (ed). The families and genera of vascular plants, 3: 429–436. Springer, Berlin.

    Google Scholar 

  • Sleumer, H. 1942. Icacinaceae. In: A. Engler & K. Prantl (eds). Die natürlichen Pflanzenfamilien, ed. 2, 20b: 322–396. Engelmann, Leipzig.

    Google Scholar 

  • Smith, G. F. & B.-E. Van Wyk. 1998. Asphodelaceae. In: K. Kubitzki (ed). The families and genera of vascular plants, 3: 130–140. Springer, Berlin.

    Google Scholar 

  • Smith, J. F., L. C. Hileman, M. P. Powell & D. A. Baum. 2004. Evolution of GCYC, a Gesneriaceae homolog of CYCLOIDEA, within Gesnerioideae (Gesneriaceae). Molecular Phylogenetics and Evolution 31: 765–779.

    Article  PubMed  CAS  Google Scholar 

  • Smith, L. B. & W. Till. 1998. Bromeliaceae. In: K. Kubitzki (ed). The families and genera of vascular plants, 4: 74–99. Springer, Berlin.

    Google Scholar 

  • Sobick, U. 1983. Blütenentwicklungsgeschichtliche Untersuchungen and Resedaceen unter besonderer Berücksichtigung von Androeceum und Gynoeceum. Botanische Jahrbücher für Systematik 104: 203–248.

    Google Scholar 

  • Sokoloff, D. D. 1999. Ottleya, a new genus of Papilionaceae-Loteae from North America. Feddes Repertorium 110: 89–97.

    Article  Google Scholar 

  • ———, G. V. Degtjareva, P. K. Endress, M. V. Remizowa, T. H. Samigullin & C. M. Valiejo-Roman. 2007. Inflorescence and early flower development in Loteae (Leguminosae) in a phylogenetic and taxonomic context. International Journal of Plant Sciences 168: 801–833.

    Article  Google Scholar 

  • ———, M. V. Remizova, H. P. Linder & P. J. Rudall. 2009. Morphology and development of the gynoecium in Centrolepidaceae: The most remarkable range of variation in Poales. American Journal of Botany 96: 1925–1940.

    Article  PubMed  Google Scholar 

  • Specht, C. D. & M. E. Bartlett. 2010. Flower evolution: The origin and subsequent diversification of the angiosperm flower. Annual Review of Ecology, Evolution and Systematics 40: 217–243.

    Article  Google Scholar 

  • Specht, C., M. E. Bartlett & T. Renner. 2008. Evolution of the stamen whorl in the Zingiberales. Botany 2008. Abstract (on-line).

  • Speta, F. 1998. Hyacinthaceae. In: K. Kubitzki (ed). The families and genera of vascular plants, 3: 261–285. Springer, Berlin.

    Google Scholar 

  • Sprengel, C. K. 1793. Das entdeckte Geheimnis der Natur im Bau und in der Befruchtung der Blumen. Vieweg, Berlin.

    Book  Google Scholar 

  • Staedler, Y. M. & P. K. Endress. 2009. Diversity and lability of floral phyllotaxis in the pluricarpellate families of core Laurales (Gomortegaceae, Atherospermataceae, Siparunaceae, Monimiaceae). International Journal of Plant Sciences 170: 522–550.

    Article  Google Scholar 

  • Stahl, B. & A. Anderberg. 2004. Myrsinaceae. In: K. Kubitzki (ed). The families and genera of vascular plants, 6: 266–281. Springer, Berlin.

    Google Scholar 

  • Stauffer, F. W. & P. K. Endress. 2003. Comparative morphology of female flowers and systematics in Geonomeae (Arecaceae). Plant Systematics and Evolution 242: 171–203.

    Article  Google Scholar 

  • ———, R. Rutishauser & P. K. Endress. 2002. Morphology and development of the female flowers in Geonoma interrupta (Arecaceae). American Journal of Botany 89: 220–229.

    Article  PubMed  Google Scholar 

  • Stern, W. L., G. K. Brizicky & R. H. Eyde. 1969. Comparative anatomy and relationships of Columelliaceae. Journal of the Arnold Arboretum 50: 36–75.

    Google Scholar 

  • Stevens, P. F. 2001 onwards. Angiosperm Phylogeny Website. Version 9, June 2008 [and more or less continuously updated since]. http:/www.mobot.org/MOBOT/research/APweb/.

  • ——— 2007. Clusiaceae-Guttiferae. In: K. Kubitzki (ed). The families and genera of vascular plants, 9: 48–66. Springer, Berlin.

    Google Scholar 

  • ———, J. Luteyn, E. G. H. Oliver, T. L. Bell, E. A. Brown, R. K. Crowden, A. S. George, G. J. Jordan, P. Ladd, K. Lemson, C. B. McLean, Y. Menadue, J. S. Pate, H. M. Stace & C. M. Weiler. 2004. Ericaceae. In: K. Kubitzki (ed). The families and genera of vascular plants, 6: 145–194. Springer, Berlin.

    Google Scholar 

  • Stevenson, D. W., M. Colella & B. Boom. 1998. Rapateaceae. In: K. Kubitzki (ed). The families and genera of vascular plants, 4: 415–424. Springer, Berlin.

    Google Scholar 

  • Steyermark, J. A. & J. L. Luteyn. 1980. Revision of the genus Ochthocosmus (Linaceae). Brittonia 32: 128–143.

    Article  Google Scholar 

  • Stone, B. C., K.-L. Huynh & H.-H. Poppendieck. 1998. Pandanaceae. In: K. Kubitzki (ed). The families and genera of vascular plants, 3: 397–404. Springer, Berlin.

    Google Scholar 

  • Stoutamire, W. 1978. Pollination of Tipularia discolor, an orchid with modified symmetry. American Orchid Society Bulletin 33: 413–415.

    Google Scholar 

  • Strange, A., P. J. Rudall & C. J. Prychid. 2004. Comparative floral anatomy of Pontederiaceae. Botanical Journal of the Linnean Society 144: 395–408.

    Article  Google Scholar 

  • Struwe, L. & V. A. Albert. 2002. Tribe Helieae. In: L. Struwe & V. A. Albert (eds). Gentianaceae: Systematics and natural history, 137–170. Cambridge University Press, Cambridge.

    Google Scholar 

  • Stützel, T. 1984. Blüten- und infloreszenzmorphologische Untersuchungen zur Systematik der Eriocaulaceen. Dissertationes Botanicae 71: 1–108.

    Google Scholar 

  • Takeuchi, W. 2001. An unusual new species of Steganthera (Monimiaceae) from Papua New Guinea. Kew Bulletin 56: 995–998.

    Article  Google Scholar 

  • Tamura, M. N. 1998a. Liliaceae. In: K. Kubitzki (ed). The families and genera of vascular plants, 3: 343–353. Springer, Berlin.

    Google Scholar 

  • ——— 1998b. Melanthiaceae. In: K. Kubitzki (ed). The families and genera of vascular plants, 3: 369–380. Springer, Berlin.

    Google Scholar 

  • ——— 1998c. Trilliaceae. In: K. Kubitzki (ed). The families and genera of vascular plants, 3: 444–452. Springer, Berlin.

    Google Scholar 

  • Tanaka, N. 2003. New status and combinations for Japanese taxa of Chionographis (Melanthiaceae). Novon 13: 212–215.

    Article  Google Scholar 

  • Tank, D. C., P. M. Beardsley, S. A. Kelchner & R. G. Olmstead. 2006. Review of the systematics of Scrophulariaceae s.l. and their current disposition. Australian Systematic Botany 19: 289–307.

    Article  Google Scholar 

  • Taroda, N. & P. E. Gibbs. 1986. A revision of the Brazilian species of Cordia subgenus Varronia (Boraginaceae). Notes Royal Botanic Garden Edinburgh 44: 105–140.

    Google Scholar 

  • Tebbitt, M. C., L. Lowe-Forrest, A. Santoriello, W. L. Clement & S. M. Swenson. 2006. Phylogenetic relationships of Asian Begonia, with an emphasis on the evolution of rain-ballist animal dispersal mechanisms in sections Platycentrum, Sphenanthera and Leprosae. Systematic Botany 31: 327–336.

    Article  Google Scholar 

  • Teeri, T. H., M. Kotilainen, A. Uimari, S. Ruokolainen, Y. P. Ng, U. Malm, E. Pöllänen, S. Broholm, R. Laitinen, P. Elomaa & V. A. Albert. 2006. Floral developmental genetics of Gerbera (Asteraceae). Advances in Botanical Research 44: 324–351.

    Article  CAS  Google Scholar 

  • Teppner, H. 1988. Lathyrus grandiflorus (Fabaceae-Vicieae): Blüten-Bau, -Funktion und Xylocopa violacea. Phyton (Austria) 28: 321–336.

    Google Scholar 

  • Thiv, M. & J. W. Kadereit. 2002a. A morphological cladistic analysis of Gentianaceae-Canscorinae and the evolution of anisomorphic androecia in the subtribe. Systematic Botany 27: 780–788.

    Google Scholar 

  • ——— & ———. 2002b. Tribe Chironieae. Pp 108–128. In: L. Struwe & V. A. Albert (eds). Gentianaceae: Systematics and natural history. Cambridge University Press, Cambridge.

    Google Scholar 

  • Tiagi, Y. D. 1969. Vascular anatomy of the flower of certain species of the Combretaceae. Botanical Gazette (Crawfordsville) 130: 150–157.

    Article  Google Scholar 

  • Tilak, V. D. & P. M. Nene. 1978. Floral anatomy of the Rutaceae. Indian Journal of Botany 1: 83–90.

    Google Scholar 

  • Tobe, H. 2012. Floral structure of Cardiopteris (Cardiopteridaceae) with special emphasis of the gynoecium: Systematic and evolutionary implications. Journal of Plant Research 125: 361–369.

    Google Scholar 

  • Torgard, S. S. 1924. Studien über die Morphologie und Baumechanik der Oleaceen-Blüte. Appeltofft, Kalmar.

    Google Scholar 

  • Troll, W. 1929. Roscoea purpurea Sm., eine Zingiberacee mit Hebelmechanismus in den Blüten. Mit Bemerkungen über die Entfaltungsbewegungen der fertilen Staubblätter von Salvia. Planta 7: 1–28.

    Article  Google Scholar 

  • ——— 1951. Botanische Notizen II. Abhandlungen der Akademie der Wissenschaften und der Literatur, Mainz, Mathematisch-Naturwissenschaftliche Klasse 1951: 25–80.

  • ——— 1961. Cochliostema odoratissimum Lem. Organisation und Lebensweise. Nebst vergleichenden Ausblicken auf andere Commelinaceen. Beiträge zur Biologie der Pflanzen 36: 325–389.

    Google Scholar 

  • Tsai, W.-C., Y.-Y. Hsiao, Z.-J. Pan, C.-C. Hsu, Y.-P. Yang, W.-H. Chen & H.-H. Chen. 2008. Molecular biology of orchid flowers: with emphasis on Phalaenopsis. Advances in Botanical Research 47: 99–145.

    Article  CAS  Google Scholar 

  • Tsou, C.-H. & S. A. Mori. 2007. Floral organogenesis and floral evolution of the Lecythidoideae (Lecythidaceae). American Journal of Botany 94: 716–736.

    Article  PubMed  Google Scholar 

  • Tucker, S. C. 1984. Origin of symmetry in flowers. Pp 351–396. In: R. A. White & W. C. Dickison (eds). Contemporary problems in plant anatomy. Academic, Orlando.

    Chapter  Google Scholar 

  • ——— 1991. Helical floral organogenesis in Gleditsia, a primitive caesalpinioid legume. American Journal of Botany 78: 1130–1149.

    Article  Google Scholar 

  • ——— 1996. Trends in evolution of floral ontogeny in Cassia sensu stricto, Senna, and Chamaecrista (Leguminosae: Caesalpinioideae: Cassieae: Cassiinae); a study in convergence. American Journal of Botany 83: 687–711.

    Article  Google Scholar 

  • ——— 1999. Evolutionary lability of symmetry in early floral development. International Journal of Plant Sciences 160(Suppl): S25–S39.

    Article  PubMed  Google Scholar 

  • ——— 2002. Comparative floral ontogeny in Detarieae (Leguminosae: Caesalpinioideae). 2. Zygomorphic taxa with with petal and stamen suppression. American Journal of Botany 89: 888–907.

    Article  PubMed  Google Scholar 

  • ——— & P. Bernhardt. 2000. Floral ontogeny, pattern formation, and evolution in Hibbertia and Adrastea (Dilleniaceae). American Journal of Botany 87: 1915–1936.

    Article  PubMed  CAS  Google Scholar 

  • ———, A. W. Douglas & H.-X. Liang. 1993. Utility of ontogenetic and conventional characters in determining phylogenetic relationships of Saururaceae and Piperaceae (Piperales). Systematic Botany 18: 614–641.

    Article  Google Scholar 

  • Uhl, N. W. & J. Dransfield. 1987. Genera Palmarum. Allen Press, Lawrence, Kansas.

    Google Scholar 

  • Ushimaru, A. & F. Hyodo. 2005. Why do bilaterally symmetrical flowers orient vertically? Flower orientation influences pollinator landing behaviour. Evolutionary Ecology Research 7: 151–160.

    Google Scholar 

  • van Bruggen, H. W. E. 1998. Aponogetonaceae. In: K. Kubitzki (ed). The families and genera of vascular plants, 4: 21–25. Springer, Berlin.

    Google Scholar 

  • van Jaarsveld, E. 2003. Tylecodon. Pp 354–364. In: U. Eggli (ed). Illustrated handbook of succulent plants: Crassulaceae. Springer, Berlin.

    Google Scholar 

  • Verhoek, S. 1998. Agavaceae. In: K. Kubitzki (ed). The families and genera of vascular plants, 3: 60–70. Springer, Berlin.

    Google Scholar 

  • Vincent, C. A. & E. S. Coen. 2004. A temporal and morphological framework for flower development in Antirrhinum majus. Canadian Journal of Botany 82: 681–690.

    Article  Google Scholar 

  • Vöchting, H. 1886. Über Zygomorphie und deren Ursachen. Jahrbücher für Wissenschaftliche Botanik 17: 297–346.

    Google Scholar 

  • Vogel, S. 1954. Blütenbiologische Typen als Elemente der Sippengliederung, dargestellt anhand der Flora Südafrikas. Fischer, Jena.

    Google Scholar 

  • ——— 1974. Ölblumen und ölsammelnde Bienen. Tropische und Subtropische Pflanzenwelt 7: 1–267.

    Google Scholar 

  • ——— 1978. Evolutionary shifts from reward to deception in pollen flowers. Pp 89–96. In: A. J. Richards (ed). The pollination of flowers by insects. Academic, London.

    Google Scholar 

  • ——— 1990. Ölblumen und ölsammelnde Bienen. Dritte Folge. Momordica, Thladiantha und die Ctenoplectridae. Tropische und Subtropische Pflanzenwelt 73: 1–186.

    Google Scholar 

  • ——— 1998. Remarkable nectaries: structure, ecology, organophyletic perspectives IV. Miscellaneous cases. Flora 193: 225–248.

    Google Scholar 

  • von Balthazar, M., G. E. Schatz & P. K. Endress. 2003. Female flowers and inflorescences of Didymelaceae. Plant Systematics and Evolution 237: 199–208.

    Article  Google Scholar 

  • Wagner, A. 2008. Gene duplications, robustness, and evolutionary innovations. Bioessays 30: 367–373.

    Article  PubMed  CAS  Google Scholar 

  • Wagner, G. P. 1986. The systems approach: an interface between development and population genetic aspects of evolution. Pp 149–165. In: D. M. Raup & D. Jablonski (eds). Paterns and processes in the history of life. Springer, Berlin.

    Chapter  Google Scholar 

  • ——— 1989. The origin of morphological characters and the biological basis of homology. Evolution 43: 1157–1171.

    Article  Google Scholar 

  • ——— 2007. The developmental genetics of homology. Nature Review Genetics 8: 473–479.

    Article  CAS  Google Scholar 

  • Wagner, W. L., P. C. Hoch & P. H. Raven. 2007. Revised classification of the Onagraceae. Systematic Botany Monographs 83: 1–240.

    Google Scholar 

  • Wang, L., Q. Gao, Y. Z. Wang & Q.-B. Lin. 2006. Isolation and sequence analysis of two CYC-like genes, SiCYC1A and SiCAC1B, from zygomorphic and actinomorphic cultivars of Saintpaulia ionantha (Gesneriaceae). Acta Phytotaxonomica Sinica 44: 353–361.

    Article  Google Scholar 

  • Wang, Z., Y. Luo, X. Li, L. Wang, S. Xu, J. Yang, L. Wenig, S. Sato, S. Tabata, M. Ambrose, C. Rameau, X. Feng, X. Hu & D. Luo. 2008. Genetic control of floral zygomorphy in pea (Pisum sativum L.). Proceedings of the National Academy of Sciences of the United States of America 105: 10414–10419.

    Article  PubMed  CAS  Google Scholar 

  • Webb, C. J. & D. G. Lloyd. 1986. The avoidance of interference between the presentation of pollen and stigmas in angiosperms. II. Herkogamy. New Zealand Journal of Botany 34: 164–178.

    Google Scholar 

  • Weber, H. 1955. Über die Blütenkelche tropischer Rubiaceen. Abhandlungen der Akademie der Wissenschaften und der Literatur in Mainz, Mathematisch-Naturwissenschaftliche Klasse 1955: 449–466.

  • Weckerle, C. & R. Rutishauser. 2003. Comparative morphology and systematic position of Averrhoidium within Sapindaceae. International Journal of Plant Sciences 164: 775–792.

    Article  Google Scholar 

  • Weibel, R. 1941. Fleurs cléistogames particulières chez certaines Violettes chiliennes. Compte Rendu de la Société de Physique et d’Histoire Naturelle de Genève 58: 146–148.

    Google Scholar 

  • Weigend, M. 2004. Loasaceae. In: K. Kubitzki (ed). The families and genera of vascular plants, 6: 239–254. Springer, Berlin.

    Google Scholar 

  • Werth, E. 1956. Bau und Leben der Blumen. Die blütenbiologischen Bautypen in Entwicklung und Anpassung, Enke, Stuttgart.

    Google Scholar 

  • Westerkamp, C. 1993. The co-operation between the asymmetric flower of Lathyrus latifolius (Fabaceae–Vicieae) and its visitors. Phyton 33: 127–137.

    Google Scholar 

  • ——— 1997. Keel blossoms: bee flowers with adaptations against bees. Flora 192: 125–132.

    Google Scholar 

  • ——— 1999. Keel flowers of the Polygalaceae and Fabaceae: a functional comparison. Botanical Journal of the Linnean Society 129: 207–221.

    Article  Google Scholar 

  • ——— & R. Classen-Bockhoff. 2007. Bilabiate flowers: The ultimate response to bees? Annals of Botany 100: 361–374.

    Article  PubMed  Google Scholar 

  • ——— & A. Weber. 1997. Secondary and tertiary pollen presentation in Polygala myrtifolia and allies (Polygalaceae, South Africa). South African Journal of Botany 63: 254–258.

    Google Scholar 

  • Weston, P. H. 2007. Proteaceae. In: K. Kubitzki (ed). Families and genera of vascular plants, 9: 364–404. Springer, Berlin.

    Google Scholar 

  • Whalen, M. D. 1978. Reproductive character displacement and floral diversity in Solanum sect. Androceras. Systematic Botany 3: 77–86.

    Article  Google Scholar 

  • ——— 1979. Taxonomy of Solanum section Androceras. Gentes Herbarum 11: 359–426.

    Google Scholar 

  • Whipple, C. J. & R. J. Schmidt. 2006. Genetics of grass flower development. Advances in Botanical Research 44: 385–424.

    Article  CAS  Google Scholar 

  • Wilken, D. H. 2004. Polemoniaceae. In: K. Kubitzki (ed). The families and genera of vascular plants, 6: 300–312. Springer, Berlin.

    Google Scholar 

  • Wilkinson, H. P. & L. Wanntorp. 2007. Gunneraceae. In: K. Kubitzki (ed). The families and genera of vascular plants, 9: 177–183. Springer, Berlin.

    Google Scholar 

  • Wilson, C. A. & C. L. Calvin. 2006. Character divergences and convergences in canopy-dwelling Loranthaceae. Botanical Journal of the Linnean Society 150: 101–113.

    Article  Google Scholar 

  • Woodward, G. L. & T. M. Laverty. 1992. Recall of flower handling skills by bumblebees—a test of Darwin interference hypothesis. Animal Behaviour 44: 1045–1051.

    Article  Google Scholar 

  • Worberg, A., M. H. Alford, D. Quandt & T. Borsch. 2009. Huertales sister to Brassicales plus Malvales, and newly circumscribed to include Dipentodon, Gerrardina, Huertea, Perrottetia, and Tapiscia. Taxon 58: 468–478.

    Google Scholar 

  • Wurdack, K. J. & C. C. Davis. 2009. Malpighiales phylogenetics: gaining ground on one of the most recalcitrant clades in the angiosperm tree of life. American Journal of Botany 96: 1551–1570.

    Article  PubMed  Google Scholar 

  • Wydler, H. 1844. Einige Bemerkungen über Symmetrie der Blumenkrone. Botanische Zeitung 2(609–611): 706–707.

    Google Scholar 

  • Xiao, L. H. & Y. Z. Wang. 2007. Single nucleotide polymorphisms of Gcyc1 (Cycloidea) in Conandron ramondioides (Gesneriaceae) from Southeast China. Plant Systematics and Evolution 269: 145–157.

    Article  CAS  Google Scholar 

  • Zhang, W., E. M. Kramer & C. C. Davis. 2010. Floral symmetry genes and the origin and maintenance of zygomorphy in a plant-pollinator mutualism. Proceedings of the National Academy of Sciences of the USA 107: 6388–6393.

    Article  PubMed  CAS  Google Scholar 

  • ———, ——— & ———. 2012. Similar genetic mechanisms underlie the parallel evolution of floral phenotypes. PLoS ONE 7: e36033.

  • Zhou, X.-R., Y.-Z. Wang, J. F. Smith & R. Chen. 2008. Altered expression patterns of TCP and MYB genes relating to the floral developmental transition from initial zygomorphy to actinomorphy in Bournea (Gesneriaceae). New Phytologist 178: 532–543.

    Article  PubMed  CAS  Google Scholar 

  • Zhu, X. Y., M. W. Chase, Y.-L. Qiu, H.-Z. Kong, D. L. Dilcher, J.-H. Li & Z.-D. Chen. 2007. Mitochondrial matR sequences help to resolve deep phylogenetic relationships in rosids. BMC Evolutionary Biology 2007, 7: no. 217.

  • Zimmermann, W. 1933. Beiträge zur Kenntnis der Georeactionen. IV. Blütenbewegungen und andere Umstimmungsbewegungen. Jahrbücher für Wissenschaftliche Botanik 77: 393–506.

    Google Scholar 

  • ——— 1975. Ranunculaceae. In: J. Damboldt (ed.), Gustav Hegi’s Illustrierte Flora von Mitteleuropa (edn. 2), III, 3, 1: 53–341. Parey, Berlin.

Download references

Acknowledgments

I would like to thank Amy Litt for the invitation to participate in the Symposium held in Vancouver in July 2008 in honor of Dennis Stevenson, deeply committed botanist and long-time friend. I would like to thank Jürg Schönenberger for communication of personal observations in Polemoniaceae and Fouquieriaceae. For information on particular plant groups I thank Urs Eggli (Crassulaceae) and Dmitri D. Sokoloff (Ottleya). Alex Bernhard is thanked for support with graphical work. The manuscript was submitted in November 2008 and updated in October 2011 because of the delay in publication.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Peter K. Endress.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Endress, P.K. The Immense Diversity of Floral Monosymmetry and Asymmetry Across Angiosperms. Bot. Rev. 78, 345–397 (2012). https://doi.org/10.1007/s12229-012-9106-3

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12229-012-9106-3

Keywords

Navigation