Skip to main content

Advertisement

Log in

c-MYC-Independent Nuclear Reprogramming Favors Cardiogenic Potential of Induced Pluripotent Stem Cells

  • Published:
Journal of Cardiovascular Translational Research Aims and scope Submit manuscript

Abstract

Induced pluripotent stem cell (iPS) technology has launched a new platform in regenerative medicine aimed at deriving unlimited replacement tissue from autologous sources through somatic cell reprogramming using stemness factor sets. In this way, authentic cardiomyocytes have been obtained from iPS and recently demonstrated in proof-of-principle studies to repair infarcted heart. Optimizing the cardiogenic potential of iPS progeny would ensure a maximized yield of bioengineered cardiac tissue. Here, we reprogrammed fibroblasts in the presence or absence of c-MYC to determine if the acquired cardiogenicity is sensitive to the method of nuclear reprogramming. Using lentiviral constructs that expressed stemness factors SOX2, OCT4, and KLF4 with or without c-MYC, iPS clones generated through fibroblast reprogramming demonstrated indistinguishable characteristics for 5 days of differentiation with similar cell morphology, growth rates, and chimeric embryo integration. However, four-factor c-MYC-dependent nuclear reprogramming produced iPS progeny that consistently prolonged the expression of pluripotent Oct4 and Fgf4 genes and repressed cardiac differentiation. In contrast, three-factor c-MYC-less iPS clones efficiently upregulated precardiac (CXCR4, Flk1, and Mesp1/2) and cardiac (Nkx2.5, Mef2c, and myocardin) gene expression patterns. In fact, three-factor iPS progeny demonstrated early and robust cardiogenesis during in vitro differentiation with consistent beating activity, sarcomere maturation, and rhythmical intracellular calcium dynamics. Thus, nuclear reprogramming independent of c-MYC enhances production of pluripotent stem cells with innate cardiogenic potential.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Yamanaka, S. (2007). Strategies and new developments in the generation of patient-specific pluripotent stem cells. Cell Stem Cell, 1(1), 39–49.

    Article  CAS  PubMed  Google Scholar 

  2. Takahashi, K., Okita, K., Nakagawa, M., & Yamanaka, S. (2006). Induction of pluripotent stem cells from mouse embryonic and adult fibroblast cultures by defined factors. Cell, 126(4), 663–676.

    Article  CAS  PubMed  Google Scholar 

  3. Okita, K., Ichisaka, T., & Yamanaka, S. (2007). Generation of germ line-competent induced pluripotent stem cells. Nature, 448(7151), 313–317.

    Article  CAS  PubMed  Google Scholar 

  4. Nelson, T. J., Martinez-Fernandez, A. J., Yamada, S., Mael, A. A., Terzic, A., & Ikeda, Y. (2009). Induced pluripotent reprogramming from promiscuous human stemness-related factors. Clinical and Translational Science, 2(2), 118–126.

    Article  Google Scholar 

  5. Wernig, M., Meissner, A., Foreman, R., Brambrink, T., Ku, M., Hochedlinger, K., et al. (2007). In vitro reprogramming of fibroblasts into a pluripotent ES-cell-like state. Nature, 448(7151), 318–324.

    Article  CAS  PubMed  Google Scholar 

  6. Yu, J., Vodyanik, M. A., Smuga-Otto, K., Antosiewicz-Bourget, J., Frane, J. L., Tian, S., et al. (2007). Induced pluripotent stem cell lines derived from human somatic cells. Science, 318(5858), 1917–1920.

    Article  CAS  PubMed  Google Scholar 

  7. Hochedlinger, K., & Plath, K. (2009). Epigenetic reprogramming and induced pluripotency. Development, 136(4), 509–523.

    Article  CAS  PubMed  Google Scholar 

  8. Nishikawa, S., Goldstein, R. A., & Nierras, C. R. (2008). The promise of human induced pluripotent stem cells for research and therapy. Nature Reviews Molecular Cell Biology, 9(9), 725–729.

    Article  CAS  PubMed  Google Scholar 

  9. Park, I. H., Arora, N., Huo, H., Maherali, N., Ahfeldt, T., Shimamura, A., et al. (2008). Disease-specific induced pluripotent stem cells. Cell, 134(5), 877–886.

    Article  CAS  PubMed  Google Scholar 

  10. Hanna, J., Wernig, M., Markoulaki, S., Sun, C. W., Meissner, A., Cassady, J. P., et al. (2007). Treatment of sickle cell anemia mouse model with iPS cells generated from autologous skin. Science, 318(5858), 1920–1923.

    Article  CAS  PubMed  Google Scholar 

  11. Wernig, M., Zhao, J. P., Pruszak, J., Hedlund, E., Fu, D., Soldner, F., et al. (2008). Neurons derived from reprogrammed fibroblasts functionally integrate into the fetal brain and improve symptoms of rats with Parkinson's disease. Proceedings of the National Academy of Sciences of the United States of America, 105(14), 5856–5861.

    Article  CAS  PubMed  Google Scholar 

  12. Xu, D., Alipio, Z., Fink, L. M., Adcock, D. M., Yang, J., Ward, D. C., et al. (2009). Phenotypic correction of murine hemophilia A using an iPS cell-based therapy. Proceedings of the National Academy of Sciences of the United States of America, 106(3), 808–813.

    Article  CAS  PubMed  Google Scholar 

  13. Nelson, T. J., Martinez-Fernandez, A., Yamada, S., Perez-Terzic, C., Ikeda, Y., & Terzic, A. (2009). Repair of acute myocardial infarction with human stemness factors induced pluripotent stem cells. Circulation, 120(5), 408–416.

    Article  PubMed  Google Scholar 

  14. Schenke-Layland, K., Rhodes, K. E., Angelis, E., Butylkova, Y., Heydarkhan-Hagvall, S., Gekas, C., et al. (2008). Reprogrammed mouse fibroblasts differentiate into cells of the cardiovascular and hematopoietic lineages. Stem Cells, 26(6), 1537–1546.

    Article  CAS  PubMed  Google Scholar 

  15. Mauritz, C., Schwanke, K., Reppel, M., Neef, S., Katsirntaki, K., Maier, L. S., et al. (2008). Generation of functional murine cardiac myocytes from induced pluripotent stem cells. Circulation, 118(5), 507–517.

    Article  PubMed  Google Scholar 

  16. Narazaki, G., Uosaki, H., Teranishi, M., Okita, K., Kim, B., Matsuoka, S., et al. (2008). Directed and systematic differentiation of cardiovascular cells from mouse induced pluripotent stem cells. Circulation, 118(5), 498–506.

    Article  PubMed  Google Scholar 

  17. Zhang, J., Wilson, G., Soerens, A., Koonce, C., Yu, J., Palecek, S., et al. (2009). Functional cardiomyocytes derived from human induced pluripotent stem cells. Circulation Research, 104(4), e30–e41.

    Article  CAS  PubMed  Google Scholar 

  18. Martinez-Fernandez, A., Nelson, T. J., Yamada, S., Reyes, S., Alekseev, A. E., Perez-Terzic, C., et al. (2009). iPS programmed without c-MYC yield proficient cardiogenesis for functional heart chimerism. Circulation Research, 105(7), 648–656.

    Article  CAS  PubMed  Google Scholar 

  19. Dimos, J. T., Rodolfa, K. T., Niakan, K. K., Weisenthal, L. M., Mitsumoto, H., Chung, W., et al. (2008). Induced pluripotent stem cells generated from patients with ALS can be differentiated into motor neurons. Science, 321(5893), 1218–1221.

    Article  CAS  PubMed  Google Scholar 

  20. Raya, A., Rodríguez-Pizà, I., Guenechea, G., Vassena, R., Navarro, S., Barrero, M. J., et al. (2009). Disease-corrected haematopoietic progenitors from Fanconi anaemia induced pluripotent stem cells. Nature, 460(7251), 53–59.

    Article  CAS  PubMed  Google Scholar 

  21. Maehr, R., Chen, S., Snitow, M., Ludwig, T., Yagasaki, L., Goland, R., et al. (2009). Generation of pluripotent stem cells from patients with type 1 diabetes. Proceedings of the National Academy of Sciences of the United States of America, 106(37), 15768–15773.

    Article  CAS  PubMed  Google Scholar 

  22. Lee, G., Papapetrou, E. P., Kim, H., Chambers, S. M., Tomishima, M. J., Fasano, C. A., et al. (2009). Modelling pathogenesis and treatment of familial dysautonomia using patient-specific iPSCs. Nature, 461(7262), 402–406.

    Article  CAS  PubMed  Google Scholar 

  23. Chien, K. R., Domian, I. J., & Parker, K. K. (2008). Cardiogenesis and the complex biology of regenerative cardiovascular medicine. Science, 322(5907), 1494–1497.

    Article  CAS  PubMed  Google Scholar 

  24. Perez-Terzic, C., Faustino, R. S., Boorsma, B. J., Arrell, D. K., Niederländer, N. J., Behfar, A., et al. (2007). Stem cells transform into a cardiac phenotype with remodeling of the nuclear transport machinery. Nature Clinical Practice Cardiovascular Medicine, 4(Suppl 1), S68–S76.

    Article  CAS  PubMed  Google Scholar 

  25. Perez-Terzic, C., Behfar, A., Méry, A., van Deursen, J. M., Terzic, A., & Pucéat, M. (2003). Structural adaptation of the nuclear pore complex in stem cell-derived cardiomyocytes. Circulation Research, 92(4), 444–452.

    Article  CAS  PubMed  Google Scholar 

  26. Nelson, T. J., Martinez-Fernandez, A., & Terzic, A. (2009). KCNJ11 knockout morula reengineered by stem cell diploid aggregation. Philosophical Transactions of the Royal Society London B: Biological Sciences, 364(1514), 269–276.

    Article  CAS  Google Scholar 

  27. Behfar, A., Perez-Terzic, C., Faustino, R. S., Arrell, D. K., Hodgson, D. M., Yamada, S., et al. (2007). Cardiopoietic programming of embryonic stem cells for tumor-free heart repair. Journal of Experimental Medicine, 204(2), 405–420.

    Article  CAS  PubMed  Google Scholar 

  28. Nelson, T. J., Chiriac, A., Faustino, R. S., Crespo-Diaz, R. J., Behfar, A., & Terzic, A. (2009). Lineage specification of Flk-1+ progenitors is associated with divergent Sox7 expression in cardiopoiesis. Differentiation, 77(3), 248–255.

    Article  CAS  PubMed  Google Scholar 

  29. Hodgson, D. M., Behfar, A., Zingman, L. V., Kane, G. C., Perez-Terzic, C., Alekseev, A. E., et al. (2004). Stable benefit of embryonic stem cell therapy in myocardial infarction. American Journal of Physiology Heart and Circulatory Physiology, 287(2), H471–H479.

    Article  CAS  PubMed  Google Scholar 

  30. Maherali, N., & Hochedlinger, K. (2008). Guidelines and techniques for the generation of induced pluripotent stem cells. Cell Stem Cell, 3(6), 595–605.

    Article  CAS  PubMed  Google Scholar 

  31. Yamanaka, S. (2008). Pluripotency and nuclear reprogramming. Philosophical Transactions of the Royal Society London B: Biological Science, 363(1500), 2079–2087.

    Article  CAS  Google Scholar 

  32. Yamanaka, S. (2009). Elite and stochastic models for induced pluripotent stem cell generation. Nature, 460(7251), 49–52.

    Article  CAS  PubMed  Google Scholar 

  33. Kim, J. B., Sebastiano, V., Wu, G., Araúzo-Bravo, M. J., Sasse, P., Gentile, L., et al. (2009). Oct4-induced pluripotency in adult neural stem cells. Cell, 136(3), 411–419.

    Article  CAS  PubMed  Google Scholar 

  34. Nakagawa, M., Koyanagi, M., Tanabe, K., Takahashi, K., Ichisaka, T., Aoi, T., et al. (2008). Generation of induced pluripotent stem cells without Myc from mouse and human fibroblasts. Nature Biotechnology, 26(1), 101–106.

    Article  CAS  PubMed  Google Scholar 

  35. Wernig, M., Meissner, A., Cassady, J. P., & Jaenisch, R. (2008). c-Myc is dispensable for direct reprogramming of mouse fibroblasts. Cell Stem Cell, 2(1), 10–12.

    Article  CAS  PubMed  Google Scholar 

  36. Guo, Y., Niu, C., Breslin, P., Tang, M., Zhang, S., Wei, W., et al. (2009). c-Myc-mediated control of cell fate in megakaryocyte–erythrocyte progenitors. Blood, 114(10), 2097–2106.

    Article  CAS  PubMed  Google Scholar 

  37. Izumo, S., Nadal-Ginard, B., & Mahdavi, V. (1988). Protooncogene induction and reprogramming of cardiac gene expression produced by pressure overload. Proceedings of the National Academy of Sciences of the United States of America, 85(2), 339–343.

    Article  CAS  PubMed  Google Scholar 

  38. Baudino, T. A., McKay, C., Pendeville-Samain, H., Nilsson, J. A., Maclean, K. H., White, E. L., et al. (2002). c-Myc is essential for vasculogenesis and angiogenesis during development and tumor progression. Genes and Development, 16(19), 2530–2543.

    Article  CAS  PubMed  Google Scholar 

  39. Jackson, T., Allard, M. F., Sreenan, C. M., Doss, L. K., Bishop, S. P., & Swain, J. L. (1990). The c-myc proto-oncogene regulates cardiac development in transgenic mice. Molecular Cell Biology, 10(7), 3709–3716.

    CAS  Google Scholar 

  40. Xiao, G., Mao, S., Baumgarten, G., Serrano, J., Jordan, M. C., Roos, K. P., et al. (2001). Inducible activation of c-Myc in adult myocardium in vivo provokes cardiac myocyte hypertrophy and reactivation of DNA synthesis. Circulation Research, 89(12), 1122–1129.

    Article  CAS  PubMed  Google Scholar 

  41. Zhong, W., Mao, S., Tobis, S., Angelis, E., Jordan, M. C., Roos, K. P., et al. (2006). Hypertrophic growth in cardiac myocytes is mediated by Myc through a cyclin D2-dependent pathway. EMBO Journal, 25(16), 3869–3879.

    Article  CAS  PubMed  Google Scholar 

  42. Kidder, B. L., Yang, J., & Palmer, S. (2008). Stat3 and c-Myc genome-wide promoter occupancy in embryonic stem cells. PLoS ONE, 3(12), e3932.

    Article  PubMed  Google Scholar 

  43. Brambrink, T., Foreman, R., Welstead, G. G., Lengner, C. J., Wernig, M., Suh, H., et al. (2008). Sequential expression of pluripotency markers during direct reprogramming of mouse somatic cells. Cell Stem Cell, 2(2), 151–159.

    Article  CAS  PubMed  Google Scholar 

  44. Nelson, T. J., Behfar, A., & Terzic, A. (2008). Stem cells: biologics for regeneration. Clinical Pharmacology and Therapeutics, 84(5), 620–623.

    Article  CAS  PubMed  Google Scholar 

  45. Nelson, T. J., Behfar, A., & Terzic, A. (2008). Strategies for therapeutic repair: the “R3” regenerative medicine paradigm. Clinical and Translational Science, 1(2), 168–171.

    Article  PubMed  Google Scholar 

  46. Nelson, T. J., Behfar, A., Yamada, S., Martinez-Fernandez, A., & Terzic, A. (2009). Stem cell platforms for regenerative medicine. Clinical and Translational Science, 2(3), 222–227.

    Article  PubMed  Google Scholar 

  47. Byrne, J. A., Nguyen, H. N., & Reijo Pera, R. A. (2009). Enhanced generation of induced pluripotent stem cells from a subpopulation of human fibroblasts. PLoS ONE, 4(9), e7118.

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

The authors thank James E. Tarara and the Mayo Clinic Flow Cytometry and Optical Morphology Resource Core for their expertise. This work was supported by National Institutes of Health (R01HL083439, T32HL007111, R56AI074363), Caja Madrid Graduate Program, Marriott Individualized Medicine Program, Marriott Heart Disease Research Program, and Mayo Clinic.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Timothy J. Nelson.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Martinez-Fernandez, A., Nelson, T.J., Ikeda, Y. et al. c-MYC-Independent Nuclear Reprogramming Favors Cardiogenic Potential of Induced Pluripotent Stem Cells. J. of Cardiovasc. Trans. Res. 3, 13–23 (2010). https://doi.org/10.1007/s12265-009-9150-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12265-009-9150-5

Keywords

Navigation