Skip to main content
Log in

Endogenous lipid-derived ligands for sensory TRP ion channels and their pain modulation

  • Review
  • Published:
Archives of Pharmacal Research Aims and scope Submit manuscript

Abstract

Environmental or internal noxious stimuli excite the primary sensory nerves in our body. The sensory nerves relay these signals by electrical discharges to the brain, leading to pain perception. Six transient receptor potential (TRP) ion channels are expressed in the sensory nerve terminals and play a crucial role in sensing diverse noxious stimuli. Cation influx through activated TRP ion channels depolarizes the plasma membrane, resulting in neuronal excitation and pain. Natural and synthetic compounds have been found to act on these sensory TRP channels to alter the nociception. Evidence is growing that lipidergic substances are also cable of modifying TRP ion channel activity by direct binding. Here, we focus on endogenously generated lipids that modulate the sensory TRP activities. Unsaturated fatty acids or their metabolites via lipoxygenase, cyclooxygenase or epoxygenase are able to modulate (activate, inhibit or potentiate) the function of specific TRPs. Isoprene lipids, diacylglycerol, resolvin, and lysophospholipids also show distinct activities on sensory TRP channels. Outcomes caused by the interactions between sensory TRPs and lipid ligands are also discussed. The knowledge we collected here implicates that information on lipidergic ligands may contribute to our understanding of peripheral pain mechanism and provide an opportunity to design novel therapeutic strategies.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  • Ahluwalia, J., Urban, L., Capogna, M., Bevan, S., and Nagy, I., Cannabinoid 1 receptors are expressed in nociceptive primary sensory neurons. Neuroscience, 100, 685–688 (2000).

    CAS  PubMed  Google Scholar 

  • Akerman, S., Kaube, H., and Goadsby, P. J., Anandamide acts as a vasodilator of dural blood vessels in vivo by activating TRPV1 receptors. Br. J. Pharmacol., 142, 1354–1360 (2004).

    CAS  PubMed  Google Scholar 

  • Al-Hayani, A., Wease, K. N., Ross, R. A., Pertwee, R. G., and Davies, S. N., The endogenous cannabinoid anandamide activates vanilloid receptors in the rat hippocampal slice. Neuropharmacology, 41, 1000–1005 (2001).

    CAS  PubMed  Google Scholar 

  • Andersson, D. A., Nash, M., and Bevan, S., Modulation of the cold-activated channel TRPM8 by lysophospholipids and polyunsaturated fatty acids. J. Neurosci., 27, 3347–3355 (2007).

    CAS  PubMed  Google Scholar 

  • Andersson, D. A., Gentry, C., Moss, S., and Bevan, S., Transient receptor potential A1 is a sensory receptor for multiple products of oxidative stress. J. Neurosci., 28, 2485–2494 (2008).

    CAS  PubMed  Google Scholar 

  • Ariel, A. and Serhan, C. N., Resolvins and protectins in the termination program of acute inflammation. Trends Immunol., 28, 176–183 (2007).

    CAS  PubMed  Google Scholar 

  • Asakawa, M., Yoshioka, T., Matsutani, T., Hikita, I., Suzuki, M., Oshima, I., Tsukahara, K., Arimura, A., Horikawa, T., Hirasawa, T., and Sakata, T., Association of a mutation in TRPV3 with defective hair growth in rodents. J. Invest. Dermatol., 126, 2664–2672 (2006).

    CAS  PubMed  Google Scholar 

  • Bandell, M., Story, G. M., Hwang, S. W., Viswanath, V., Eid, S. R., Petrus, M. J., Earley, T. J., and Patapoutian, A., Noxious cold ion channel TRPA1 is activated by pungent compounds and bradykinin. Neuron, 41, 849–857 (2004).

    CAS  PubMed  Google Scholar 

  • Bang, S. and Hwang, S. W., Polymodal ligand sensitivity of TRPA1 and its modes of interactions. J. Gen. Physiol., 133, 257–262 (2009).

    CAS  PubMed  Google Scholar 

  • Bang, S., Yoo, S., Yang, T. J., Cho, H., and Hwang, S. W., Farnesyl pyrophosphate is a novel pain-producing molecule via specific activation of TRPV3. J. Biol. Chem., 285, 19362–19371 (2010a).

    CAS  PubMed  Google Scholar 

  • Bang, S., Yoo, S., Yang, T. J., Cho, H., and Hwang, S. W., Resolvin DI attenuates activation of sensory transient receptor potential channels leading to multiple anti-nociception. Br. J. Pharmacol., 161, 707–720 (2010b).

    CAS  PubMed  Google Scholar 

  • Baraldi, P. G., Preti, D., Materazzi, S., and Geppetti, P., Transient Receptor Potential Ankyrin 1 (TRPA1) Channel as Emerging Target for Novel Analgesics and Anti-Inflammatory Agents. J. Med. Chem., 53, 5085–5107 (2010).

    CAS  PubMed  Google Scholar 

  • Bautista, D. M., Jordt, S. E., Nikai, T., Tsuruda, P. R., Read, A. J., Poblete, J., Yamoah, E. N., Basbaum, A. I., and Julius, D., TRPA1 mediates the inflammatory actions of environmental irritants and proalgesic agents. Cell, 124, 1269–1282 (2006).

    CAS  PubMed  Google Scholar 

  • Bautista, D. M., Siemens, J., Glazer, J. M., Tsuruda, P. R., Basbaum, A. I., Stucky, C. L., Jordt, S. E., and Julius, D., The menthol receptor TRPM8 is the principal detector of environmental cold. Nature, 448, 204–208 (2007).

    CAS  PubMed  Google Scholar 

  • Bisogno, T., Melck, D., Bobrov, M., Gretskaya, N. M., Bezuglov, V. V., De Petrocellis, L., and Di Marzo, V., N-acyl-dopamines: novel synthetic CB(1) cannabinoid-receptor ligands and inhibitors of anandamide inactivation with cannabimimetic activity in vitro and in vivo. Biochem. J., 351Pt 3, 817–824 (2000).

    CAS  PubMed  Google Scholar 

  • Brauchi, S., Orta, G., Salazar, M., Rosenmann, E., and Latorre, R., A hot-sensing cold receptor: C-terminal domain determines thermosensation in transient receptor potential channels. J. Neurosci., 26, 4835–4840 (2006).

    CAS  PubMed  Google Scholar 

  • Brauchi, S., Orta, G., Mascayano, C., Salazar, M., Raddatz, N., Urbina, H., Rosenmann, E., Gonzalez-Nilo, F., and Latorre, R., Dissection of the components for PIP2 activation and thermosensation in TRP channels. Proc. Natl. Acad. Sci. U.S.A., 104, 10246–10251 (2007).

    CAS  PubMed  Google Scholar 

  • Campbell, W. B., Gebremedhin, D., Pratt, P. F., and Harder, D. R., Identification of epoxyeicosatrienoic acids as endothelium-derived hyperpolarizing factors. Circ. Res., 78, 415–423 (1996).

    CAS  PubMed  Google Scholar 

  • Caterina, M. J., Schumacher, M. A., Tominaga, M., Rosen, T. A., Levine, J. D., and Julius, D., The capsaicin receptor: a heat-activated ion channel in the pain pathway. Nature, 389, 816–824 (1997).

    CAS  PubMed  Google Scholar 

  • Chu, C. J., Huang, S. M., De Petrocellis, L., Bisogno, T., Ewing, S. A., Miller, J. D., Zipkin, R. E., Daddario, N., Appendino, G., Di Marzo, V., and Walker, J. M., N-oleoyldopamine, a novel endogenous capsaicin-like lipid that produces hyperalgesia. J. Biol. Chem., 278, 13633–13639 (2003).

    CAS  PubMed  Google Scholar 

  • Chuang, H. H., Prescott, E. D., Kong, H., Shields, S., Jordt, S. E., Basbaum, A. I., Chao, M. V., and Julius, D., Bradykinin and nerve growth factor release the capsaicin receptor from PtdIns(4,5)P2-mediated inhibition. Nature, 411, 957–962 (2001).

    CAS  PubMed  Google Scholar 

  • Colburn, R. W., Lubin, M. L., Stone, D. J., Jr., Wang, Y., Lawrence, D., D’andrea, M. R., Brandt, M. R., Liu, Y., Flores, C. M., and Qin, N., Attenuated cold sensitivity in TRPM8 null mice. Neuron, 54, 379–386 (2007).

    CAS  PubMed  Google Scholar 

  • Cruz-Orengo, L., Dhaka, A., Heuermann, R. J., Young, T. J., Montana, M. C., Cavanaugh, E. J., Kim, D., and Story, G. M., Cutaneous nociception evoked by 15-delta PGJ2 via activation of ion channel TRPA1. Mol. Pain, 4, 30 (2008).

    PubMed  Google Scholar 

  • Dai, Y., Wang, S., Tominaga, M., Yamamoto, S., Fukuoka, T., Higashi, T., Kobayashi, K., Obata, K., Yamanaka, H., and Noguchi, K., Sensitization of TRPA1 by PAR2 contributes to the sensation of inflammatory pain. J. Clin. Invest., 117, 1979–1987 (2007).

    CAS  PubMed  Google Scholar 

  • Dhaka, A., Viswanath, V., and Patapoutian, A., Trp ion channels and temperature sensation. Annu. Rev. Neurosci., 29, 135–161 (2006).

    CAS  PubMed  Google Scholar 

  • Dhaka, A., Murray, A. N., Mathur, J., Earley, T. J., Petrus, M. J., and Patapoutian, A., TRPM8 is required for cold sensation in mice. Neuron, 54, 371–378 (2007).

    CAS  PubMed  Google Scholar 

  • Fisslthaler, B., Popp, R., Kiss, L., Potente, M., Harder, D. R., Fleming, I., and Busse, R., Cytochrome P450 2C is an EDHF synthase in coronary arteries. Nature, 401, 493–497 (1999).

    CAS  PubMed  Google Scholar 

  • Gao, F., Sui, D., Garavito, R. M., Worden, R. M., and Wang, D. H., Salt intake augments hypotensive effects of transient receptor potential vanilloid 4: functional significance and implication. Hypertension, 53, 228–235 (2009).

    CAS  PubMed  Google Scholar 

  • Hara, Y., Wakamori, M., Ishii, M., Maeno, E., Nishida, M., Yoshida, T., Yamada, H., Shimizu, S., Mori, E., Kudoh, J., Shimizu, N., Kurose, H., Okada, Y., Imoto, K., and Mori, Y., LTRPC2 Ca2+-permeable channel activated by changes in redox status confers susceptibility to cell death. Mol. Cell, 9, 163–173 (2002).

    CAS  PubMed  Google Scholar 

  • Hinman, A., Chuang, H. H., Bautista, D. M., and Julius, D., TRP channel activation by reversible covalent modification. Proc. Natl. Acad. Sci. U.S.A., 103, 19564–19568 (2006).

    CAS  PubMed  Google Scholar 

  • Hu, H. Z., Xiao, R., Wang, C., Gao, N., Colton, C. K., Wood, J. D., and Zhu, M. X., Potentiation of TRPV3 channel function by unsaturated fatty acids. J. Cell. Physiol., 208, 201–212 (2006).

    CAS  PubMed  Google Scholar 

  • Huang, S. M., Bisogno, T., Trevisani, M., Al-Hayani, A., De Petrocellis, L., Fezza, F., Tognetto, M., Petros, T. J., Krey, J. F., Chu, C. J., Miller, J. D., Davies, S. N., Geppetti, P., Walker, J. M., and Di Marzo, V., An endogenous capsaicin-like substance with high potency at recombinant and native vanilloid VR1 receptors. Proc. Natl. Acad. Sci. U.S.A., 99, 8400–8405 (2002).

    CAS  PubMed  Google Scholar 

  • Huang, S. M., Lee, H., Chung, M. K., Park, U., Yu, Y. Y., Bradshaw, H. B., Coulombe, P. A., Walker, J. M., and Caterina, M. J., Overexpressed transient receptor potential vanilloid 3 ion channels in skin keratinocytes modulate pain sensitivity via prostaglandin E2. J. Neurosci., 28, 13727–13737 (2008).

    CAS  PubMed  Google Scholar 

  • Hwang, S. W., Cho, H., Kwak, J., Lee, S. Y., Kang, C. J., Jung, J., Cho, S., Min, K. H., Suh, Y. G., Kim, D., and Oh, U., Direct activation of capsaicin receptors by products of lipoxygenases: endogenous capsaicin-like substances. Proc. Natl. Acad. Sci. U.S.A., 97, 6155–6160 (2000).

    CAS  PubMed  Google Scholar 

  • Hwang, S. W. and Oh, U., Hot channels in airways: pharmacology of the vanilloid receptor. Curr. Opin. Pharmacol., 2, 235–242 (2002).

    CAS  PubMed  Google Scholar 

  • Inoue, R., Jensen, L. J., Shi, J., Morita, H., Nishida, M., Honda, A., and Ito, Y., Transient receptor potential channels in cardiovascular function and disease. Circ. Res., 99, 119–131 (2006).

    CAS  PubMed  Google Scholar 

  • Jaquemar, D., Schenker, T., and Trueb, B., An ankyrin-like protein with transmembrane domains is specifically lost after oncogenic transformation of human fibroblasts. J. Biol. Chem., 274, 7325–7333 (1999).

    CAS  PubMed  Google Scholar 

  • Jordt, S. E. and Julius, D., Molecular basis for speciesspecific sensitivity to “hot” chili peppers. Cell, 108, 421–430 (2002).

    CAS  PubMed  Google Scholar 

  • Karashima, Y., Talavera, K., Everaerts, W., Janssens, A., Kwan, K. Y., Vennekens, R., Nilius, B., and Voets, T., TRPA1 acts as a cold sensor in vitro and in vivo. Proc. Natl. Acad. Sci. U.S.A., 106, 1273–1278 (2009).

    CAS  PubMed  Google Scholar 

  • Kim, D. and Pleumsamran, A., Cytoplasmic unsaturated free fatty acids inhibit ATP-dependent gating of the G protein-gated K(+) channel. J. Gen. Physiol., 115, 287–304 (2000).

    CAS  PubMed  Google Scholar 

  • Kim, D., Cavanaugh, E. J., and Simkin, D., Inhibition of transient receptor potential A1 channel by phosphatidylinositol-4,5-bisphosphate. Am. J. Physiol., Cell Physiol., 295, C92–C99 (2008).

    CAS  PubMed  Google Scholar 

  • Kim, Y. H., Park, C. K., Back, S. K., Lee, C. J., Hwang, S. J., Bae, Y. C., Na, H. S., Kim, J. S., Jung, S. J., and Oh, S. B., Membrane-delimited coupling of TRPV1 and mGluR5 on presynaptic terminals of nociceptive neurons. J. Neurosci., 29, 10000–10009 (2009).

    CAS  PubMed  Google Scholar 

  • Kwan, K. Y., Allchorne, A. J., Vollrath, M. A., Christensen, A. P., Zhang, D. S., Woolf, C. J., and Corey, D. P., TRPA1 contributes to cold, mechanical, and chemical nociception but is not essential for hair-cell transduction. Neuron, 50, 277–289 (2006).

    CAS  PubMed  Google Scholar 

  • Levy, B. D., Clish, C. B., Schmidt, B., Gronert, K., and Serhan, C. N., Lipid mediator class switching during acute inflammation: signals in resolution. Nat. Immunol., 2, 612–619 (2001).

    CAS  PubMed  Google Scholar 

  • Li, P. L., Zhang, D. X., Zou, A. P., and Campbell, W. B., Effect of ceramide on KCa channel activity and vascular tone in coronary arteries. Hypertension, 33, 1441–1446 (1999).

    CAS  PubMed  Google Scholar 

  • Liu, B. and Qin, F., Functional control of cold- and menthol-sensitive TRPM8 ion channels by phosphatidylinositol 4,5-bisphosphate. J. Neurosci., 25, 1674–1681 (2005).

    CAS  PubMed  Google Scholar 

  • Liu, B., Zhang, C., and Qin, F., Functional recovery from desensitization of vanilloid receptor TRPV1 requires resynthesis of phosphatidylinositol 4,5-bisphosphate. J. Neurosci., 25, 4835–4843 (2005).

    CAS  PubMed  Google Scholar 

  • Lukacs, V., Thyagarajan, B., Varnai, P., Balla, A., Balla, T., and Rohacs, T., Dual regulation of TRPV1 by phosphoinositides. J. Neurosci., 27, 7070–7080 (2007).

    CAS  PubMed  Google Scholar 

  • Macpherson, L. J., Hwang, S. W., Miyamoto, T., Dubin, A. E., Patapoutian, A., and Story, G. M., More than cool: promiscuous relationships of menthol and other sensory compounds. Mol. Cell. Neurosci., 32, 335–343 (2006).

    CAS  PubMed  Google Scholar 

  • Macpherson, L. J., Dubin, A. E., Evans, M. J., Marr, F., Schultz, P. G., Cravatt, B. F., and Patapoutian, A., Noxious compounds activate TRPA1 ion channels through covalent modification of cysteines. Nature, 445, 541–545 (2007).

    CAS  PubMed  Google Scholar 

  • Mandadi, S., Sokabe, T., Shibasaki, K., Katanosaka, K., Mizuno, A., Moqrich, A., Patapoutian, A., Fukumi-Tominaga, T., Mizumura, K., and Tominaga, M., TRPV3 in keratinocytes transmits temperature information to sensory neurons via ATP. Pflugers Arch., 458, 1093–1102 (2009).

    CAS  PubMed  Google Scholar 

  • Materazzi, S., Nassini, R., Andre, E., Campi, B., Amadesi, S., Trevisani, M., Bunnett, N. W., Patacchini, R., and Geppetti, P., Cox-dependent fatty acid metabolites cause pain through activation of the irritant receptor TRPA1. Proc. Natl. Acad. Sci. U.S.A., 105, 12045–12050 (2008).

    CAS  PubMed  Google Scholar 

  • Mchugh, J., Keller, N. R., Appalsamy, M., Thomas, S. A., Raj, S. R., Diedrich, A., Biaggioni, I., Jordan, J., and Robertson, D., Portal osmopressor mechanism linked to transient receptor potential vanilloid 4 and blood pressure control. Hypertension, 55, 1438–1443 (2010).

    CAS  PubMed  Google Scholar 

  • Mckemy, D. D., Neuhausser, W. M., and Julius, D., Identification of a cold receptor reveals a general role for TRP channels in thermosensation. Nature, 416, 52–58 (2002).

    CAS  PubMed  Google Scholar 

  • Miyamoto, T., Dubin, A. E., Petrus, M. J., and Patapoutian, A., TRPV1 and TRPA1 mediate peripheral nitric oxide-induced nociception in mice. PLoS ONE, 4, e7596 (2009).

    PubMed  Google Scholar 

  • Moqrich, A., Hwang, S. W., Earley, T. J., Petrus, M. J., Murray, A. N., Spencer, K. S., Andahazy, M., Story, G. M., and Patapoutian, A., Impaired thermosensation in mice lacking TRPV3, a heat and camphor sensor in the skin. Science, 307, 1468–1472 (2005).

    CAS  PubMed  Google Scholar 

  • Moriyama, T., Higashi, T., Togashi, K., Iida, T., Segi, E., Sugimoto, Y., Tominaga, T., Narumiya, S., and Tominaga, M., Sensitization of TRPV1 by EP1 and IP reveals peripheral nociceptive mechanism of prostaglandins. Mol. Pain, 1, 3 (2005).

    PubMed  Google Scholar 

  • Moussaieff, A., Rimmerman, N., Bregman, T., Straiker, A., Felder, C. C., Shoham, S., Kashman, Y., Huang, S. M., Lee, H., Shohami, E., Mackie, K., Caterina, M. J., Walker, J. M., Fride, E., and Mechoulam, R., Incensole acetate, an incense component, elicits psychoactivity by activating TRPV3 channels in the brain. FASEB J., 22, 3024–3034 (2008).

    CAS  PubMed  Google Scholar 

  • Movahed, P., Jönsson, B. A., Birnir, B., Wingstrand, J. A., Jørgensen, T. D., Ermund, A., Sterner, O., Zygmunt, P. M., and Högestätt, E. D., Endogenous unsaturated C18 N-acylethanolamines are vanilloid receptor (TRPV1) agonists. J. Biol. Chem., 280, 38496–38504 (2005).

    CAS  PubMed  Google Scholar 

  • Obata, K., Katsura, H., Mizushima, T., Yamanaka, H., Kobayashi, K., Dai, Y., Fukuoka, T., Tokunaga, A., Tominaga, M., and Noguchi, K., TRPA1 induced in sensory neurons contributes to cold hyperalgesia after inflammation and nerve injury. J. Clin. Invest., 115, 2393–2401 (2005).

    CAS  PubMed  Google Scholar 

  • Patapoutian, A., Tate, S., and Woolf, C. J., Transient receptor potential channels: targeting pain at the source. Nat. Rev. Drug Discov., 8, 55–68 (2009).

    CAS  PubMed  Google Scholar 

  • Patwardhan, A. M., Scotland, P. E., Akopian, A. N., and Hargreaves, K. M., Activation of TRPV1 in the spinal cord by oxidized linoleic acid metabolites contributes to inflammatory hyperalgesia. Proc. Natl. Acad. Sci. U.S.A., 106, 18820–18824 (2009).

    CAS  PubMed  Google Scholar 

  • Patwardhan, A. M., Akopian, A. N., Ruparel, N. B., Diogenes, A., Weintraub, S. T., Uhlson, C., Murphy, R. C., and Hargreaves, K. M., Heat generates oxidized linoleic acid metabolites that activate TRPV1 and produce pain in rodents. J. Clin. Invest., 120, 1617–1626 (2010).

    CAS  PubMed  Google Scholar 

  • Peier, A. M., Moqrich, A., Hergarden, A. C., Reeve, A. J., Andersson, D. A., Story, G. M., Earley, T. J., Dragoni, I., Mcintyre, P., Bevan, S., and Patapoutian, A., A TRP channel that senses cold stimuli and menthol. Cell, 108, 705–715 (2002a).

    CAS  PubMed  Google Scholar 

  • Peier, A. M., Reeve, A. J., Andersson, D. A., Moqrich, A., Earley, T. J., Hergarden, A. C., Story, G. M., Colley, S., Hogenesch, J. B., Mcintyre, P., Bevan, S., and Patapoutian, A., A heat-sensitive TRP channel expressed in keratinocytes. Science, 296, 2046–2049 (2002b).

    CAS  PubMed  Google Scholar 

  • Petrus, M., Peier, A. M., Bandell, M., Hwang, S. W., Huynh, T., Olney, N., Jegla, T., and Patapoutian, A., A role of TRPA1 in mechanical hyperalgesia is revealed by pharmacological inhibition. Mol. Pain, 3, 40 (2007).

    PubMed  Google Scholar 

  • Prescott, E. D. and Julius, D., A modular PIP2 binding site as a determinant of capsaicin receptor sensitivity. Science, 300, 1284–1288 (2003).

    CAS  PubMed  Google Scholar 

  • Puntambekar, P., Van Buren, J., Raisinghani, M., Premkumar, L. S., and Ramkumar, V., Direct interaction of adenosine with the TRPV1 channel protein. J. Neurosci., 24, 3663–3671 (2004).

    CAS  PubMed  Google Scholar 

  • Randall, M. D. and Kendall, D. A., Anandamide and endothelium-derived hyperpolarizing factor act via a common vasorelaxant mechanism in rat mesentery. Eur. J. Pharmacol., 346, 51–53 (1998).

    CAS  PubMed  Google Scholar 

  • Rohacs, T., Lopes, C. M., Michailidis, I., and Logothetis, D. E., PI(4,5)P2 regulates the activation and desensitization of TRPM8 channels through the TRP domain. Nat. Neurosci., 8, 626–634 (2005).

    CAS  PubMed  Google Scholar 

  • Russell, R. G., Xia, Z., Dunford, J. E., Oppermann, U., Kwaasi, A., Hulley, P. A., Kavanagh, K. L., Triffitt, J. T., Lundy, M. W., Phipps, R. J., Barnett, B. L., Coxon, F. P., Rogers, M. J., Watts, N. B., and Ebetino, F. H., Bisphosphonates: an update on mechanisms of action and how these relate to clinical efficacy. Ann. N. Y. Acad. Sci., 1117, 209–257 (2007).

    CAS  PubMed  Google Scholar 

  • Schwarcz, R. and Pellicciari, R., Manipulation of brain kynurenines: glial targets, neuronal effects, and clinical opportunities. J. Pharmacol. Exp. Ther., 303, 1–10 (2002).

    CAS  PubMed  Google Scholar 

  • Sculptoreanu, A., Kullmann, F. A., Artim, D. E., Bazley, F. A., Schopfer, F., Woodcock, S., Freeman, B. A., and De Groat, W. C., Nitro-oleic acid inhibits firing and activates TRPV1- and TRPA1-mediated inward currents in dorsal root ganglion neurons from adult male rats. J. Pharmacol. Exp. Ther., 333, 883–895 (2010).

    CAS  PubMed  Google Scholar 

  • Serhan, C. N. and Chiang, N., Endogenous pro-resolving and anti-inflammatory lipid mediators: a new pharmacologic genus. Br. J. Pharmacol., 153Suppl 1, S200–S215 (2008).

    CAS  PubMed  Google Scholar 

  • Sharma, A., Williams, K., and Raja, S. N., Advances in treatment of complex regional pain syndrome: recent insights on a perplexing disease. Curr. Opin. Anaesthesiol., 19, 566–572 (2006).

    PubMed  Google Scholar 

  • Shin, J., Cho, H., Hwang, S. W., Jung, J., Shin, C. Y., Lee, S. Y., Kim, S. H., Lee, M. G., Choi, Y. H., Kim, J., Haber, N. A., Reichling, D. B., Khasar, S., Levine, J. D., and Oh, U., Bradykinin-12-lipoxygenase-VR1 signaling pathway for inflammatory hyperalgesia. Proc. Natl. Acad. Sci. U.S.A., 99, 10150–10155 (2002).

    CAS  PubMed  Google Scholar 

  • Smith, G. D., Gunthorpe, M. J., Kelsell, R. E., Hayes, P. D., Reilly, P., Facer, P., Wright, J. E., Jerman, J. C., Walhin, J. P., Ooi, L., Egerton, J., Charles, K. J., Smart, D., Randall, A. D., Anand, P., and Davis, J. B., TRPV3 is a temperature-sensitive vanilloid receptor-like protein. Nature, 418, 186–190 (2002).

    CAS  PubMed  Google Scholar 

  • Starowicz, K., Nigam, S., and Di Marzo, V., Biochemistry and pharmacology of endovanilloids. Pharmacol. Ther., 114, 13–33 (2007).

    CAS  PubMed  Google Scholar 

  • Stein, A. T., Ufret-Vincenty, C. A., Hua, L., Santana, L. F., and Gordon, S. E., Phosphoinositide 3-kinase binds to TRPV1 and mediates NGF-stimulated TRPV1 trafficking to the plasma membrane. J. Gen. Physiol., 128, 509–522 (2006).

    CAS  PubMed  Google Scholar 

  • Stein, R. J., Santos, S., Nagatomi, J., Hayashi, Y., Minnery, B. S., Xavier, M., Patel, A. S., Nelson, J. B., Futrell, W. J., Yoshimura, N., Chancellor, M. B., and De Miguel, F., Cool (TRPM8) and hot (TRPV1) receptors in the bladder and male genital tract. J. Urol., 172, 1175–1178 (2004).

    CAS  PubMed  Google Scholar 

  • Stone, T. W., Neuropharmacology of quinolinic and kynurenic acids. Pharmacol. Rev., 45, 309–379 (1993).

    CAS  PubMed  Google Scholar 

  • Stotz, S. C., Vriens, J., Martyn, D., Clardy, J., and Clapham, D. E., Citral sensing by Transient [corrected] receptor potential channels in dorsal root ganglion neurons. PLoS ONE, 3, e2082 (2008).

    PubMed  Google Scholar 

  • Suh, B. C. and Hille, B., Regulation of ion channels by phosphatidylinositol 4,5-bisphosphate. Curr. Opin. Neurobiol., 15, 370–378 (2005).

    CAS  PubMed  Google Scholar 

  • Taylor-Clark, T. E., Undem, B. J., Macglashan, D. W., Jr., Ghatta, S., Carr, M. J., and Mcalexander, M. A., Prostaglandin-induced activation of nociceptive neurons via direct interaction with transient receptor potential A1 (TRPA1). Mol. Pharmacol., 73, 274–281 (2008).

    CAS  PubMed  Google Scholar 

  • Taylor-Clark, T. E., Ghatta, S., Bettner, W., and Undem, B. J., Nitrooleic acid, an endogenous product of nitrative stress, activates nociceptive sensory nerves via the direct activation of TRPA1. Mol. Pharmacol., 75, 820–829 (2009).

    CAS  PubMed  Google Scholar 

  • Tsavaler, L., Shapero, M. H., Morkowski, S., and Laus, R., Trp-p8, a novel prostate-specific gene, is up-regulated in prostate cancer and other malignancies and shares high homology with transient receptor potential calcium channel proteins. Cancer Res., 61, 3760–3769 (2001).

    CAS  PubMed  Google Scholar 

  • Vanden Abeele, F., Zholos, A., Bidaux, G., Shuba, Y., Thebault, S., Beck, B., Flourakis, M., Panchin, Y., Skryma, R., and Prevarskaya, N., Ca2+-independent phospholipase A2-dependent gating of TRPM8 by lysophospholipids. J. Biol. Chem., 281, 40174–40182 (2006).

    Google Scholar 

  • Voets, T. and Nilius, B., Modulation of TRPs by PIPs. J. Physiol., 582, 939–944 (2007).

    CAS  PubMed  Google Scholar 

  • Vogt-Eisele, A. K., Weber, K., Sherkheli, M. A., Vielhaber, G., Panten, J., Gisselmann, G., and Hatt, H., Monoterpenoid agonists of TRPV3. Br. J. Pharmacol., 151, 530–540 (2007).

    CAS  PubMed  Google Scholar 

  • Von Moos, R., Strasser, F., Gillessen, S., and Zaugg, K., Metastatic bone pain: treatment options with an emphasis on bisphosphonates. Support. Care Cancer, 16, 1105–1115 (2008).

    Google Scholar 

  • Vriens, J., Owsianik, G., Fisslthaler, B., Suzuki, M., Janssens, A., Voets, T., Morisseau, C., Hammock, B. D., Fleming, I., Busse, R., and Nilius, B., Modulation of the Ca2 permeable cation channel TRPV4 by cytochrome P450 epoxygenases in vascular endothelium. Circ. Res., 97, 908–915 (2005).

    CAS  PubMed  Google Scholar 

  • Vriens, J., Appendino, G., and Nilius, B., Pharmacology of vanilloid transient receptor potential cation channels. Mol. Pharmacol., 75, 1262–1279 (2009).

    CAS  PubMed  Google Scholar 

  • Watanabe, H., Vriens, J., Prenen, J., Droogmans, G., Voets, T., and Nilius, B., Anandamide and arachidonic acid use epoxyeicosatrienoic acids to activate TRPV4 channels. Nature, 424, 434–438 (2003).

    CAS  PubMed  Google Scholar 

  • Willette, R. N., Bao, W., Nerurkar, S., Yue, T. L., Doe, C. P., Stankus, G., Turner, G. H., Ju, H., Thomas, H., Fishman, C. E., Sulpizio, A., Behm, D. J., Hoffman, S., Lin, Z., Lozinskaya, I., Casillas, L. N., Lin, M., Trout, R. E., Votta, B. J., Thorneloe, K., Lashinger, E. S., Figueroa, D. J., Marquis, R., and Xu, X., Systemic activation of the transient receptor potential vanilloid subtype 4 channel causes endothelial failure and circulatory collapse: Part 2. J. Pharmacol. Exp. Ther., 326, 443–452 (2008).

    CAS  PubMed  Google Scholar 

  • Woo, D. H., Jung, S. J., Zhu, M. H., Park, C. K., Kim, Y. H., Oh, S. B., and Lee, C. J., Direct activation of transient receptor potential vanilloid 1(TRPV1) by diacylglycerol (DAG). Mol. Pain, 4, 42 (2008).

    PubMed  Google Scholar 

  • Xu, H., Ramsey, I. S., Kotecha, S. A., Moran, M. M., Chong, J. A., Lawson, D., Ge, P., Lilly, J., Silos-Santiago, I., Xie, Y., Distefano, P. S., Curtis, R., and Clapham, D. E., TRPV3 is a calcium-permeable temperature-sensitive cation channel. Nature, 418, 181–186 (2002).

    CAS  PubMed  Google Scholar 

  • Xu, H., Delling, M., Jun, J. C., and Clapham, D. E., Oregano, thyme and clove-derived flavors and skin sensitizers activate specific TRP channels. Nat. Neurosci., 9, 628–635 (2006).

    CAS  PubMed  Google Scholar 

  • Xu, Z. Z., Zhang, L., Liu, T., Park, J. Y., Berta, T., Yang, R., Serhan, C. N., and Ji, R. R., Resolvins RvE1 and RvD1 attenuate inflammatory pain via central and peripheral actions. Nat. Med., 16, 592–597 (2010).

    CAS  PubMed  Google Scholar 

  • Yoo, S., Han, S., Park, Y. S., Lee, J. H., Oh, U., and Hwang, S. W., Lipoxygenase inhibitors suppressed carrageenaninduced Fos-expression and inflammatory pain responses in the rat. Mol. Cells, 27, 417–422 (2009).

    CAS  PubMed  Google Scholar 

  • Yoshida, Y. and Niki, E., Bio-markers of lipid peroxidation in vivo: hydroxyoctadecadienoic acid and hydroxycholesterol. Biofactors, 27, 195–202 (2006).

    CAS  PubMed  Google Scholar 

  • Yoshioka, T., Imura, K., Asakawa, M., Suzuki, M., Oshima, I., Hirasawa, T., Sakata, T., Horikawa, T., and Arimura, A., Impact of the Gly573Ser substitution in TRPV3 on the development of allergic and pruritic dermatitis in mice. J. Invest. Dermatol., 129, 714–722 (2009).

    CAS  PubMed  Google Scholar 

  • Zhao, X., Yamamoto, T., Newman, J. W., Kim, I. H., Watanabe, T., Hammock, B. D., Stewart, J., Pollock, J. S., Pollock, D. M., and Imig, J. D., Soluble epoxide hydrolase inhibition protects the kidney from hypertension-induced damage. J. Am. Soc. Nephrol., 15, 1244–1253 (2004).

    CAS  PubMed  Google Scholar 

  • Zou, A. P., Fleming, J. T., Falck, J. R., Jacobs, E. R., Gebremedhin, D., Harder, D. R., and Roman, R. J., 20-HETE is an endogenous inhibitor of the large-conductance Ca(2+)-activated K+ channel in renal arterioles. Am. J. Physiol., 270, R228–R237 (1996).

    CAS  PubMed  Google Scholar 

  • Zygmunt, P. M., Petersson, J., Andersson, D. A., Chuang, H., Sorgard, M., Di Marzo, V., Julius, D., and Hogestatt, E. D., Vanilloid receptors on sensory nerves mediate the vasodilator action of anandamide. Nature, 400, 452–457 (1999).

    CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sun Wook Hwang.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bang, S., Yoo, S., Oh, U. et al. Endogenous lipid-derived ligands for sensory TRP ion channels and their pain modulation. Arch. Pharm. Res. 33, 1509–1520 (2010). https://doi.org/10.1007/s12272-010-1004-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12272-010-1004-9

Key words

Navigation