Skip to main content
Log in

Microbial reduction of graphene oxide by Shewanella

  • Research Article
  • Published:
Nano Research Aims and scope Submit manuscript

Abstract

Graphene oxide (GO) can be reduced to graphene in a normal aerobic setup under ambient conditions as mediated by microbial respiration of Shewanella cells. The microbially-reduced graphene (MRG) exhibited excellent electrochemical properties. Extracellular electron transfer pathways at the cell/GO interface were systematically investigated, suggesting both direct electron transfer and electron mediators are involved in the GO reduction.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Geim, K. A.; Novoselov, K. S. The rise of graphene. Nat. Mater. 2007, 6, 183–191.

    Article  CAS  Google Scholar 

  2. Hummers, W. S.; Offeman, R. E. Preparation of graphitic oxide. J. Am. Chem. Soc. 1958, 80, 1339.

    Article  CAS  Google Scholar 

  3. Fan, X.; Peng, W.; Li, Y.; Li, X.; Wang, S.; Zhang, G.; Zhang, F. Deoxygenation of exfoliated graphite oxide under alkaline conditions: A green route to graphene preparation. Adv. Mater. 2008, 20, 4490–4493.

    Article  CAS  Google Scholar 

  4. Stankovich, S.; Dikin, D. A.; Piner, R. D.; Kohlhaas, K. A.; Kleinhammes, A.; Jia, Y.; Wu, Y.; Nguyen, S. T.; Ruoff, R. S. Synthesis of graphene-based nanosheets via chemical reduction of exfoliated graphite oxide. Carbon 2007, 45, 1558–1565.

    Article  CAS  Google Scholar 

  5. Zhu, C.; Guo, S.; Fang, Y.; Dong, S. Reducing sugar: New functional molecules for the green synthesis of graphene nanosheets. ACS Nano 2010, 4, 2429–2437.

    Article  CAS  Google Scholar 

  6. Zhang, J. L.; Yang, H. J.; Shen, G. X.; Cheng, P.; Zhang, J. Y.; Guo, S. W. Reduction of graphene oxide via L-ascorbic acid. Chem. Commun. 2010, 46, 1112–1114.

    Article  CAS  Google Scholar 

  7. Wang, Z.; Zhou, X.; Zhang, J.; Boey, F.; Zhang, H. Direct electrochemical reduction of single-layer graphene oxide and subsequent functionalization with glucose oxidase. J. Phys. Chem. C 2009, 113, 14071–14075.

    Article  CAS  Google Scholar 

  8. Zhou, M.; Wang, Y.; Zhai, Y.; Zhai, J.; Ren, W.; Wang, F.; Dong, S. Controlled synthesis of large-area and patterned electrochemically reduced graphene oxide films. Chem. Eur. J. 2009, 15, 6116–6120.

    Article  CAS  Google Scholar 

  9. Mcallister, M. J.; Li, J.; Adamson, H. D.; Schnlepp, C. H.; Abdalam, A. A.; Liu, J.; Hrrrera-Alonso, M.; Milius, D. L.; Car, R.; Prud’gomme, R. K.; Aksay, I. A. Single sheet functionalized graphene by oxidation and thermal expansion of graphite. Chem. Mater. 2007, 19, 4396–4404.

    Article  CAS  Google Scholar 

  10. Gao, J.; Liu, F.; Liu, Y.; Ma, N.; Wang, Z.; Zhang, X. Environment-friendly method to produce graphene that employs vitamin C and amino acid. Chem. Mater. 2010, 22, 2213–2218.

    Article  CAS  Google Scholar 

  11. Guo, H. L.; Wang, X. F.; Qian, Q. Y.; Wang, F. B.; Xia, X. H. A green approach to the synthesis of graphene nanosheets. ACS Nano 2009, 3, 2653–2659.

    Article  CAS  Google Scholar 

  12. Salas, E. C.; Sun, Z.; Luttge, A.; Tour, J. M. Reduction of graphene oxide via bacterial respiration. ACS Nano 2010, 4, 4852–4856.

    Article  CAS  Google Scholar 

  13. Myers, C. R.; Nealson, K. H. Bacterial manganese reduction and growth with manganese oxide as the sole electron acceptor. Science, 1988, 240, 1319–1321.

    Article  CAS  Google Scholar 

  14. Fredrickson, J. K.; Romine, M. F.; Beliaev, A. S.; Auchtung, J. M.; Driscoll, M. E.; Gardner, T. S.; Nealson, K. H.; Osterman, A. L.; Pinchuk, G.; Reed, J. L.; Rodionov, D. A.; Rodrigues, J. L. M.; Saffarini, D. A.; Serres, M. H.; Spormann, A. M.; Zhulin, I. B.; Tiedje, J. M. Towards environmental systems biology of Shewanella. Nat. Rev. Microb. 2008, 6, 592–603.

    Article  CAS  Google Scholar 

  15. Pitts, K. E.; Dobbin, P. S.; Reyes-Ramirez, F.; Thomson, A. J.; Richardson, D. J.; Seward, H. E. Characterization of the Shewanella oneidensis MR-1 decaheme cytochrome MtrA: Expression in Escherichia coli confers the ability to reduce soluble Fe(III) chelates. J. Biol. Chem. 2003, 278, 27758–27765.

    Article  CAS  Google Scholar 

  16. Myers, C. R.; Myers, J. M. Cloning and sequence of cymA, a gene encoding a tetraheme cytochrome c required for reduction of iron(III), fumarate, and nitrate by Shewanella putrefaciens MR-1. J. Bacteriol. 1997, 179, 1143–1152.

    CAS  Google Scholar 

  17. Beliaev, A. S.; Saffarini, D. A. Shewanella putrefaciens mtrB encodes an outer membrane protein required for Fe(III) and Mn(IV) reduction. J. Bacteriol. 1998, 180, 6292–6297.

    CAS  Google Scholar 

  18. Myers, J. M.; Myers, C. R. Isolation and sequence of omcA, a gene encoding a decaheme outer membrane cytochrome c of Shewanella putrefaciens MR-1, and detection of omcA homologs in other strains of S. putrefaciens. Biochim. Biophys. Acta 1998, 1373, 237–251.

    Article  CAS  Google Scholar 

  19. Myers, J. M.; Myers, C. R. Role for outer membrane cytochromes OmcA and OmcB of Shewanella putrefaciens MR-1 in reduction of manganese dioxide. Appl. Environ. Microbiol. 2001, 67, 260–269.

    Article  CAS  Google Scholar 

  20. Beliaev, A. S.; Saffarini, D. A.; McLaughlin, J. L.; Hunnicutt, D. MtrC, an outer membrane decahaem c cytochrome required for metal reduction in Shewanella putrefaciens MR-1. Mol. Microbiol. 2001, 39, 722–730.

    Article  CAS  Google Scholar 

  21. Marsili, E.; Baron, D. B.; Shikhare, I. D.; Coursolle, D.; Gralnick J. A.; Bond, D. R. Shewanella secretes flavins that mediate extracellular electron transfer. Proc. Natl. Acad. Sci. USA 2008, 105, 3968–3973.

    Article  CAS  Google Scholar 

  22. Hau, H. H.; Gralnick, J. A. Ecology and biotechnology of the genus Shewanella. Annu. Rev. Microbiol. 2007, 61, 237–258.

    Article  CAS  Google Scholar 

  23. Liu, C.; Gorby, Y. A.; Zachara, J. M.; Fredrickson, J. K.; Brown, C. F. Reduction kinetics of Fe(III), Co(III), U(VI), Cr(VI), and Tc(VII) in cultures of dissimilatory metal-reducing bacteria. Biotechnol. Bioeng. 2002, 80, 637–649.

    Article  CAS  Google Scholar 

  24. Bretschger, O.; Obraztsova, A.; Sturm, C. A.; Chang, I. S.; Gorby, Y. A.; Reed, S. B.; Culley, D. E.; Reardon, C. L.; Barua, S.; Romine, M. F.; Zhou, J.; Beliaev, A. S.; Bouhenni, R.; Saffarini, D.; Mansfeld, F.; Kim, B.; Fredrickson, J. K.; Nealson, K. H. An exploration of current production and metal oxide reduction by Shewanella oneidensis MR-1 wild type and mutants. Appl. Environ. Microbiol. 2007, 73, 7003–7012.

    Article  CAS  Google Scholar 

  25. Saltikov, C. W.; Newman, D. K. Genetic identification of a respiratory arsenate reductase. Proc. Natl. Acad. Sci. USA 2003, 100, 10983–10988.

    Article  CAS  Google Scholar 

  26. Tufano, K. J.; Reyes, C.; Saltikov, C. W.; Fendorf, S. Reductive processes controlling arsenic retention: Revealing the relative importance of iron and arsenic reduction. Environ. Sci. Technol. 2008, 42, 8283–8289.

    Article  CAS  Google Scholar 

  27. Ryu, S.; Han, M. Y.; Maultzsch, J.; Heinz, T. F.; Kim, P.; Steigerwald, M. L.; Brus, L. E. Reversible basal plane hydrogenation of graphene. Nano Lett. 2008, 8, 36–41.

    Article  Google Scholar 

  28. Stoller, M. D.; Park, S. J.; Zhu, Y.; An, J.; Ruoff, R. S. Graphene-based ultracapacitors. Nano Lett. 2008, 8, 3498–3502.

    Article  CAS  Google Scholar 

  29. Reiling, H. E.; Laurila, H.; Fiechter, A. Mass culture of Escherichia coli: Medium development for low and high density cultivation of Escherichia coli B/r in minimal and complex media. J. Biotechnol. 1985, 2, 191–206.

    Article  CAS  Google Scholar 

  30. Marsili, E.; Baron, D. B.; Shikhare, I. D.; Coursolle, D.; Gralnick, J. A.; Bond, D. R. Shewanella secretes flavins that mediate extracellular electron transfer. Proc. Natl. Acad. Sci. USA 2008, 105, 3968–3973.

    Article  CAS  Google Scholar 

  31. Lies, D. P.; Hernandez, M. E.; Kappler, A.; Mielke, R. E.; Gralnick, J. A.; Newman, D. K. Shewanella oneidensis MR-1 uses overlapping pathways for iron reduction at a distance and by direct contact under conditions relevant for biofilms. Appl. Environ. Microbiol. 2005, 71, 4414–4426.

    Article  CAS  Google Scholar 

  32. Newman, D. K.; Kolter, R. A role for excreted quinones in extracellular electron transfer. Nature 2000, 405, 94–97.

    Article  CAS  Google Scholar 

  33. Reyes, C.; Murphy, J. N.; Saltikov, C. W. Mutational and gene expression analysis of mtrDEF, omcA and mtrCAB during arsenate and iron reduction in Shewanella sp. ANA-3. Environ. Microbiol. 2010, 12, 1878–1878.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Yongqin Jiao or Yat Li.

Additional information

These authors contributed equally to this work.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wang, G., Qian, F., Saltikov, C.W. et al. Microbial reduction of graphene oxide by Shewanella . Nano Res. 4, 563–570 (2011). https://doi.org/10.1007/s12274-011-0112-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12274-011-0112-2

Keywords

Navigation