Skip to main content
Log in

Two-dimensional metal-organic-framework as a unique theranostic nano-platform for nuclear imaging and chemo-photodynamic cancer therapy

  • Research Article
  • Published:
Nano Research Aims and scope Submit manuscript

Abstract

Nanoscale metal organic frameworks (NMOFs) with porous structure and inherent biodegradability are attractive nanomedicine platforms. In addition to conventional particulate NMOFs, two-dimensional (2D) NMOFs are emerging as a unique type of NMOFs which however have been relatively less explored for nanomedicine applications. Herein, 2D-NMOFs composed of Zn2+ and tetrakis(4-carboxyphenyl) porphyrin (TCPP) are fabricated and functionalized with polyethylene glycol (PEG). Compared to their particulate counterpart, such 2D-NMOFs show greatly increased drug loading capacity and enhanced light-triggered singlet oxygen production, promising for chemotherapy and photodynamic therapy (PDT), respectively. Utilizing the porphyrin structure of TCPP, our 2D-NMOFs could be labeled with a diagnostic radioisotope, 99mTc, for single photon emission computer tomography (SPECT) imaging, which reveals efficient tumor homing of those 2D-NMOFs upon intravenous injection. While offering a remarkable synergistic in vivo antitumor effect for the combined chemo-PDT, such 2D-NMOFs show efficient biodegradation and rapid renal clearance. Our work presents the great promise of 2D-NMOFs for nanomedicine applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. He, C. B.; Liu, D. M.; Lin, W. B. Nanomedicine applications of hybrid nanomaterials built from metal-ligand coordination bonds: Nanoscale metal-organic frameworks and nanoscale coordination polymers. Chem. Rev. 2015, 115, 11079–11108.

    Article  Google Scholar 

  2. Della Rocca, J.; Liu, D. M.; Lin, W. B. Nanoscale metal–organic frameworks for biomedical imaging and drug delivery. Acc. Chem. Res. 2011, 44, 957–968.

    Article  Google Scholar 

  3. Li, H. L.; Eddaoudi, M.; O’Keeffe, M.; Yaghi, O. M. Design and synthesis of an exceptionally stable and highly porous metal-organic framework. Nature 1999, 402, 276–279.

    Article  Google Scholar 

  4. Furukawa, H.; Cordova, K. E.; O’Keeffe, M.; Yaghi, O. M. The chemistry and applications of metal-organic frameworks. Science 2013, 341, 1230444.

    Article  Google Scholar 

  5. Horcajada, P.; Chalati, T.; Serre, C.; Gillet, B.; Sebrie, C.; Baati, T.; Eubank, J. F.; Heurtaux, D.; Clayette, P.; Kreuz, C. et al. Porous metal-organicframework nanoscale carriers as a potential platform for drug delivery and imaging. Nat. Mater. 2010, 9, 172–178.

    Article  Google Scholar 

  6. Huxford, R. C.; Della Rocca, J.; Lin, W. B. Metal–organic frameworks as potential drug carriers. Curr. Opin. Chem. Biol. 2010, 14, 262–268.

    Article  Google Scholar 

  7. Horcajada, P.; Serre, C.; Vallet-Regí, M.; Sebban, M.; Taulelle, F.; Férey, G. Metal–organic frameworks as efficient materials for drug delivery. Angew. Chem. 2006, 118, 6120–6124.

    Article  Google Scholar 

  8. McKinlay, A. C.; Morris, R. E.; Horcajada, P.; Férey, G.; Gref, R.; Couvreur, P.; Serre, C. Biomofs: Metal–organic frameworks for biological and medical applications. Angew. Chem., Int. Ed. 2010, 49, 6260–6266.

    Article  Google Scholar 

  9. Tafipolsky, M.; Schmid, R. Systematic first principles parameterization of force fields for metal–organic frameworks using a genetic algorithm approach. J. Phys. Chem. B 2009, 113, 1341–1352.

    Article  Google Scholar 

  10. Morris, W.; Briley, W. E.; Auyeung, E.; Cabezas, M. D.; Mirkin, C. A. Nucleic acid–metal organic framework (MOF) nanoparticle conjugates. J. Am. Chem. Soc. 2014, 136, 7261–7264.

    Article  Google Scholar 

  11. Yang, Y.; Zhu, W. J.; Dong, Z. L.; Chao, Y.; Xu, L.; Chen, M. W.; Liu, Z. 1D coordination polymer nanofibers for low–temperature photothermal therapy. Adv. Mater. 2017, 29, 1703588.

    Article  Google Scholar 

  12. Yang, Y.; Chao, Y.; Liu, J. J.; Dong, Z. L.; He, W. W.; Zhang, R.; Yang, K.; Chen, M. W.; Liu, Z. Core-shell and co-doped nanoscale metal-organic particles (NMOPs) obtained via post-synthesis cation exchange for multimodal imaging and synergistic thermo-radiotherapy. NPG Asia Mater. 2017, 9, e344.

    Article  Google Scholar 

  13. Yang, Y.; Liu, J. J.; Liang, C.; Feng, L. Z.; Fu, T. T.; Dong, Z. L.; Chao, Y.; Li, Y. G.; Lu, G.; Chen, M. W. et al. Nanoscale metal–organic particles with rapid clearance for magnetic resonance imaging-guided photothermal therapy. ACS Nano 2016, 10, 2774–2781.

    Article  Google Scholar 

  14. Liu, J. J.; Yang, Y.; Zhu, W. W.; Yi, X.; Dong, Z. L.; Xu, X. N.; Chen, M. W.; Yang, K.; Lu, G.; Jiang, L. X. et al. Nanoscale metal−organic frameworks for combined photodynamic & radiation therapy in cancer treatment. Biomaterials 2016, 97, 1–9.

    Article  Google Scholar 

  15. Lu, K. D.; He, C. B.; Lin, W. B. A chlorin-based nanoscale metal–organic framework for photodynamic therapy of colon cancers. J. Am. Chem. Soc. 2015, 137, 7600–7603.

    Article  Google Scholar 

  16. Park, J.; Jiang, Q.; Feng, D. W.; Mao, L. Q.; Zhou, H. C. Size-controlled synthesis of porphyrinic metal–organic framework and functionalization for targeted photodynamic therapy. J. Am. Chem. Soc. 2016, 138, 3518–3525.

    Article  Google Scholar 

  17. Yu, B.; Wei, H.; He, Q. J.; Ferreira, C. A.; Kutyreff, C. J.; Ni, D. L.; Rosenkrans, Z. T.; Cheng, L.; Yu, F. Q.; Engle, J. W. et al. Efficient uptake of 177Lu–porphyrin–PEG nanocomplexes by tumor mitochondria for multimodal-imaging-guided combination therapy. Angew. Chem., Int. Ed. 2018, 57, 218–222.

    Article  Google Scholar 

  18. Lebedev, O. I.; Millange, F.; Serre, C.; Van Tendeloo, G.; Férey, G. First direct imaging of giant pores of the metal–organic framework MIL-101. Chem. Mater. 2005, 17, 6525–6527.

    Article  Google Scholar 

  19. Taylor, K. M. L.; Rieter, W. J.; Lin, W. B. Manganese-based nanoscale metal-organic frameworks for magnetic resonance imaging. J. Am. Chem. Soc. 2008, 130, 14358–14359.

    Article  Google Scholar 

  20. Taylor-Pashow, K. M. L.; Rocca, J. D.; Xie, Z. G.; Tran, S.; Lin, W. B. Postsynthetic modifications of iron-carboxylate nanoscale metal–organic frameworks for imaging and drug delivery. J. Am. Chem. Soc. 2009, 131, 14261–14263.

    Article  Google Scholar 

  21. He, C. B.; Lu, J. Q.; Lin, W. B. Hybrid nanoparticles for combination therapy of cancer. J. Control. Release 2015, 219, 224–236.

    Article  Google Scholar 

  22. Pastorin, G.; Wu, W.; Wieckowski, S.; Briand, J. P.; Kostarelos, K.; Prato, M.; Bianco, A. Double functionalisation of carbon nanotubes for multimodal drug delivery. Chem. Commun. 2006, 11, 1182–1184.

    Article  Google Scholar 

  23. Cao, A. N.; Liu, Z.; Chu, S. S.; Wu, M. H.; Ye, Z. M.; Cai, Z. W.; Chang, Y. L.; Wang, S. F.; Gong, Q. H.; Liu, Y. F. A facile one-step method to produce graphene–CdS quantum dot nanocomposites as promising optoelectronic materials. Adv. Mater. 2010, 22, 103–106.

    Article  Google Scholar 

  24. Yang, K.; Zhang, S.; Zhang, G. X.; Sun, X. M.; Lee, S. T.; Liu, Z. Graphene in mice: Ultrahigh in vivo tumor uptake and efficient photothermal therapy. Nano Lett. 2010, 10, 3318–3323.

    Article  Google Scholar 

  25. Yang, K.; Feng, L. Z.; Shi, X. Z.; Liu, Z. Nano-graphene in biomedicine: Theranostic applications. Chem. Soc. Rev. 2013, 42, 530–547.

    Article  Google Scholar 

  26. Lv, R. T.; Robinson, J. A.; Schaak, R. E.; Sun, D.; Sun, Y. F.; Mallouk, T. E.; Terrones, M. Transition metal dichalcogenides and beyond: Synthesis, properties, and applications of single-and few-layer nanosheets. Acc. Chem. Res. 2014, 48, 56–64.

    Article  Google Scholar 

  27. Naguib, M.; Mochalin, V. N.; Barsoum, M. W.; Gogotsi, Y. 25th anniversary article: Mxenes: A new family of two–dimensional materials. Adv. Mater. 2014, 26, 992–1005.

    Article  Google Scholar 

  28. Yin, W. Y.; Yan, L.; Yu, J.; Tian, G.; Zhou, L. J.; Zheng, X. P.; Zhang, X.; Yong, Y.; Li, J.; Gu, Z. J. et al. High-throughput synthesis of single-layer MoS2 nanosheets as a near-infrared photothermal-triggered drug delivery for effective cancer therapy. ACS Nano 2014, 8, 6922–6933.

    Article  Google Scholar 

  29. Lai, H. Q.; Zhang, X.; Feng, P. J.; Xie, L. N.; Chen, J. J.; Chen, T. F. Enhancement of antiangiogenic efficacy of iron(II) complex by selenium substitution. Chem. Asian J. 2017, 12, 982–987.

    Article  Google Scholar 

  30. Peng, Y.; Li, Y. S.; Ban, Y. J.; Jin, H.; Jiao, W. M.; Liu, X. L.; Yang, W. S. Metal-organic framework nanosheets as building blocks for molecular sieving membranes. Science 2014, 346, 1356–1359.

    Article  Google Scholar 

  31. Zhao, M. T.; Wang, Y. X.; Ma, Q. L.; Huang, Y.; Zhang, X.; Ping, J. F.; Zhang, Z. C.; Lu, Q. P.; Yu, Y. F.; Xu, H. et al. Ultrathin 2D metal-organic framework nanosheets. Adv. Mater. 2015, 27, 7372–7378.

    Article  Google Scholar 

  32. Prencipe, G.; Tabakman, S. M.; Welsher, K.; Liu, Z.; Goodwin, A. P.; Zhang, L.; Henry, J.; Dai, H. J. PEG branched polymer for functionalization of nanomaterials with ultralong blood circulation. J. Am. Chem. Soc. 2009, 131, 4783–4787.

    Article  Google Scholar 

  33. Choi, E. Y.; Wray, C. A.; Hu, C. H.; Choe, W. Highly tunable metal–organic frameworks with open metal centers. CrystEngComm 2009, 11, 553–555.

    Article  Google Scholar 

  34. Wang, K. P.; Wang, J.; Fan, J. T.; Lotya, M.; O’Neill, A.; Fox, D.; Feng, Y. Y.; Zhang, X. Y.; Jiang, B. X.; Zhao, Q. Z. et al. Ultrafast saturable absorption of two-dimensional MoS2 nanosheets. ACS Nano 2013, 7, 9260–9267.

    Article  Google Scholar 

  35. Feng, J.; Sun, X.; Wu, C. Z.; Peng, L. L.; Lin, C. C.; Hu, S. L.; Yang, J. H.; Xie, Y. Metallic few-layered VS2 ultrathin nanosheets: High twodimensional conductivity for in-plane supercapacitors. J. Am. Chem. Soc. 2011, 133, 17832–17838.

    Article  Google Scholar 

  36. Lu, K. D.; He, C. B.; Lin, W. B. Nanoscale metal-organic framework for highly effective photodynamic therapy of resistant head and neck cancer. J. Am. Chem. Soc. 2014, 136, 16712–16715.

    Article  Google Scholar 

  37. Fan, W. P.; Yung, B.; Huang, P.; Chen, X. Y. Nanotechnology for multimodal synergistic cancer therapy. Chem. Rev. 2017, 117, 13566–13638.

    Article  Google Scholar 

Download references

Acknowledgements

This work was partially supported by the National Research Programs from Ministry of Science and Technology (MOST) of China (No. 2016YFA0201200), the National Natural Science Foundation of China (Nos. 51525203 and 51761145041), Collaborative Innovation Center of Suzhou Nano Science and Technology, and a Project Funded by the Priority Academic Program Development (PAPD) of Jiangsu Higher Education Institutions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhuang Liu.

Electronic supplementary material

12274_2018_2242_MOESM1_ESM.pdf

Two-dimensional metal-organic-framework as a unique theranostic nano-platform for nuclear imaging and chemo-photodynamic cancer therapy

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhu, W., Yang, Y., Jin, Q. et al. Two-dimensional metal-organic-framework as a unique theranostic nano-platform for nuclear imaging and chemo-photodynamic cancer therapy. Nano Res. 12, 1307–1312 (2019). https://doi.org/10.1007/s12274-018-2242-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12274-018-2242-2

Keywords

Navigation