Skip to main content
Log in

The Ruminococci: key symbionts of the gut ecosystem

  • Review
  • Human Microbiomes and Probiotics
  • Published:
Journal of Microbiology Aims and scope Submit manuscript

Abstract

Mammalian gut microbial communities form intricate mutualisms with their hosts, which have profound implications on overall health. One group of important gut microbial mutualists are bacteria in the genus Ruminococcus, which serve to degrade and convert complex polysaccharides into a variety of nutrients for their hosts. Isolated decades ago from the bovine rumen, ruminococci have since been cultured from other ruminant and non-ruminant sources, and next-generation sequencing has further shown their distribution to be widespread in a diversity of animal hosts. While most ruminococci that have been studied are those capable of degrading cellulose, much less is known about non-cellulolytic, nonruminant-associated species, such as those found in humans. Furthermore, a mechanistic understanding of the role of Ruminococcus spp. in their respective hosts is still a work in progress. This review highlights the broad work done on species within the genus Ruminococcus with respect to their physiology, phylogenetic relatedness, and their potential impact on host health.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  • Abell, G.C.J., Cooke, C.M., Bennett, C.N., Conlon, M.A., and Mc-Orist, A.L. 2008. Phylotypes related to Ruminococcus bromii are abundant in the large bowel of humans and increase in response to a diet high in resistant starch. FEMS Microbiol. Ecol. 66, 505–515.

    Article  CAS  PubMed  Google Scholar 

  • Aminov, R.I., Kaneichi, K., Miyagi, T., Sakka, K., and Ohmiya, K. 1994. Construction of genetically marked Ruminococcus albus strains and conjugal transfer of plasmid pAMB1 into them. J. Ferment. Bioeng. 78, 1–5.

    Article  CAS  Google Scholar 

  • Bryant, M.P. and Robinson, I.M. 1961. Some nutritional requirements of the genus Ruminococcus. Appl. Microbiol. 9, 91–95.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Cao, Y., Zhang, R., Sun, C., Cheng, T., Liu, Y., and Xian, M. 2013. Fermentative succinate production: an emerging technology to replace the traditional petrochemical processes. Biomed Res. Int. 2013, 723412.

    PubMed  PubMed Central  Google Scholar 

  • Chassard, C., Delmas, E., Robert, C., Lawson, P.A., and Bernalier-Donadille, A. 2012. Ruminococcus champanellensis sp. nov., a cellulose-degrading bacterium from human gut microbiota. Int. J. Syst. Evol. Microbiol. 62, 138–143.

    CAS  PubMed  Google Scholar 

  • Chen, J., Stevenson, D.M., and Weimer, P.J. 2004. Albusin B, a bacteriocin from the ruminal bacterium Ruminococcus albus 7 that inhibits growth of Ruminococcus flavefaciens. Appl. Environ. Microbiol. 70, 3167–3170.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Christopherson, M.R., Dawson, J.A., Stevenson, D.M., Cunningham, A.C., Bramhacharya, S., Weimer, P.J., Kendziorski, C., and Suen, G. 2014. Unique aspects of fiber degradation by the ruminal ethanologen Ruminococcus albus 7 revealed by physiological and transcriptomic analysis. BMC Genomics 15, 1066.

    Article  PubMed  PubMed Central  Google Scholar 

  • Christopherson, M.R. and Suen, G. 2013. Nature’s bioreactor: the rumen as a model for biofuel production. Biofuels 4, 511–521.

    Article  CAS  Google Scholar 

  • Chua, H.H., Chou, H.C., Tung, Y.L., Chiang, B.L., Liao, C.C., Liu, H.H., and Ni, Y.H. 2018. Intestinal dysbiosis featuring abundance of Ruminococcus gnavus associates with allergic diseases in infants. Gastroenterology 154, 154–167.

    Article  PubMed  Google Scholar 

  • Cocconcelli, P.S., Ferrari, E., Rossi, F., and Bottazzi, V. 1992. Plasmid transformation of Ruminococcus albus by means of high-voltage electroporation. FEMS Microbiol. Lett. 73, 203–207.

    Article  CAS  PubMed  Google Scholar 

  • Consortium, T.H.M.P. 2013. Structure, function and diversity of the healthy human microbiome. Nature 486, 207–214.

    Google Scholar 

  • Crost, E.H., Tailford, L.E., Le Gall, G., Fons, M., Henrissat, B., and Juge, N. 2013. Utilisation of mucin glycans by the human gut symbiont Ruminococcus gnavus is strain-dependent. PLoS One 8, e76341.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Crost, E.H., Tailford, L.E., Monestier, M., Swarbreck, D., Henrissat, B., Crossman, L.C., and Juge, N. 2016. The mucin-degradation strategy of Ruminococcus gnavus: The importance of intramolecular trans-sialidases. Gut Microbes 7, 302–312.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cuív, P.Ó., Smith, W.J., Pottenger, S., Burman, S., Shanahan, E.R., and Morrison, M. 2015. Isolation of genetically tractable mostwanted bacteria by metaparental mating. Sci. Rep. 5, 13282.

    Article  PubMed  PubMed Central  Google Scholar 

  • Dassa, B., Borovok, I., Ruimy-Israeli, V., Lamed, R., Flint, H.J., Duncan, S.H., Henrissat, B., Coutinho, P., Morrison, M., Mosoni, C.J., et al. 2014. Rumen cellulosomics: divergent fiber-degrading strategies revealed by comparative genome-wide analysis of six ruminococcal strains. PLoS One 9, e99221.

    Article  PubMed  PubMed Central  Google Scholar 

  • David, Y.B., Dassa, B., Borovok, I., Lamed, R., Koropatkin, N.M., Martens, E.C., White, B.A., Bernalier-Donadille, A., Duncan, S.H., Flint, H.J., et al. 2015. Ruminococcal cellulosome systems from rumen to human. Environ. Microbiol. 17, 3407–3426.

    Article  PubMed  Google Scholar 

  • Devendran, S., Abdel-Hamid, A.M., Evans, A.F., Iakiviak, M., Kwon, I.H., Mackie, R.I., and Cann, I. 2016. Multiple cellobiohydrolases and cellobiose phosphorylases cooperate in the ruminal bacterium Ruminococcus albus 8 to degrade cellooligosaccharides. Sci. Rep. 6, 35342.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Devillard, E., Goodheart, D.B., Karnati, S.K.R., Bayer, E.A., Lamed, R., Miron, J., Nelson, K.E., and Morrison, M. 2004. Ruminococcus albus 8 mutants defective in cellulose degradation are deficient in two processive endocellulases, Cel48A and Cel9B, both of which possess a novel modular architecture. J. Bacteriol. 186, 136–145.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ding, S.Y., Bayer, E.A., Steiner, D., Shoham, Y., and Lamed, R. 1999. A novel cellulosomal scaffoldin from Acetivibrio cellulolyticus that contains a family 9 glycosyl hydrolase. J. Bacteriol. 181, 6720–6729.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Ding, S.Y., Bayer, E.A., Steiner, D., Shoham, Y., and Lamed, R. 2000. A scaffoldin of the Bacteroides cellulosolvens cellulosome that contains 11 type II cohesins. J. Bacteriol. 182, 4915–4925.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ding, S., Rincon, M.T., Lamed, R., Martin, J.C., McCrae, S.I., Aurilia, V., Shoham, Y., Bayer, E.A., and Flint, H.J. 2001. Cellulosomal scaffoldin-like proteins from Ruminococcus flavefaciens. 183, 1945–1953.

    CAS  Google Scholar 

  • Domingo, M.C., Huletsky, A., Boissinot, M., Bernard, K.A., Picard, F.J., and Bergeron, M.G. 2008. Ruminococcus gauvreauii sp. nov., a glycopeptide-resistant species isolated from a human faecal specimen. Int. J. Syst. Evol. Microbiol. 58, 1393–1397.

    CAS  PubMed  Google Scholar 

  • Eckburg, P.B., Bik, E.M., Bernstein, C.N., Purdom, E., Dethlefsen, L., Sargent, M., Gill, S.R., Nelson, K.E., and Relman, D.A. 2005. Diversity of the human intestinal microbial flora. Science 308, 1635–1638.

    Article  PubMed  PubMed Central  Google Scholar 

  • Ezer, A., Matalon, E., Jindou, S., Borovok, I., Atamna, N., Yu, Z., Morrison, M., Bayer, E.A., and Lamed, R. 2008. Cell surface enzyme attachment is mediated by family 37 carbohydrate-binding modules, unique to Ruminococcus albus. J. Bacteriol. 190, 8220–8222.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Finegold, S.M., Molitoris, D., Song, Y., Liu, C., Vaisanen, M., Bolte, E., McTeague, M., Sandler, R., Wexler, H., Marlowe, E.M., et al. 2002. Gastrointestinal microflora studies in late-onset autism. Clin. Infect. Dis. 35 Suppl., S6–S16.

    Article  PubMed  Google Scholar 

  • Flint, H.J., Bayer, E.A., Rincon, M.T., Lamed, R., and White, B.A. 2008. Polysaccharide utilization by gut bacteria: potential for new insights from genomic analysis. Nat. Rev. Microbiol. 6, 121–131.

    Article  CAS  PubMed  Google Scholar 

  • Hall, A.B., Tolonen, A.C., and Xavier, R.J. 2017. Human genetic variation and the gut microbiome in disease. Nat. Rev. Genet. 18, 690–699.

    Article  CAS  PubMed  Google Scholar 

  • Hansen, S.G.K., Skov, M.N., and Justesen, U.S. 2013. Two cases of Ruminococcus gnavus bacteremia associated with diverticulitis. J. Clin. Microbiol. 51, 1334–1336.

    Article  PubMed  PubMed Central  Google Scholar 

  • Henderson, G., Cox, F., Ganesh, S., Jonker, A., Young, W., Global Rumen Census Collaborators, and Janssen, P.H. 2015. Rumen microbial community composition varies with diet and host, but a core microbiome is found across a wide geographical range. Sci. Rep. 5, 14567.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Holdeman, L.V. and Moore, W.E. 1974. New genus, Coprococcus, twelve new species, and emended descriptions of four previously describes species of bacteria from human feces. Int. J. Syst. Bacteriol. 24, 260–277.

    Article  Google Scholar 

  • Hsiao, A., Ahmed, A.M.S., Subramanian, S., Griffin, N.W., Drewry, L.L., Petri, W.A., Haque, R., Ahmed, T., and Gordon, J.I. 2014. Members of the human gut microbiota involved in recovery from Vibrio cholerae infection. Nature 515, 423–426.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hungate, R.E. 1957. Microorganisms in the rumen fed a constant ration. Can. J. Microbiol. 3, 289–311.

    Article  CAS  PubMed  Google Scholar 

  • Iakiviak, M., Devendran, S., Skorupski, A., Moon, Y.H., Mackie, R.I., and Cann, I. 2016. Functional and modular analyses of diverse endoglucanases from Ruminococcus albus 8, a specialist plant cell wall degrading bacterium. Sci. Rep. 6, 29979.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Iakiviak, M., Mackie, R.I., and Cann, I.K.O. 2011. Functional analyses of multiple lichenin-degrading enzymes from the rumen bacterium Ruminococcus albus 8. Appl. Environ. Microbiol. 77, 7541–7550.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Iannotti, E.L., Kafkewitz, I.D., Wolin, M.J., and Bryant, M.P. 1973. Glucose fermentation products of Ruminococcus albus grown in continuous culture with Vibrio succinogenes: changes caused by interspecies transfer of H2. J. Bacteriol. 114, 1231–1240.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Israeli-Ruimy, V., Bule, P., Jindou, S., Dassa, B., Moraïs, S., Borovok, I., Barak, Y., Slutzki, M., Hamberg, Y., Cardoso, V., et al. 2017. Complexity of the Ruminococcus flavefaciens FD-1 cellulosome reflects an expansion of family-related protein-protein interactions. Sci. Rep. 7, 42355.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jenq, R.R., Taur, Y., Devlin, S.M., Ponce, D.M., Goldberg, J.D., Ahr, K.F., Littmann, E.R., Ling, L., Gobourne, A.C., Miller, L.C., et al. 2015. Intestinal Blautia is associated with reduced death from graft-versus-host disease. Biol. Blood Marrow Transplant. 21, 1373–1383.

    Article  PubMed  PubMed Central  Google Scholar 

  • Jones, B.V., Begley, M., Hill, C., Gahan, C.G.M., and Marchesi, J.R. 2008. Functional and comparative metagenomic analysis of bile salt hydrolase activity in the human gut microbiome. Proc. Natl. Acad. Sci. USA 105, 13580–13585.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kang, S., Denman, S.E., Morrison, M., Yu, Z., Dore, J., Leclerc, M., and McSweeney, C.S. 2010. Dysbiosis of fecal microbiota in Crohn's disease patients as revealed by a custom phylogenetic microarray. Inflamm. Bowel Dis. 16, 2034–2042.

    Article  PubMed  Google Scholar 

  • Kim, M.S., Roh, S.W., and Bae, J.W. 2011. Ruminococcus faecis sp. nov., isolated from human faeces. J. Microbiol. 49, 487–491.

    PubMed  Google Scholar 

  • Klemm, D., Heublein, B., Fink, H.P., and Bohn, A. 2005. Cellulose: Fascinating biopolymer and sustainable raw material. Angew. Chem. Int. Ed. Engl. 44, 3358–3393.

    Article  CAS  PubMed  Google Scholar 

  • Klieve, A.V., O’Leary, M.N., McMillen, L., and Ouwerkerk, D. 2007. Ruminococcus bromii, identification and isolation as a dominant community member in the rumen of cattle fed a barley diet. J. Appl. Microbiol. 103, 2065–2073.

    Article  CAS  PubMed  Google Scholar 

  • Koeck, D.E., Pechtl, A., Zverlov, V. V., and Schwarz, W.H. 2014. Genomics of cellulolytic bacteria. Curr. Opin. Biotechnol. 29, 171–183.

    Article  CAS  PubMed  Google Scholar 

  • Koskey, A.M., Fisher, J.C., Eren, A.M., Ponce-Terashima, R., Reis, M.G., Blanton, R.E., and McLellan, S.L. 2014. Blautia and Prevotella sequences distinguish human and animal fecal pollution in Brazil surface waters. Environ. Microbiol. Rep. 6, 696–704.

    Article  PubMed  PubMed Central  Google Scholar 

  • Krause, D.O., Bunch, R.J., Smith, W.J.M., and McSweeney, C.S. 1999a. Diversity of Ruminococcus strains: a survey of genetic polymorphisms and plant digestibility. J. Appl. Microbiol. 86, 487–495.

    Article  Google Scholar 

  • Krause, D.O., Dalrymple, B.P., Smith, W.J., Mackie, R.I., and Mc-Sweeney, C.S. 1999b. 16S rDNA sequencing of Ruminococcus albus and Ruminococcus flavefaciens: Design of a signature probe and its application in adult sheep. Microbiology 145, 1797–1807.

    Article  CAS  PubMed  Google Scholar 

  • La Reau, A.J., Meier-Kolthoff, J.P., and Suen, G. 2016. Sequencebased analysis of the genus Ruminococcus resolves its phylogeny and reveals strong host association. Microb. Genomics 2, e000099.

    Google Scholar 

  • Lamed, R., Naimark, J., Morgenstern, E., and Bayer, E. 1987. Specialized cell-surface structures in cellulolytic bacteria. J. Bacteriol. 169, 3792–3800.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lamed, R., Setter, E., and Bayer, E. 1983a. Characterization of a cellulose-binding, cellulose-containing complex in Clostridium thermocellum. J. Bacteriol. 156, 828–836.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Lamed, R., Setter, E., Kenig, R., and Bayer, E. 1983b. The cellulosome: A discrete cell surface organelle of Clostridium thermocellum which exhibits separate antigenic, cellulose-binding and various cellulolytic activities. Biotechnol. Bioeng. Symp. 13, 163–181.

    CAS  Google Scholar 

  • Larsson, J.M.H., Karlsson, H., Crespo, J.G., Johansson, M.E.V., Eklund, L., Sjövall, H., and Hansson, G.C. 2011. Altered O-glycosylation profile of MUC2 mucin occurs in active ulcerative colitis and is associated with increased inflammation. Inflamm. Bowel Dis. 17, 2299–2307.

    Article  PubMed  Google Scholar 

  • Latham, M.J. and Wolin, M.J. 1977. Fermentation of cellulose by Ruminococcus flavefaciens in the presence and absence of Methanobacterium ruminantium. Appl. Environ. Microbiol. 34, 297–301.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Lawson, P.A. and Finegold, S.M. 2014. Reclassification of Ruminococcus obeum as Blautia obeum comb. nov. Int. J. Syst. Evol. Microbiol. 65, 789–793.

    Article  PubMed  Google Scholar 

  • Lay, C., Sutren, M., Rochet, V., Saunier, K., Doré, J., and Rigottier-Gois, L. 2005. Design and validation of 16S rRNA probes to enumerate members of the Clostridium leptum subgroup in human faecal microbiota. Environ. Microbiol. 7, 933–946.

    Article  CAS  PubMed  Google Scholar 

  • Leschine, S.B. 1995. Cellulose degradation in anaerobic nvironments. Annu. Rev. Microbiol. 49, 399–426.

    Article  CAS  PubMed  Google Scholar 

  • Ley, R.E., Hamady, M., Lozupone, C., Turnbaugh, P.J., Ramey, R.R., Bircher, J.S., Schlegel, M.L., Tucker, T.A., Schrenzel, M.D., Knight, R., et al. 2008a. Evolution of mammals and their gut microbes. Science 320, 1647–1651.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ley, R.E., Lozupone, C.A., Hamady, M., Knight, R., and Gordon, J.I. 2008b. Worlds within worlds: evolution of the vertebrate gut microbiota. Nat. Rev. Microbiol. 6, 776–788.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Li, M., Wang, B., Zhang, M., Rantalainen, M., Wang, S., Zhou, H., Zhang, Y., Shen, J., Pang, X., Zhang, M., et al. 2008. Symbiotic gut microbes modulate human metabolic phenotypes. Proc. Natl. Acad. Sci. USA 105, 2117–2122.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Liu, C., Finegold, S.M., Song, Y., and Lawson, P.A. 2008. Reclassification of Clostridium coccoides, Ruminococcus hansenii, Ruminococcus hydrogenotrophicus, Ruminococcus luti, Ruminococcus productus and Ruminococcus schinkii as Blautia coccoides gen. nov., comb. nov., Blautia hansenii comb. nov., Blautia hydroge. Int. J. Syst. Evol. Microbiol. 58, 1896–1902.

    Article  CAS  PubMed  Google Scholar 

  • Lloyd-Price, J., Abu-Ali, G., and Huttenhower, C. 2016. The healthy human microbiome. Genome Med. 8, 1–11.

    Article  Google Scholar 

  • Lombard, V., Golaconda-Ramulu, H., Drula, E., Coutinho, P., and Henrissat, B. 2014. The carbohydrate-active enzymes database (CAZy) in 2013. Nucleic Acids Res. 42, D490–D495.

    Article  CAS  PubMed  Google Scholar 

  • Lynd, L.R., Weimer, P.J., van Zyl, W.H., and Pretorius, I.S. 2002. Microbial cellulose utilization: Fundamentals and biotechnology. Microbiol. Mol. Biol. Rev. 66, 506–577.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • McDonald, J.A.K., Schroeter, K., Fuentes, S., Heikamp-deJong, I., Khursigara, C.M., de Vos, W.M., and Allen-Vercoe, E. 2013. Evaluation of microbial community reproducibility, stability and composition in a human distal gut chemostat model. J. Microbiol. Methods 95, 167–174.

    Article  CAS  PubMed  Google Scholar 

  • Moon, Y.H., Iakiviak, M., Bauer, S., Mackie, R.I., and Cann, I.K.O. 2011. Biochemical analyses of multiple endoxylanases from the rumen bacterium Ruminococcus albus 8 and their synergistic activities with accessory hemicellulose-degrading enzymes. Appl. Environ. Microbiol. 77, 5157–5169.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Moore, W.E.C., Cato, E.P., and Holden, L.V. 1972. Ruminococcus bromii sp. n. and emendation of the description of Ruminococcus sijpestein. Int. J. Syst. Bacteriol. 22, 78–80.

    Article  Google Scholar 

  • Moore, W.E.C., Johnson, J.L., and Holdeman, L.V. 1976. Emendation of bacteroidaceae and Butyrivibrio and descriptions of Desulfomonas gen. nov. and ten new species in the genera Desulfomonas, Butyrivibrio, Eubacterium, Clostridium, and Ruminococcus. Int. J. Syst. Bacteriol. 26, 238–252.

    Article  Google Scholar 

  • Moraïs, S., David, Y.B., Bensoussan, L., Duncan, S.H., Koropatkin, N.M., Martens, E.C., Flint, H.J., and Bayer, E.A. 2016. Enzymatic profiling of cellulosomal enzymes from the human gut bacterium, Ruminococcus champanellensis, reveals a fine-tuned system for cohesin-dockerin recognition. Environ. Microbiol. 18, 542–556.

    Article  PubMed  Google Scholar 

  • Mukhopadhya, I., Morais, S., Laverde-Gomez, J., Sheridan, P.O., Walker, A.W., Kelly, W., Klieve, A.V, Ouwerkerk, D., Duncan, S.H., Louis, P., et al. 2017. Sporulation capability and amylosome conservation among diverse human colonic and rumen isolates of the keystone starch-degrader Ruminococcus bromii. Environ. Microbiol. 18, 5288–5302.

    Google Scholar 

  • Ohara, H., Karita, S., Kimura, T., Sakka, K., and Ohmiya, K. 2000. Characterization of the cellulolytic complex (cellulosome) from Ruminococcus albus. Biosci. Biotechnol. Biochem. 64, 254–260.

    Article  CAS  PubMed  Google Scholar 

  • Pavlostathis, S.G., Miller, T.L., and Wolin, M.J. 1990. Cellulose fermentation by continuous cultures of Ruminococcus albus and Methanobrevibacter smithii. Appl. Microbiol. Biotechnol. 33, 109–116.

    Article  CAS  Google Scholar 

  • Pegden, R.S., Larson, M.A., Grant, R.J., and Morrison, M. 1998. Adherence of the gram-positive bacterium Ruminococcus albus to cellulose and identification of a novel form of cellulose-binding protein which belongs to the Pil family of proteins. J. Bacteriol. 180, 5921–5927.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Qin, J., Li, R., Raes, J., Arumugam, M., Burgdorf, K.S., Manichanh, C., Nielsen, T., Pons, N., Levenez, F., Yamada, T., et al. 2010. A human gut microbial gene catalogue established by metagenomic sequencing. Nature 464, 59–65.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rainey, F.A. 2009. Family VIII. Ruminococcaceae fam. nov., pp. 1016–1043. In De Vos, P., Garrity, G.M., Jones, D., Krieg, N.R., Ludwig, W., Rainey, F.A., Schleifer, K.H., and Whitman, W.B. (eds.), Bergey’s Manual of Systematic Bacteriology, 2nd ed., vol. 3, Springer Nature.

  • Rainey, F.A. and Janssen, P.H. 1995. Phylogenetic analysis by 16S ribosomal DNA sequence comparison reveals two unrelated groups of species within the genus Ruminococcus. FEMS Microbiol. Lett. 129, 69–73.

    CAS  PubMed  Google Scholar 

  • Round, J.L. and Mazmanian, S.K. 2009. The gut microbiota shapes intestinal immune responses during health and disease. Nat. Rev. Immunol. 9, 313–323.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Salonen, A., Lahti, L., Salojärvi, J., Holtrop, G., Korpela, K., Duncan, S.H., Date, P., Farquharson, F., Johnstone, A.M., Lobley, G.E., et al. 2014. Impact of diet and individual variation on intestinal microbiota composition and fermentation products in obese men. ISME J. 8, 2218–2230.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Shi, Y., Odt, C.L., and Weimer, P.J. 1997. Competition for cellulose among three predominant ruminal cellulolytic bacteria under substrate-excess and substrate-limited conditions. Appl. Environ. Microbiol. 63, 734–742.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Shi, Y. and Weimer, P.J. 1997. Competition for cellobiose among three predominant ruminal cellulolytic bacteria under substrateexcess and substrate-limited conditions. Appl. Environ. Microbiol. 63, 743–748.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Sijpesteijn, A.K. 1949. Cellulose-decomposing bacteria from the rumen of the cattle. Antonie van Leeuwenhoek 15, 49–52.

    Article  Google Scholar 

  • Suen, G., Stevenson, D.M., Bruce, D.C., Chertkov, O., Copeland, A., Cheng, J.F., Detter, C., Detter, J.C., Goodwin, L.A., Han, C.S., et al. 2011. Complete genome of the cellulolytic ruminal bacterium Ruminococcus albus 7. J. Bacteriol. 193, 5574–5575.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tailford, L.E., Owen, C.D., Walshaw, J., Crost, E.H., Hardy-Goddard, J., Le Gall, G., De Vos, W.M., Taylor, G.L., and Juge, N. 2015. Discovery of intramolecular trans-sialidases in human gut microbiota suggests novel mechanisms of mucosal adaptation. Nat. Commun. 6, 7624.

    Article  PubMed  PubMed Central  Google Scholar 

  • Takahashi, K., Nishida, A., Fujimoto, T., Fujii, M., Shioya, M., Imaeda, H., Inatomi, M., Bamba, S., Andoh, A., and Sugimoto, M. 2016. Reduced abundance of butyrate-producing bacteria species in the fecal microbial community in Crohn’s disease. Digestion 93, 59–65.

    Article  CAS  PubMed  Google Scholar 

  • Thurston, B., Dawson, K.A., and Strobel, H.J. 1994. Pentose utilization by the ruminal bacterium Ruminococcus albus. Appl. Environ. Microbiol. 60, 1087–1092.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Titécat, M., Wallet, F., Vieillard, M.H., Courcol, R.J., and Loïez, C. 2014. Ruminococcus gnavus: An unusual pathogen in septic arthritis. Anaerobe 30, 159–160.

    Article  PubMed  Google Scholar 

  • Venturelli, O.S., Egbert, R.G., and Arkin, A.P. 2016. Towards engineering biological systems in a broader context. J. Mol. Biol. 428, 928–944.

    Article  CAS  PubMed  Google Scholar 

  • Vereecke, L. and Elewaut, D. 2017. Spondyloarthropathies: Ruminococcus on the horizon in arthritic disease. Nat. Rev. Rheumatol. 13, 574–576.

    Article  PubMed  Google Scholar 

  • Walker, A.W., Duncan, S.H., Harmsen, H.J.M., Holtrop, G., Welling, G.W., and Flint, H.J. 2008. The species composition of the human intestinal microbiota differs between particle-associated and liquid phase communities. Environ. Microbiol. 10, 3275–3283.

    Article  CAS  PubMed  Google Scholar 

  • Walker, A.W., Ince, J., Duncan, S.H., Webster, L.M., Holtrop, G., Ze, X., Brown, D., Stares, M.D., Scott, P., Bergerat, A., et al. 2011. Dominant and diet-responsive groups of bacteria within the human colonic microbiota. ISME J. 5, 220–230.

    Article  CAS  PubMed  Google Scholar 

  • Wang, L., Christophersen, C.T., Sorich, M.J., Gerber, J.P., Angley, M.T., and Conlon, M.A. 2013. Increased abundance of Sutterella spp. and Ruminococcus torques in feces of children with autism spectrum disorder. Mol. Autism 4, 1.

    Google Scholar 

  • Wegmann, U., Louis, P., Goesmann, A., Henrissat, B., Duncan, S.H., and Flint, H.J. 2013. Complete genome of a new Firmicutes species belonging to the dominant human colonic microbiota (‘Ruminococcus bicirculans’) reveals two chromosomes and a selective capacity to utilize plant glucans. Environ. Microbiol. 16, 2879–2890.

    Article  PubMed  Google Scholar 

  • Weimer, P.J. 1992. Cellulose degradation by ruminal microorganisms. Crit. Rev. Biotechnol. 12, 189–223.

    Article  CAS  Google Scholar 

  • Weimer, P.J., Price, N.P.J., Kroukamp, O., Joubert, L.M., Wolfaardt, G.M., and Van Zyl, W.H. 2006. Studies of the extracellular glycocalyx of the anaerobic cellulolytic bacterium Ruminococcus albus 7. Appl. Environ. Microbiol. 72, 7559–7566.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • White, D. 2007. The physiology and biochemistry of prokaryotes, 3rd ed. Oxford University Press, New York, N.Y., USA.

    Google Scholar 

  • Xu, Q., Morrison, M., Nelson, K.E., Bayer, E.A., Atamna, N., and Lamed, R. 2004. A novel family of carbohydrate-binding modules identified with Ruminococcus albus proteins. FEBS Lett. 566, 11–16.

    Article  CAS  PubMed  Google Scholar 

  • Ze, X., David, B., Laverde-gomez, J.A., Dassa, B., Sheridan, P.O., Duncan, S.H., Louis, P., Henrissat, B., Juge, N., Koropatkin, N.M., et al. 2015. Unique organization of extracellular amylases into amylosomes in the resistant starch-utilizing human colonic firmicutes bacterium Ruminococcus bromii. MBio 6, 1–11.

    Article  Google Scholar 

  • Ze, X., Duncan, S.H., Louis, P., and Flint, H.J. 2012. Ruminococcus bromii is a keystone species for the degradation of resistant starch in the human colon. ISME J. 6, 1535–1543.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zheng, M.M., Wang, R.F., Li, C.X., and Xu, J.H. 2015. Two-step enzymatic synthesis of ursodeoxycholic acid with a new 7β-hydroxysteroid dehydrogenase from Ruminococcus torques. Process Biochem. 50, 598–604.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Garret Suen.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

La Reau, A.J., Suen, G. The Ruminococci: key symbionts of the gut ecosystem. J Microbiol. 56, 199–208 (2018). https://doi.org/10.1007/s12275-018-8024-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12275-018-8024-4

Keywords

Navigation