Skip to main content

Advertisement

Log in

Post-symptomatic Delivery of Brain-Derived Neurotrophic Factor (BDNF) Ameliorates Spinocerebellar Ataxia Type 1 (SCA1) Pathogenesis

  • Original Article
  • Published:
The Cerebellum Aims and scope Submit manuscript

Abstract

Spinocerebellar ataxia type 1 (SCA1) is a fatal neurodegenerative disease caused by an abnormal expansion of CAG repeats in the Ataxin1 (ATXN1) gene. SCA1 is characterized by motor deficits, cerebellar neurodegeneration, and gliosis and gene expression changes. Expression of brain-derived neurotrophic factor (BDNF), growth factor important for the survival and function of cerebellar neurons, is decreased in ATXN1[82Q] mice, the Purkinje neuron specific transgenic mouse model of SCA1. As this decrease in BDNF expression may contribute to cerebellar neurodegeneration, we tested whether delivery of extrinsic human BDNF via osmotic ALZET pumps has a beneficial effect on disease severity in this mouse model of SCA1. Additionally, to test the effects of BDNF on established and progressing cerebellar pathogenesis and motor deficits, we delivered BDNF post-symptomatically. We have found that post-symptomatic delivery of extrinsic BDNF ameliorated motor deficits and cerebellar pathology (i.e., dendritic atrophy of Purkinje cells, and astrogliosis) indicating therapeutic potential of BDNF even after the onset of symptoms in SCA1. However, BDNF did not alter Purkinje cell gene expression changes indicating that certain aspects of disease pathogenesis cannot be ameliorated/slowed down with BDNF and that combinational therapies may be needed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Data Availability

All data will be freely available from the authors upon request.

References

  1. Zoghbi HY, Orr HT. Pathogenic mechanisms of a polyglutamine-mediated neurodegenerative disease, Spinocerebellar ataxia type 1. J Biol Chem. 2009;284:7425–9.

    Article  CAS  Google Scholar 

  2. Banfi S, Servadio A, Chung MY, Capozzoli F, Duvick LA, Elde R, et al. Cloning and developmental expression analysis of the murine homolog of the spinocerebellar ataxia type 1 gene (Sca1). Hum Mol Genet. 1996;5:33–40.

    Article  CAS  Google Scholar 

  3. Gusella JF, Macdonald ME. Molecular genetics: unmasking polyglutamine triggers in neurodegenerative disease. Nat Rev Neurosci. 2000;1:109–15.

    Article  CAS  Google Scholar 

  4. La Spada AR, Taylor JP. Repeat expansion disease: progress and puzzles in disease pathogenesis. Nat. Rev. Genet. [Internet]. Nature Publishing Group; 2010;11:247–58. Available from: https://doi.org/10.1038/nrg2748

  5. Genis D, Matilla T, Volpini V, Rosell J, Dávalos A, Ferrer I, et al. Clinical, neuropathologic, and genetic studies of a large spinocerebellar ataxia type 1 (SCA1) kindred: (CAG)n expansion and early premonitory signs and symptoms. Neurology [Internet]. 1995;45:24–30. Available from: http://www.ncbi.nlm.nih.gov/pubmed/7824128.

  6. Rüb U, Schöls L, Paulson H, Auburger G, Kermer P, Jen JC, et al. Clinical features, neurogenetics and neuropathology of the polyglutamine spinocerebellar ataxias type 1, 2, 3, 6 and 7. Prog Neurobiol. 2013;104:38–66.

    Article  Google Scholar 

  7. Matilla-Dueñas A, Ashizawa T, Brice A, Magri S, McFarland KN, Pandolfo M, et al. Consensus paper: pathological mechanisms underlying neurodegeneration in spinocerebellar ataxias. Cerebellum. 2014;13:269–302.

    Article  Google Scholar 

  8. Orr HT, Zoghbi HY. Trinucleotide repeat disorders. Annu Rev Neurosci [Internet] 2007;30:575–621. Available from: http://www.annualreviews.org/doi/abs/10.1146/annurev.neuro.29.051605.113042

  9. Paulson HL, Shakkottai VG, Clark HB, Orr HT. Polyglutamine spinocerebellar ataxias-from genes to potential treatments. Nat Rev Neurosci. 2017.

  10. Canals JM, Pineda JR, Torres-Peraza JF, Bosch M, Martín-Ibañez R, Muñoz MT, et al. Brain-derived neurotrophic factor regulates the onset and severity of motor dysfunction associated with enkephalinergic neuronal degeneration in Huntington’s disease. J Neurosci. 2004;24:7727–39.

    Article  CAS  Google Scholar 

  11. Vigers AJ, Amin DS, Talley-Farnham T, Gorski JA, Xu B, Jones KR. Sustained expression of BDNF is required for maintenance of dendritic spines and normal behavior HHS Public Access. Neuroscience. 2012;212:1–18.

    Article  CAS  Google Scholar 

  12. Goldberg NRS, Caesar J, Park A, Sedgh S, Finogenov G, Masliah E, et al. Neural stem cells rescue cognitive and motor dysfunction in a transgenic model of dementia with lewy bodies through a BDNF-dependent mechanism. Stem Cell Reports The Authors. 2015;5:791–804.

  13. Schwartz PM, Borghesani PR, Levy RL, Pomeroy SL, Segal RA. Abnormal cerebellar development and foliation in BDNF Ϫ / Ϫ mice reveals a role for neurotrophins in CNS patterning. Neuron. 1997;19:269–81.

    Article  CAS  Google Scholar 

  14. Bao S, Chen L, Qiao X, Knusel B, Thompson RF. Impaired eye-blink conditioning in waggler, a mutant mouse with cerebellar BDNF deficiency. Learn Mem. 1998;5:355–64.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Carter AR, Chen C, Schwartz PM, Segal RA. Brain-derived neurotrophic factor modulates cerebellar plasticity and synaptic ultrastructure. J Neurosci. 2002;22:1316–27.

    Article  CAS  Google Scholar 

  16. Mellesmoen A, Sheeler C, Ferro A, Rainwater O, Cvetanovic M. Brain derived neurotrophic factor (BDNF) delays onset of pathogenesis in transgenic mouse model of spinocerebellar ataxia type 1 (SCA1). Front. Cell. Neurosci. 2018.

  17. Burright EN, Clark BH, Servadio A, Matilla T, Feddersen RM, Yunis WS, et al. SCA1 transgenic mice: a model for neurodegeneration caused by an expanded CAG trinucleotide repeat. Cell. 1995;82:937–48.

    Article  CAS  Google Scholar 

  18. Cvetanovic M, Patel JM, Marti HH, Kini AR, Opal P. Vascular endothelial growth factor ameliorates the ataxic phenotype in a mouse model of spinocerebellar ataxia type 1. Nat Med [Internet]. 2011;17:1445–7 Available from: http://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=3287040&tool=pmcentrez&rendertype=abstract.

  19. Kim JH, Lukowicz A, Qu W, Johnson A, Cvetanovic M. Astroglia contribute to the pathogenesis of spinocerebellar ataxia type 1 (SCA1) in a biphasic, stage-of-disease specific manner. Glia. 2018;66:1972–87.

    Article  Google Scholar 

  20. Qu W, Johnson A, Kim JH, Lukowicz A, Svedberg D, Cvetanovic M. Inhibition of colony-stimulating factor 1 receptor early in disease ameliorates motor deficits in SCA1 mice. J Neuroinflammation. Journal of Neuroinflammation. 2017;14:1–11.

    CAS  Google Scholar 

  21. Duvick L, Barnes J, Ebner B, Agrawal S, Andresen M, Lim J, et al. SCA1-like disease in mice expressing wild-type Ataxin-1 with a serine to aspartic acid replacement at residue 776. Neuron [internet]. Elsevier Inc.; 2010;67:929–935. Available from: https://doi.org/10.1016/j.neuron.2010.08.022

  22. Friedrich J, Kordasiewicz HB, O’Callaghan B, Handler HP, Wagener C, Duvick L, et al. Antisense oligonucleotide–mediated ataxin-1 reduction prolongs survival in SCA1 mice and reveals disease-associated transcriptome profiles. JCI Insight. 2018;3.

  23. Ruegsegger C, Stucki DM, Steiner S, Angliker N, Radecke J, Keller E, et al. Impaired mTORC1-dependent expression of Homer-3 influences SCA1 pathophysiology. Neuron. 2016;89:129–46.

    Article  CAS  Google Scholar 

  24. Matilla A, Roberson ED, Banfi S, Morales J, Armstrong DL, Burright EN, et al. Mice lacking ataxin-1 display learning deficits and decreased hippocampal paired-pulse facilitation. J Neurosci. 1998;18:5508–16.

    Article  CAS  Google Scholar 

  25. Clark HB, Burright EN, Yunis WS, Larson S, Wilcox C, Hartman B, et al. Purkinje cell expression of a mutant allele of SCA1 in transgenic mice leads to disparate effects on motor behaviors, followed by a progressive cerebellar dysfunction and histological alterations. J Neurosci. 1997;17:7385–95.

    Article  CAS  Google Scholar 

  26. Ibrahim MF, Power EM, Potapov K, Empson RM. Motor and cerebellar architectural abnormalities during the early progression of ataxia in a mouse model of SCA1 and how early prevention leads to a better outcome later in life. Front Cell Neurosci. 2017;11:1–8.

    Article  Google Scholar 

  27. Hourez R, Servais L, Orduz D, Gall D, Millard I, de Kerchove d’Exaerde A, et al. Aminopyridines correct early dysfunction and delay neurodegeneration in a mouse model of spinocerebellar ataxia type 1. J Neurosci. 2011;31:11795–807.

    Article  CAS  Google Scholar 

  28. Zu T. Recovery from polyglutamine-induced neurodegeneration in conditional SCA1 transgenic mice. J Neurosci. 2004;24:8853–61.

    Article  CAS  Google Scholar 

  29. Zu T, Duvick LA, Kaytor MD, Berlinger MS, Zoghbi HY, Clark HB, et al. Recovery from polyglutamine-induced neurodegeneration in conditional SCA1 transgenic mice. J Neurosci. 2004;24:8853–61.

    Article  CAS  Google Scholar 

  30. Ebner B, Ingram MA, Barnes JA, Duvick LA, Frisch JL, Clark HB, et al. Purkinje cell ataxin-1 modulates climbing fiber synaptic input in developing and adult mouse cerebellum. J. Neurosci. [Internet]. 2013;33:5806–20 Available from: http://www.ncbi.nlm.nih.gov/pubmed/23536093.

    Article  CAS  Google Scholar 

  31. Barnes JA, Ebner BA, Duvick LA, Gao W, Chen G, Orr HT, et al. Abnormalities in the climbing fiber-Purkinje cell circuitry contribute to neuronal dysfunction in ATXN1[82Q] mice. J Neurosci. 2011;31:12778–89.

    Article  CAS  Google Scholar 

  32. Serra HG, Duvick L, Zu T, Carlson K, Stevens S, Jorgensen N, et al. ROR a -mediated Purkinje cell development determines disease severity in adult SCA1 mice. Cell. 2006;127:697–708.

    Article  CAS  Google Scholar 

  33. Ingram M, Wozniak EAL, Duvick L, Yang R, Bergmann P, Carson R, et al. Cerebellar transcriptome profiles of ATXN1 transgenic mice reveal SCA1 disease progression and protection pathways. Neuron [Internet]. Elsevier Inc. 2016;89:1194–207 Available from: http://linkinghub.elsevier.com/retrieve/pii/S0896627316001045.

    CAS  Google Scholar 

  34. Ju H, Kokubu H, Lim J. Beyond the glutamine expansion: influence of posttranslational modifications of Ataxin-1 in the pathogenesis of spinocerebellar ataxia type 1. Mol Neurobiol. 2014;50:866–74.

    Article  CAS  Google Scholar 

  35. Poblete-Naredo I, Guillem AM, Juárez C, Zepeda RC, Ramírez L, Caba M, et al. Brain-derived neurotrophic factor and its receptors in Bergmann glia cells. Neurochem. Int. 2011.

  36. Pöyhönen S, Er S, Domanskyi A, Airavaara M. Effects of neurotrophic factors in glial cells in the central nervous system : expression and properties in neurodegeneration and injury. Front Physiol. 2019;10:1–20.

    Article  Google Scholar 

  37. Bellamy TC. Interactions between Purkinje neurones and Bergmann glia. Cerebellum. 2006;5:116–26.

    Article  Google Scholar 

  38. Cvetanovic M, Ingram M, Orr H, Opal P. Early activation of microglia and astrocytes in mouse models of spinocerebellar ataxia type 1. Neuroscience [Internet]. IBRO. 2015;289:289–99 Available from: http://linkinghub.elsevier.com/retrieve/pii/S0306452215000159.

    CAS  Google Scholar 

  39. Rico B, Xu B, Reichardt LF. TrkB receptor signaling is required for establishment of GABAergic synapses in the cerebellum. Nat. Neurosci. 2002.

  40. Ventriglia M, Zanardini R, Bonomini C, Zanetti O, Volpe D, Pasqualetti P, et al. Serum brain-derived neurotrophic factor levels in different neurological diseases. Biomed Res Int. 2013;2013:1–7.

    Article  Google Scholar 

  41. Sadanand A, Janardhanan A, Vanisree AJ, Pavai T. Neurotrophin expression in lymphocytes: a powerful indicator of degeneration in Parkinson’s disease, amyotrophic lateral sclerosis and ataxia. J Mol Neurosci Journal of Molecular Neuroscience. 2018;64:224–32.

    Article  CAS  Google Scholar 

  42. Takahashi M, Ishikawa K, Sato N, Obayashi M, Niimi Y, Ishiguro T, et al. Reduced brain-derived neurotrophic factor (BDNF) mRNA expression and presence of BDNF-immunoreactive granules in the spinocerebellar ataxia type 6 (SCA6) cerebellum. Neuropathology. 2012;32:595–603.

    Article  Google Scholar 

  43. Vidal-Martinez G, Najera K, Miranda JD, Gil-Tommee C, Yang B, Vargas-Medrano J, et al. FTY720 improves behavior, increases brain derived neurotrophic factor levels and reduces α-synuclein pathology in Parkinsonian GM2 +/− mice. Neuroscience The Authors. 2019;411:1–10.

    Article  CAS  Google Scholar 

  44. Razgado-Hernandez LF, Espadas-Alvarez AJ, Reyna-Velazquez P, Sierra-Sanchez A, Anaya-Martinez V, Jimenez-Estrada I, et al. The transfection of BDNF to dopamine neurons potentiates the effect of dopamine D3 receptor agonist recovering the striatal innervation, dendritic spines and motor behavior in an aged rat model of Parkinson’s disease. PLoS One. 2015;10:1–25.

    Article  Google Scholar 

  45. De Pins B, Cifuentes-Díaz C, Thamila Farah A, López-Molina L, Montalban E, Sancho-Balsells A, et al. Conditional BDNF delivery from astrocytes rescues memory deficits, spine density, and synaptic properties in the 5xFAD mouse model of Alzheimer disease. J Neurosci. 2019;39:2441–58.

    PubMed  PubMed Central  Google Scholar 

  46. Dieni S, Rees S. Distribution of brain-derived neurotrophic factor and TrkB receptor proteins in the fetal and postnatal hippocampus and cerebellum of the guinea pig. J Comp Neurol. 2002;454:229–40.

    Article  CAS  Google Scholar 

  47. Misiorek JO, Schreiber AM, Urbanek-Trzeciak MO, Jazurek-Ciesiołka M, Hauser LA, Lynch DR, et al. A comprehensive transcriptome analysis identifies FXN and BDNF as novel targets of miRNAs in Friedreich’s ataxia patients. Mol. Neurobiol. 2020.

  48. Salomova M, Tichanek F, Jelinkova D, Cendelin J. Abnormalities in the cerebellar levels of trophic factors BDNF and GDNF in pcd and lurcher cerebellar mutant mice. Neurosci. Lett. Elsevier. 2020;725:134870.

    Article  CAS  Google Scholar 

  49. Meng H, Larson SK, Gao R, Qiao X. BDNF transgene improves ataxic and motor behaviors in stargazer mice. Brain Res. 2007;1160:47–57.

    Article  CAS  Google Scholar 

  50. Bamji SX, Rico B, Kimes N, Reichardt LF. BDNF mobilizes synaptic vesicles and enhances synapse formation by disrupting cadherin-β-catenin interactions. J. Cell Biol. 2006.

  51. Minichiello L. TrkB signalling pathways in LTP and learning. Nat Rev Neurosci Nature Publishing Group. 2009;10:850–60.

    Article  CAS  Google Scholar 

  52. Watase K, Weeber EJ, Xu B, Antalffy B, Yuva-Paylor L, Hashimoto K, et al. A long CAG repeat in the mouse Sca1 locus replicates SCA1 features and reveals the impact of protein solubility on selective neurodegeneration. Neuron. 2002;34:905–19.

    Article  CAS  Google Scholar 

  53. Asher M, Johnson A, Zecevic B, Pease D, Cvetanovic M. Ataxin-1 regulates proliferation of hippocampal neural precursors. Neuroscience [internet]. IBRO; 2016;322:54–65. Available from: https://doi.org/10.1016/j.neuroscience.2016.02.011.

  54. Palasz E, Wysocka A, Gasiorowska A, Chalimoniuk M, Niewiadomski W, Niewiadomska G. BDNF as a promising therapeutic agent in Parkinson’s disease. Int J Mol Sci. 2020;21.

  55. Choi SH, Bylykbashi E, Chatila ZK, Lee SW, Pulli B, Clemenson GD, et al. Combined adult neurogenesis and BDNF mimic exercise effects on cognition in an Alzheimer’s mouse model. Science (80-. ). 2018;

Download references

Acknowledgments

We are grateful to Drs. Harry Orr and Huda Zoghbi for the generous gift of mice and to all the members of Cvetanovic and Orr laboratories for suggestions.

Funding

This study is funded by the Regenerative Medicine Minnesota (RMM 101617 TR 001) and National Institutes of Health (NS107387-02) grants.

Author information

Authors and Affiliations

Authors

Contributions

M.C. conceived the study. J.G.R., C.S., A.M., and E.B. performed the experiments. M.C., C.S., and J.G.R. analyzed the data. All authors prepared the figures and wrote the manuscript.

Corresponding author

Correspondence to Marija Cvetanovic.

Ethics declarations

Competing Interests

The authors declare that they have no conflict of interest.

Ethics Approval and Consent to Participate

Not applicable.

Consent for publication

Authors grant consent for publication.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

ESM 1

(PDF 236 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sheeler, C., Rosa, JG., Borgenheimer, E. et al. Post-symptomatic Delivery of Brain-Derived Neurotrophic Factor (BDNF) Ameliorates Spinocerebellar Ataxia Type 1 (SCA1) Pathogenesis. Cerebellum 20, 420–429 (2021). https://doi.org/10.1007/s12311-020-01226-3

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12311-020-01226-3

Keywords

Navigation