Skip to main content
Log in

Over-expression of dehydrin gene, OsDhn1, improves drought and salt stress tolerance through scavenging of reactive oxygen species in rice (Oryza sativa L.)

  • Original Article
  • Published:
Journal of Plant Biology Aims and scope Submit manuscript

Abstract

Various environmental stresses limit the plant growth and productivity. Earlier we reported the stress inducible dehydrin gene, OsDhn1, in rice. In this study we generated OsDhn1-overexpression transgenic rice plants (OsDhn1-OXs) to understand the dehydrin function. OsDhn1-OXs showed an enhanced drought and salt stress tolerance as judged by chlorophyll fluorescence (Fv/Fm), fresh and dry weight, water and chlorophyll content, and survival ratio. Furthermore, OsDhn1-OXs showed significantly increased tolerance to methyl viologen (MV)-induced oxidative stress. Under salt and drought stress condition, OsDhn1-OXs maintained relatively low level of H2O2 as compared to wild type plants. Taken together, it is suggested that OsDhn1 plays an important role in the stress tolerance via scavenging reactive oxygen species (ROS).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  • Aguan K, Sugawara K, Suzuki N, Kusano T (1991) Isolation of genes for low-temperature-induced proteins in rice by a simple subtractive method. Plant Cell Physiol 32:1285–128.

    CAS  Google Scholar 

  • Allagulova ChR, Gilamov FR, Shakirova FM, Vakhitov VA (2003) The plant dehydrins: structure and functions. Biochemistry (Moscow) 68:945–95.

    Article  CAS  Google Scholar 

  • Bradford M (1976) A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem 72:248–25.

    Article  CAS  PubMed  Google Scholar 

  • Bravo LA, Gallardo J, Navarrete A, Olave N, Martínez J, Alberdi M, Close TJ, Corcuera LJ (2003) Cryoprotective activity of a cold induced dehydrin purified from barley. Physiol Plant 118:262–26.

    Article  CAS  Google Scholar 

  • Bray EA (1993) Molecular responses to water deficit. Plant Physiol 103:1035–104.

    CAS  PubMed Central  PubMed  Google Scholar 

  • Brini F, Hanin M, Lumbreras V, Amara I, Khoudi H, Hassairi A, Pagès M, Masmoudi K (2007) Overexpression of wheat dehydrin DHN-5 enhances tolerance to salt and osmotic stress in Arabidopsis thaliana. Plant Cell Rep 26:2017–202.

    Article  CAS  PubMed  Google Scholar 

  • Bollag DM, Rozycki MD, Edelstein SJ (1996) Protein methods. 2nd ed. Wiley-Liss Inc USA

    Google Scholar 

  • Cellier F, Conéjéro G, Breitler JC, Casse F (1998) Molecular and physiological responses to water deficit in drought-tolerant and drought-sensitive lines of sunflower. Plant Physiol 116:319–32.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Chen DH, Roland PC (1999) A rapid DNA minipreparation method suitable for AFLP and other PCR applications. Plant Mol Biol Rep 17:53–5.

    Article  CAS  Google Scholar 

  • Cheng Z, Targolli J, Huang X, Wu R (2002) Wheat LEA genes, PMA80 and PMA1959, enhance dehydration tolerance of transgenic rice (Oryza sativa L.). Mol Breed 10:71–8.

    Article  CAS  Google Scholar 

  • Close TJ (1996) Dehydrins: Emergence of a biochemical role of a family of plant dehydration proteins. Physiol Plant 97:795–80.

    Article  CAS  Google Scholar 

  • Danyluk J, Houde M, Rassart É, Sarhan F (1994) Differential expression of a gene encoding an acidic dehydrin in chilling sensitive and freezing tolerance gramineae species. FEBS Lett 344:20–2.

    Article  CAS  PubMed  Google Scholar 

  • Danyluk J, Perron A, Houde M, Limin A, Fowler B, Benhamou N, Sarhan F (1998) Accumulation of an acidic dehydrin in the vicinity of the plasma membrane during cold acclimation of wheat. Plant Cell 10:623–63.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Feinberg AP, Vogelstein B (1983) A technique for radiolabeling DNA restriction endonuclease fragments to high specific activity. Anal Biochem 132:6–1.

    Article  CAS  PubMed  Google Scholar 

  • Foyer CH, Descourvieres P, Kunert KJ (1994) Protection against oxygen radicals an important defense mechanism studied in transgenic plants. Plant Cell Environ 17:507–52.

    Article  CAS  Google Scholar 

  • Hara M, Fujinaga M, Kuboi T (2004) Radical scavenging activity and oxidative modification of citrus dehydrin. Plant Physiol Biochem 42:657–66.

    Article  CAS  PubMed  Google Scholar 

  • Hara M, Kondo M, Kato T (2013) A KS-type dehydrin and its related domains reduce Cu-promoted radical generation and the histidine residues contribute to the radical-reducing activities. J Exp Bot 64:1615–162.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Hara M, Shinoda Y, Tanaka Y, Kuboi T (2009) DNA binding of citrus dehydrin promoted by zinc ion. Plant Cell Environ 32:532–54.

    Article  CAS  PubMed  Google Scholar 

  • Hara M, Terashima S, Fukaya T, Kuboi T (2003) Enhancement of cold tolerance and inhibition of lipid peroxidation by citrus dehydrin in transgenic tobacco. Planta 217:290–29.

    CAS  PubMed  Google Scholar 

  • Hartwigsen JA, Goggi SA (2002) Expression of a dehydrin-like protein in maize seedlings germinated from seed exposed to freezing. J Plant Biol 45:225–22.

    Article  CAS  Google Scholar 

  • Houde M, Dallaire S, N’Dong D, Sarhan F (2004) Overexpression of the acidic dehydrin WCOR410 improves freezing tolerance in transgenic strawberry leaves. Plant Biotechnol J 2:381–38.

    Article  CAS  PubMed  Google Scholar 

  • Hu L, Wang Z, Du H, Huang B (2010) Differential accumulation of dehydrins in response to water stress for hybrid and common bermudagrass genotypes differing in drought tolerance. J Plant Physiol 167:103–10.

    Article  CAS  PubMed  Google Scholar 

  • Ingram J, Bartels D (1996) The molecular basis of dehydration tolerance in plants. Annu Rev Plant Physiol Plant Mol Biol 47:277–40.

    Article  Google Scholar 

  • Ito Y, Katsura K, Maruyama K, Taji T, Kobayashi M, Seki M, Shinozaki K, Yamaguchi-Shinozaki K (2006) Functional analysis of rice DREB1/CBF-type transcription factors involved in coldresponsive gene expression in transgenic rice. Plant Cell Physiol 47:141–15.

    Article  CAS  PubMed  Google Scholar 

  • Iturbe-Ormaetxe I, Escuredo PR, Arrese-Igor C, Becana M (1998) Oxidative damage in pea plants exposed to water deficit or paraquat. Plant Physiology 116:173–18.

    Article  CAS  PubMed Central  Google Scholar 

  • Jain M, Nijhawan A, Tyagi AK, Khurana JP (2006) Validation of housekeeping genes as internal control for studying gene expression in rice by quantitative real-time PCR. Biochem Biophys Res Commun 345:646–65.

    Article  CAS  PubMed  Google Scholar 

  • Kim SR, Lee S, Kang HG, Jeon JS, Kim KM, An G (2003) A complete sequence of the pGA1611 binary vector. J Plant Biol 46:211–21.

    Article  CAS  Google Scholar 

  • Kim TH (2014) Mechanism of ABA signal transduction: Agricultural highlights for improving drought tolerance. J Plant Biol 57:1–8

    Article  Google Scholar 

  • Kumar K, Kumar M, Kim SR, Ryu H, Cho YG (2013) Insights into genomics of salt stress response in rice. Rice 6:27

    Article  PubMed  Google Scholar 

  • Krasensky J, Jonak C (2012) Drought, salt, and temperature stressinduced metabolic rearrangements and regulatory networks. J Exp Bot 63:1593–160.

    Article  CAS  PubMed  Google Scholar 

  • Kusano T, Aguan K, Abe M, Sugawara K (1992) Nucleotide sequence of a rice rab16 homologue gene. Plant Mol Biol 18:127–12.

    Article  CAS  PubMed  Google Scholar 

  • Lee SC, Kim SH, Kim SR (2013) Drought inducible OsDhn1 promoter is activated by OsDREB1A and OsDREB1D. J Plant Biol 56:115–121.

    Article  CAS  Google Scholar 

  • Lee SC, Lee MY, Kim SJ, Jun SH, An G, Kim SR (2005) Characterization of a stress-inducible dehydrin gene, OsDhn1, from rice (Oryza sativa L.). Mol Cells 19:212–21.

    CAS  PubMed  Google Scholar 

  • Lichtenthaler HK, Wellburn AR (1983) Determination of carotenoids and chlorophylls a and b of leaf extracts in different solvents. Biochem Soc Trans 11:591–59.

    CAS  Google Scholar 

  • Lopez CG, Banowetz GM, Peterson CJ, Kronstad WE (2002) Wheat dehydrin accumulation in response to drought stress during anthesis. Functional Plant Biology 29:1417–142.

    Article  CAS  Google Scholar 

  • Lopez CG, Banowetz GM, Peterson CJ, Kronstad WE (2003) Dehydrin expression and drought tolerance in seven wheat cultivars. Crop Sci 43:577–58.

    Article  CAS  Google Scholar 

  • McElroy D, Rothernberg MM, Wu R (1990) Structural characterization of a rice actin gene. Plant Mol Biol 14:163–17.

    Article  CAS  PubMed  Google Scholar 

  • Miller G, Shulaev V, Mittler R (2008) Reactive oxygen signaling and abiotic stress. Physiol Plant 133:481–48.

    Article  CAS  PubMed  Google Scholar 

  • Mittler R (2002) Oxidative stress, antioxidants and stress tolerance. Trends Plant Sci 7:405–41.

    Article  CAS  PubMed  Google Scholar 

  • Mohanty JG, Jaffe JS, Schulman ES, Raible DG (1997) A highly sensitive fluorescent micro-assay of H2O2 release from activated human leukocytes using a dihydroxyphenoxazine derivative. J Immunol Methods 202:133–14.

    Article  CAS  PubMed  Google Scholar 

  • Muñoz-Mayor A, Pineda B, Garcia-Abellán JO, Antón T, Garcia-Sogo B, Sanchez-Bel P, Flores FB, Atarés A, Angosto T, Pintor-Toro JA, Moreno V, Bolarin MC (2012) Overexpression of dehydrin tas14 gene improves the osmotic stress imposed by drought and salinity in tomato. J Plant Physiol 169:459–46.

    Article  PubMed  Google Scholar 

  • Nylander M, Svensson J, Palva ET, Welin BV (2001) Stress-induced accumulation and tissue-specific localization of dehydrins in Arabidopsis thaliana. Plant Mol Biol 45:263–27.

    Article  CAS  PubMed  Google Scholar 

  • Oh SJ, Song SI, Kim YS, Jang HJ, Kim SY, Kim M, Kim YK, Nahm BH, Kim JK (2005) Arabidopsis CBF3/DREB1A and ABF3 in transgenic rice increased tolerance to abiotic stress without stunting growth. Plant Physiol 138:341–35.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Peng Y, Reyes JL, Wei H, Yang Y, Karlson D, Covarrubias AA, Krebs SL, Fessehaie A, Arora R (2008) RcDhn5, a cold acclimationresponsive dehydrin from Rhododendron catawbiense rescues enzyme activity from dehydration effects in vitro and enhances freezing tolerance in RcDhn5-overexpressing Arabidopsis plants. Physiol Plant 134:583–59.

    Article  CAS  PubMed  Google Scholar 

  • Puhakainen T, Hess MV, Mäkela P, Svenson J, Heino P, Palva ET (2004) Overexpression of multiple dehydrin genes enhances tolerance to freezing stress in Arabidopsis. Plant Mol Biol 54:743–75.

    Article  CAS  PubMed  Google Scholar 

  • Rohila JS, Jain RK, Wu R (2002) Genetic improvement of Basmati rice for salt and drought tolerance by regulated expression of a barley Hva1 cDNA. Plant Sci 163:525–53.

    Article  CAS  Google Scholar 

  • Rorat T (2006) plant dehydrins: tissue location, structure and function. Cell Mol Biol Lett 11:536–55.

    Article  CAS  PubMed  Google Scholar 

  • Seki M, Narusaka M, Abe H, Kasuga M, Yamaguchi-Shinozaki K, Carninci P, Hayashizaki Y, Shinozaki K (2001) Monitoring the expression pattern of 1300 Arabidopsis genes under drought and cold stresses by using a full-length cDNA microarray. Plant Cell 13:61–72.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Shekhawat UK, Srinivas L, Ganapathi TR (2011) MusaDHN-1, a novel multiple stress-inducible SK(3)-type dehydrin gene, contributes affirmatively to drought- and salt-stress tolerance in banana. Planta 234:915–93.

    Article  CAS  PubMed  Google Scholar 

  • Shen B, Jensen RG, Bohnert HJ (1997) Mannitol protects against oxidation by hydroxyl radicals. Plant Physiology 115:527–53.

    CAS  PubMed Central  PubMed  Google Scholar 

  • Shinozaki K, Yamaguchi-Shinozaki K (2000) Molecular responses to dehydration and low temperature: Differences and cross-talk between two stress signaling pathways. Curr Opin Plant Biol 3:217–22.

    Article  CAS  PubMed  Google Scholar 

  • Shinozaki K, Yamaguchi-Shinozaki K, Seki M (2003) Regulatory network of gene expression in the drought and cold stress responses. Curr Opin Plant Biol 6:410–41.

    Article  CAS  PubMed  Google Scholar 

  • Thomashow MF (1999) Plant cold acclimation: Freezing tolerance genes and regulatory mechanisms. Annu Rev Plant Physiol Plant Mol Biol 50:571–599

    Article  CAS  PubMed  Google Scholar 

  • van Breusegem F, Slootan L, Stassart JM, Moens T, Botterman J, van Montagu M, Inze D (1999) Overexpression of Arabidopsis thaliana FeSOD confers oxidative stress tolerance to transgenic maize. Plant Cell Physiol 40:515–52.

    Article  PubMed  Google Scholar 

  • Venu RC, Sreerekha MV, Sheshu Madhav M, Kan Nobuta, Madhan Mohan K, Songbiao Chen, Yulin Jia, Blake Meyers C (2013) Deep transcriptome sequencing reveals the expression of key functional and regulatory genes involved in the abiotic stress signaling pathways in rice. J Plant Biol 56:216–23.

    Article  CAS  Google Scholar 

  • Welin BV, Olson A, Palva ET (1995) Structure and organization of two closely related low-temperature-induced dhn/lea/rab-like genes in Arabidopsis thaliana L. Heynh. Plant Mol Biol 29:391–39.

    Article  CAS  PubMed  Google Scholar 

  • Whitsitt MS, Collins RG, Mullet JE (1997) Modulation of dehydration tolerance in soybean seedlings. Plant Physiol 114:917–92.

    CAS  PubMed Central  PubMed  Google Scholar 

  • Wisniewski M, Webb R, Balsamo R, Close TJ, Yu XM, Griffith M (1999) Purification, immunolocalization, cryoprotective, and antifreeze activity of PCA60: A dehydrin from peach (Prunus persica). Physiol Plant 105:600–60.

    Article  CAS  Google Scholar 

  • Xiao B, Huang Y, Tang N, Xiong L (2007) Over-expression of a LEA gene in rice improves drought resistance under the field conditions. Theor Appl Genet 115:35–4.

    Article  CAS  PubMed  Google Scholar 

  • Xing X, Liu Y, Kong X, Liu Y, Li D (2011) Overexpression of a maize dehydrin gene, ZmDHN2b, in tobacco enhances tolerance to low temperature. Plant Growth Regul 65:109–11.

    Article  CAS  Google Scholar 

  • Xiong L, Schumaker KS, Zhu JK (2002) Cell signaling during cold, drought, and salt stress. Plant Cell 14: S165–18.

    Article  Google Scholar 

  • Xiong L, Yang Y (2003) Disease resistance and abiotic stress tolerance in rice are inversely modulated by an abscisic acid-inducible mitogen-activated protein kinase. Plant Cell 15:745–75.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Xu D, Duan X, Wang B, Hong B, Ho T, Wu R (1996) Expression of a late embryogenesis abundant protein gene, HVA1, from barley confers tolerance to water deficit and salt stress in transgenic rice. Plant Physiol. 110:249–25.

    CAS  PubMed Central  PubMed  Google Scholar 

  • Xu M, Li L, Fan Y, Wan J, Wang L (2011) ZmCBF3 overexpression improves tolerance to abiotic stress in transgenic rice (Oryza sativa) without yield penalty. Plant Cell Rep 30:1949–195.

    Article  CAS  PubMed  Google Scholar 

  • Yi N, Kim YS, Jeong MH, Oh SJ, Jeong JS, Park SH, Jung H, Choi YD, Kim JK (2010) Functional analysis of six drought-inducible promoters in transgenic rice plants throughout all stages of plant growth. Planta 232:743–75.

    Article  CAS  PubMed  Google Scholar 

  • Yin Z, Rorat T, Szabala BM, Ziółkowska A, Malepszy S (2006) Expression of a Solanum sogarandinum SK3-type dehydrin enhances cold tolerance in transgenic cucumber seedlings. Plant Sci 170:1164–117.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Seong-Ryong Kim.

Additional information

Contributed equally to this work

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kumar, M., Lee, SC., Kim, JY. et al. Over-expression of dehydrin gene, OsDhn1, improves drought and salt stress tolerance through scavenging of reactive oxygen species in rice (Oryza sativa L.). J. Plant Biol. 57, 383–393 (2014). https://doi.org/10.1007/s12374-014-0487-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12374-014-0487-1

Keywords

Navigation