Skip to main content
Log in

Wolbachia infection increases recapture rate of field-released Drosophila melanogaster

Symbiosis Aims and scope Submit manuscript

Abstract

Wolbachia pipientis is a commonly occurring endosymbiont with well-characterised effects on host reproductive biology associated with its infection of the gonads. Wolbachia infections are also widespread in somatic tissues and consequently they have the potential to play a much broader role in host biology. Recently, Wolbachia was shown to alter the locomotion of Drosophila melanogaster in response to food cues in the laboratory. To determine whether this laboratory-based phenotype might translate to real differences for insects in the field, we performed a simple mark-release-recapture experiment with Wolbachia-infected D. melanogaster in a forested habitat. We demonstrate that infected flies are recaptured at twice the rate of uninfected flies, although infection does not affect the distance traveled by those flies recaptured. The differences in recapture could be explained by infection-induced changes in physiology or behavior. If generalizable, such changes may affect the interpretation of behavioral studies for Wolbachia-infected insects and have potential implications for the dynamics of Wolbachia infections in natural populations, including situations where Wolbachia-infected insects are being released for biological control.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2

References

  • Ballard JW, Melvin R (2007) Tetracycline treatment influences mitochondrial metabolism and mtDNA density two generations after treatment in Drosophila. Insect Mol Biol 16:799–802

    Article  PubMed  CAS  Google Scholar 

  • Bordenstein SR, O’Hara FP, Werren JH (2001) Wolbachia-induced incompatibility precedes other hybrid incompatibilities in Nasonia. Nature 409:707–710

    Article  PubMed  CAS  Google Scholar 

  • Braig HR, Zhou W, Dobson SL, O’Neill SL (1998) Cloning and characterization of a gene encoding the major surface protein of the bacterial endosymbiont Wolbachia pipientis. J Bacteriol 180:2373–2378

    PubMed  CAS  Google Scholar 

  • Brownlie JC, Cass BN, Riegler M, Witsenburg JJ, Iturbe-Ormaetxe I et al (2009) Evidence for metabolic provisioning by a common invertebrate endosymbiont, Wolbachia pipientis, during periods of nutritional stress. PloS Pathog 5:e1000368

    Article  PubMed  Google Scholar 

  • Cook PE, McMeniman CJ, O’Neill SL (2008) Modifying insect population age structure to control vector-borne disease. Transgenesis and the Management of Vector-Borne Disease 627:126–140

    Article  CAS  Google Scholar 

  • Craft KJ, Pauls SU, Darrow K, Miller SE, Hebert PDN et al (2010) Population genetics of ecological communities with DNA barcodes: an example from New Guinea Lepidoptera. Proc Natl Acad Sci USA 107:5041–5046

    Article  PubMed  CAS  Google Scholar 

  • de Crespigny FE, Wedell N (2006) Wolbachia infection reduces sperm competitive ability in an insect. Proc Biol Sci 273:1455–1458

    Article  Google Scholar 

  • de Crespigny FE, Pitt TD, Wedell N (2006) Increased male mating rate in Drosophila is associated with Wolbachia infection. J Evol Biol 19:1964–1972

    Article  PubMed  Google Scholar 

  • Dobson SL, Bourtzis K, Braig HR, Jones BF, Zhou W et al (1999) Wolbachia infections are distributed throughout insect somatic and germ line tissues. Insect Biochem Mol Biol 29:153–160

    Article  PubMed  CAS  Google Scholar 

  • Drummond CS, Xue HJ, Yoder JB, Pellmyr O (2010) Host-associated divergence and incipient speciation in the yucca moth Prodoxus coloradensis (Lepidoptera: Prodoxidae) on three species of host plants. Heredity 105:183–196

    Article  PubMed  CAS  Google Scholar 

  • Evans O, Caragata EP, McMeniman CJ, Woolfit M, Green DC et al (2009) Increased locomotor activity and metabolism of Aedes aegypti infected with a life-shortening strain of Wolbachia pipientis. J Exp Biol 212:1436–1441

    Article  PubMed  Google Scholar 

  • Fleury F, Vavre F, Ris N, Fouillet P, Bouletreau M (2000) Physiological cost induced by the maternally-transmitted endosymbiont Wolbachia in the Drosophila parasitoid Leptopilina heterotoma. Parasitol 121(Pt 5):493–500

    Google Scholar 

  • Ghedin E, Hailemariam T, DePasse JV, Zhang X, Oksov Y et al (2009) Brugia malayi gene expression in response to the targeting of the Wolbachia endosymbiont by tetracycline treatment. PloS Negl Trop Dis 3:e525

    Article  PubMed  Google Scholar 

  • Goodacre SL, Martin OY, Bonte D, Hutchings L, Woolley C et al (2009) Microbial modification of host long-distance dispersal capacity. BMC Biol 7:32

    Article  PubMed  Google Scholar 

  • Hedges LM, Brownlie JC, O’Neill SL, Johnson KN (2008) Wolbachia and virus protection in insects. Science 322:702

    Article  PubMed  CAS  Google Scholar 

  • Hilgenboecker K, Hammerstein P, Schlattmann P, Telschow A, Werren JH (2008) How many species are infected with Wolbachia?—a statistical analysis of current data. FEMS Microbiol Lett 281:215–220

    Article  PubMed  CAS  Google Scholar 

  • Hlaing T, Tun-Lin W, Somboon P, Socheat D, Setha T et al (2010) Spatial genetic structure of Aedes aegypti mosquitoes in mainland Southeast Asia. Evol Appl 3:319–339

    Article  Google Scholar 

  • Hoffmann AA, Turelli M, Simmons GM (1986) Unidirectional incompatibility between populations of Drosophila simulans. Evolution 40:692–701

    Article  Google Scholar 

  • Hoffmann AA, Clancy D, Duncan J (1996) Naturally-occurring Wolbachia infection in Drosophila simulans that does not cause cytoplasmic incompatibility. Heredity 76(Pt 1):1–8

    Article  PubMed  Google Scholar 

  • Hoffmann AA, Ratna E, Sgro CM, Barton M, Blacket M et al (2007) Antagonistic selection between adult thorax and wing size in field released Drosophila melanogaster independent of thermal conditions. J Evol Biol 2219–2227

  • Jaenike J, Dyer KA, Cornish C, Minhas MS (2006) Asymmetrical reinforcement and Wolbachia infection in Drosophila. PLoS Biol 4:1852–1862

    Article  CAS  Google Scholar 

  • Kambris Z, Cook PE, Phuc HK, Sinkins SP (2009) Immune activation by life-shortening Wolbachia and reduced filarial competence in mosquitoes. Science 326:134–136

    Article  PubMed  CAS  Google Scholar 

  • Lehrian S, Balint M, Haase P, Pauls SU (2010) Genetic population structure of an autumn-emerging caddisfly with inherently low dispersal capacity and insights into its phylogeography. J N Am Benthol Soc 29:1100–1118

    Article  Google Scholar 

  • Liebhold AM, Tobin PC (2008) Population ecology of insect invasions and their management. Ann Rev Entomol 53:387–408

    Article  CAS  Google Scholar 

  • Loeschcke V, Hoffmann AA (2007) Consequences of heat hardening on a field fitness component in Drosophila depend on environmental temperature. Am Nat 169:175–183

    Article  PubMed  Google Scholar 

  • Markow TA, Castrezana S (2000) Dispersal in cactophilic Drosophila. Oikos 89:378–386

    Article  Google Scholar 

  • McInnis DO, Schaffer HE, Mettler LE (1982) Field dispersal and population sizes of native Drosophila from North Carolina. Am Nat 119:319–330

    Article  Google Scholar 

  • Miller WJ, Ehrman L, Schneider D (2010) Infectious speciation revisted: impact of symbiont-depletion on female fitness and mating behavior of Drosophila paulistorum. PLoS Pathog 6:e1001214

    Article  PubMed  Google Scholar 

  • Min K, Benzer S (1997) Wolbachia, normally a symbiont of Drosophila, can be virulent, causing degeneration and early death. Proc Natl Acad Sci USA 94:10792–10796

    Article  PubMed  CAS  Google Scholar 

  • Moreira LA, Iturbe-Ormaetxe I, Jeffery JA, Lu GJ, Pyke AT et al (2009) A Wolbachia symbiont in Aedes aegypti limits infection with dengue, chikungunya, and plasmodium. Cell 139:1268–1278

    Article  PubMed  Google Scholar 

  • Olsen K, Reynolds KT, Hoffmann AA (2001) A field cage test of the effects of the endosymbiont Wolbachia on Drosophila melanogaster. Heredity 86:731–737

    Article  PubMed  CAS  Google Scholar 

  • O’Neill SL, Hoffmann AA, Werren JH (eds) (1997) Influential passengers: inherited microorganisms and arthropod reproduction. Oxford University Press, Oxford

    Google Scholar 

  • Osborne SE, Leong YS, O’Neill SL, Johnson KN (2009) Variation in antiviral protection mediated by different Wolbachia strains in Drosophila simulans. PloS Pathog 5:e1000656

    Article  PubMed  Google Scholar 

  • Peng Y, Nielsen JE, Cunningham JP, McGraw EA (2008) Wolbachia infection alters olfactory-cued locomotion in Drosophila spp. Appl Environ Microbiol 74:3943–3948

    Article  PubMed  CAS  Google Scholar 

  • Riegler M, Sidhu M, Miller W, O’Neill SL (2005) Evidence for a global Wolbachia replacement in Drosophila melanogaster. Curr Biol 15:1428–1433

    Article  PubMed  CAS  Google Scholar 

  • Turelli M (2010) Cytoplasmic incompatibility in populations with overlapping generations. Evolution 64:232–241

    Article  PubMed  Google Scholar 

  • Turelli M, Hoffmann AA (1991) Rapid spread of an inherited incompatibility factor in California Drosophila. Nature 353:440–442

    Article  PubMed  CAS  Google Scholar 

  • Weeks AR, Turelli M, Harcombe WR, Reynolds KT, Hoffmann AA (2007) From parasite to mutualist: rapid evolution of Wolbachia in natural populations of Drosophila. PloS Biol 5:997–1005

    Article  CAS  Google Scholar 

  • Wertheim B, Allemand R, Vet LE, Dicke M (2006) Effects of aggregation pheromone on individual behaviour and food web interactions: a field study on Drosophila. Ecol Entomol 31:216–226

    Article  Google Scholar 

  • Wu M, Sun LV, Vamathevan J, Riegler M, Deboy R et al (2004) Phylogenomics of the reproductive parasite Wolbachia pipientis wMel: a streamlined genome overrun by mobile genetic elements. PLoS Biol 2:E69

    Article  PubMed  Google Scholar 

  • Yamada R, Floate KD, Riegler M, O’Nein SL (2007) Male development time influences the strength of Wolbachia-induced cytoplasmic incompatibility expression in Drosophila melanogaster. Genetics 177:801–808

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by a UQ development grant to Elizabeth McGraw. The authors wish to thank Prof Ary Hoffmann for advice on trap line design and Carol Oesch-Lawson for providing assistance in preparing flies for field releases.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Elizabeth A. McGraw.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Caragata, E.P., Real, K.M., Zalucki, M.P. et al. Wolbachia infection increases recapture rate of field-released Drosophila melanogaster . Symbiosis 54, 55–60 (2011). https://doi.org/10.1007/s13199-011-0124-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13199-011-0124-4

Keywords

Navigation