Skip to main content
Log in

Comparative analysis of symbiont ratios and gene expression in natural populations of two Bathymodiolus mussel species

  • Published:
Symbiosis Aims and scope Submit manuscript

Abstract

Bathymodiolus mussels associated with deep-sea hydrothermal vents and cold seeps harbor chemosynthetic endosymbiotic bacteria in bacteriocytes located in the gill epithelium. Two distinct morphotypes of γ-proteobacteria, sulfur- and methane-oxidizing, have been identified and form a dual symbiosis in B. azoricus mussels from the Mid-Atlantic Ridge and in B. aff. boomerang from cold seeps in the Gulf of Guinea. Thiotrophic bacteria (SOX) are capable of fixing CO2 in the presence of sulfide or thiosulfate and methanotrophic bacteria (MOX) use methane both as a carbon and an energy source. In this study we used quantitative real-time PCR to test whether symbiont abundance and gene expression varied between the two mussel species. Results showed that B. azoricus from two hydrothermal sites had similar ratios and gene expression pattern for both symbiont types. In B. aff. boomerang, SOX ratio and ATP sulfurylase gene expression show differences between specimens collected on the different sites. Analysis of symbiont ratios in both species indicated a clear dominance of MOX symbionts in B. aff. boomerang and SOX symbionts in B. azoricus. We also evidenced that the species from the deeper sites (B. aff. boomerang) and mussels collected from sulfur and methane rich habitats showed higher symbiont ratio suggesting that environmental parameters may have significant impacts on the symbiont ratios in Bathymodiolus mussels.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Abbreviations

DAPI:

4’,6-DiAmidino-2-Phenyl-Indole double-stranded DNA staining

Cy3 and Cy5:

Cyanine dyes

FISH:

Fluorescencent In Situ Hybridization

MOX:

Methane OXidizing bacteria

pmoA:

particulate methane oxygenase subunit A

ROV:

Remotely Operated Vehicle

SOX:

Sulfur OXidizing bacteria

References

  • Amann R, Binder BJ, Olson RJ, Chisholm SW, Devereux R, Stahl DA (1990) Combination of 16S rRNA-targeted oligonucleotide probes withflow cytometry for analyzing mixed microbial populations. Appl Environ Microbiol 56:1919–1925

    CAS  PubMed Central  PubMed  Google Scholar 

  • Barry JP, Buck KR, Kochevar RK, Nelson DC, Fujiwara Y, Goffredi SK, Hashimoto J (2002) Methane-based symbiosis in a mussel, Bathymodiolus platifrons, from cold seeps in sagami bay, Japan. Invert Biol 121:47–54

    Article  Google Scholar 

  • Boetius A, Suess E (2004) Hydrate ridge: a natural laboratory for the study of microbial life fueled by methane from near-surface gas hydrates. Chem Geol 205:291–310

    Article  CAS  Google Scholar 

  • Boutet I, Ripp R, Lecompte O, Dossat C, Corre E, Tanguy A, Lallier F (2011) Conjugating effects of symbionts and environmental factors on gene expression in deep-sea hydrothermal vent mussels. BMC Genomics 12:530

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Caro A, Gros O, Got P, De Wit R, Troussellier M (2007) Characterization of the population of the sulfur-oxidizing symbiont of Codakia orbicularis (Bivalvia, Lucinidae) by single-cell analyses. Appl Environ Microbiol 73:2101–2109

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Cavanaugh CM (1983) Symbiotic chemoautotrophic bacteria in marine invertebrates from sulfide-rich habitats. Nature 302:58–61

    Article  CAS  Google Scholar 

  • Cavanaugh CM, McKiness ZP, Newton ILG, Stewart FJ (2006) Marine chemosynthetic symbioses. In: Dworkin M, Falkow S, Rosenberg E, Schleifer K-H, Stackebrandt E (eds) The prokaryotes. Springer New York, New York, pp 475–507

    Chapter  Google Scholar 

  • Charlou JL, Donval JP, Fouquet Y, Jean-Baptiste P, Holm N (2002) Geochemistry of high H2 and CH4 vent fluids issuing from ultramafic rocks at the rainbow hydrothermal field (36°14’ N, MAR). Chem Geol 191:345–359

    Article  CAS  Google Scholar 

  • Charlou JL, Donval J, Fouquet Y, Ondreas H, Knoery J, Cochonat P, Levaché D, Poirier Y, Jean-Baptiste P, Fourré E, Chazallon B (2004) Physical and chemical characterization of gas hydrates and associated methane plumes in the Congo–Angola basin. Chem Geol 205:405–425

    Article  CAS  Google Scholar 

  • Childress JJ, Fisher CR, Brooks JM, Kennicutt MC, Bidigare R, Anderson AE (1986) A methanotrophic marine Molluscan (Bivalvia, Mytilidae) symbiosis: mussels fueled by gas. Science 233:1306–1308

    Article  CAS  PubMed  Google Scholar 

  • Childress JJ, Fisher CR, Favuzzi JA, Kochevar RE, Sanders NK, Alayse AM (1991) Sulfide-driven autotrophic balance in the bacterial symbiont-containing hydrothermal vent tubeworm, Riftia pachyptila Jones. Biol Bull 180:135–153

    Article  Google Scholar 

  • Deana A, Belasco J (2005) Lost in translation: the influence of ribosomes on bacterial mRNA decay. Genes Develop 19:2526–2533

  • De Beer D, Sauter EJ, Niemann H, Kaul N, Foucher J-P, Witte U, Schlüter M, Boetius A (2006) In situ fluxes and zonation of microbial activity in surface sediments of the haakon mosby mud volcano. Lim Oceano 51:1315–1331

    Article  Google Scholar 

  • DeChaine EG, Cavanaugh CM (2006) Symbioses of methanotrophs and deep-sea mussels (Mytilidae: Bathymodiolinae). Molecular basis of symbiosis. Springer, pp 227–249

  • Desbruyères D, Biscoito M, Caprais J-C, Colaço A, Comtet T, Crassous P, Fouquet Y, Khripounoff A, Le Bris N, Olu K, Riso R, Sarradin P-M, Segonzac M, Vangriesheim A (2001) Variations in deep-sea hydrothermal vent communities on the mid-atlantic ridge near the azores plateau. Deep Sea Research Part I Oceano Res Pap 48:1325–1346

    Article  Google Scholar 

  • Dickens GR (2003) Rethinking the global carbon cycle with a large, dynamic and microbially mediated gas hydrate capacitor. Earth Plan Sci Lett 213:169–183

    Article  CAS  Google Scholar 

  • Distel DL, Lee HK, Cavanaugh CM (1995) Intracellular coexistence of methano-and thio-autotrophic bacteria in a hydrothermal vent mussel. Proc Natl Acad Sci 92:9598–9602

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Douville E, Charlou J, Oelkers E, Bienvenu P, Jove Colon C, Donval J, Fouquet Y, Prieur D, Appriou P (2002) The rainbow vent fluids (36°14’N, MAR): the influence of ultramafic rocks and phase separation on trace metal content in mid-atlantic Ridge hydrothermal fluids. Chem Geol 184:37–48

    Article  CAS  Google Scholar 

  • Dubilier N, Bergin C, Lott C (2008) Symbiotic diversity in marine animals: the art of harnessing chemosynthesis. Nat Rev Microbiol 6:725–740

    Article  CAS  PubMed  Google Scholar 

  • Duperron S, Nadalig T, Caprais J-C, Sibuet M, Fiala-Medioni A, Amann R, Dubilier N (2005) Dual symbiosis in a Bathymodiolus sp. mussel from a methane seep on the gabon continental margin (southeast atlantic): 16S rRNA phylogeny and distribution of the symbionts in gills. Appl Env Microbiol 71:1694–1700

    Article  CAS  Google Scholar 

  • Duperron S, Bergin C, Zielinski F, Blazejak A, Pernthaler A, McKiness ZP, DeChaine E, Cavanaugh CM, Dubilier N (2006) A dual symbiosis shared by two mussel species, Bathymodiolus azoricus and Bathymodiolus puteoserpentis (Bivalvia: Mytilidae), from hydrothermal vents along the northern mid-atlantic ridge. Environ Microbiol 8:1441–1447

    Article  CAS  PubMed  Google Scholar 

  • Duperron S, Fiala-Médioni A, Caprais JC, Olu K, Sibuet M (2007) Evidence for chemoautotrophic symbiosis in a mediterranean cold seep clam (Bivalvia: Lucinidae): comparative sequence analysis of bacterial 16S rRNA, APS reductase and RubisCO genes: symbiosis in a cold-seep lucinid. FEMS Microbiol Ecol 59:64–70

    Article  CAS  PubMed  Google Scholar 

  • Duperron S, Halary S, Lorion J, Sibuet M, Gaill F (2008) Unexpected co-occurrence of six bacterial symbionts in the gills of the cold seep mussel Idas sp. (Bivalvia: Mytilidae). Environ Microbiol 10:433–445

    Article  CAS  PubMed  Google Scholar 

  • Duperron S, Guezi H, Gaudron SM, Pop Ristova P, Wenzhöfer F, Boetius A (2011) Relative abundances of methane- and sulphur-oxidising symbionts in the gills of a cold seep mussel and link to their potential energy sources. Geobiology 9:481–491

    Article  CAS  PubMed  Google Scholar 

  • Felbeck H, Childress JJ, Somero GN (1981) Calvin-Benson cycle and sulfide oxidation enzymes in animals from sulfide-rich habitats. Nature 293:291–293

    Article  CAS  Google Scholar 

  • Fiala-Médioni A, McKiness Z, Dando P, Boulegue J, Mariotti A, Alayse-Danet A, Robinson J, Cavanaugh C (2002) Ultrastructural, biochemical, and immunological characterization of two populations of the mytilid mussel Bathymodiolus azoricus from the mid-atlantic Ridge: evidence for a dual symbiosis. Mar Biol 141:1035–1043

    Article  Google Scholar 

  • Fisher CR, Childress JJ, Oremland RS, Bidigare RR (1987) The importance of methane and thiosulfate in the metabolism of the bacterial symbionts of two deep-sea mussels. Mar Biol 96:59–71

    Article  CAS  Google Scholar 

  • Fisher CR, Brooks JM, Vodenichar JS, Zande JM, Childress JJ (1993) The Co-occurrence of methanotrophic and chemoautotrophic sulfur-oxidizing bacterial symbionts in a deep-sea mussel. Mar Ecol 14:277–289

    Article  Google Scholar 

  • Fujiwara Y, Takai K, Uematsu K, Tsuchida S, Hunt JC, Hashimoto J (2000) Phylogenetic characterization of endosymbionts in three hydrothermal vent mussels: influence on host distributions. Mar Ecol Prog Ser 208:147–155

    Article  Google Scholar 

  • Génio L, Johnson SB, Vrijenhoek RC, Cunha MR, Tyler PA, Kiel S, Little CT (2008) New record of “Bathymodiolus” mauritanicus cosel 2002 from the gulf of cadiz (NE atlantic) mud volcanoes. J Shellfish Res 27:53–61

    Article  Google Scholar 

  • Geret F, Riso R, Sarradin PM, Caprais JC, Cosson RP (2002) Metal bioaccumulation and storage forms in the shrimp, Rimicaris exoculata, from the rainbow hydrothermal field (mid-atlantic ridge); preliminary approach to the fluid–organism relationship. Cah Biol Mar 43:43–52

    Google Scholar 

  • German CR, Lin J (2004) The thermal structure of the oceanic crust, ridge-spreading and hydrothermal circulation: how well do we understand their inter-connections? In: German CR, Lin J, Parson LM (eds) Geophysical monograph series. American Geophysical Union, Washington, pp 1–18

    Google Scholar 

  • Girguis PR, Childress JJ (2006) Metabolite stoichiometry and chemoautotrophic function of the hydrothermal vent tubeworm Riftia pachyptila: responses to environmental variations in substrate concentrations and temperature. J Exp Biol 209:3516–3528

  • Halary S, Riou V, Gaill F, Boudier T, Duperron S (2008) 3D FISH for the quantification of methane- and sulphur-oxidizing endosymbionts in bacteriocytes of the hydrothermal vent mussel bathymodiolus azoricus. ISME J 2:284–292

    Article  CAS  PubMed  Google Scholar 

  • Kádár E, Bettencourt R, Costa V, Santos RS, Lobo-da-Cunha A, Dando P (2005) Experimentally induced endosymbiont loss and re-acquirement in the hydrothermal vent bivalve bathymodiolus azoricus. J Exp Mar Biol Ecol 318:99–110

    Article  Google Scholar 

  • Kenk VC, Wilson BR (1985) A new mussel (bivalvia, mytilidae) from hydrothermal vents in the galapagos rift zone. Malacologia 26:253–271

    Google Scholar 

  • Kojima S (2002) Deep-sea chemoautosynthesis-based communities in the northwestern pacific. J Oceano 58:343–363

    Article  CAS  Google Scholar 

  • Le Bris N, Sarradin PM, Caprais JC (2003) Contrasted sulphide chemistries in the environment of 13 °N EPR vent fauna. Deep Sea Research Part I Oceano Res Pap 50:737–747

    Article  Google Scholar 

  • Le Pennec M, Diouris M, Herry A (1988) Endocytosis and lysis of bacteria in gill epithelium of bathymodiolus thermophilus, thyasira flexuosa and lucinella divaricata (bivalve, molluscs). J Shellfish Res 7:483–489

    Google Scholar 

  • Levin LA (2005) Ecology of cold seep sediments: interactions of fauna with flow, chemistry, and microbes. Oceanogr Mar Biol Ann Rev 43:1–46

    Google Scholar 

  • Lonsdale P, Becker K (1985) Hydrothermal plumes, hot springs, and conductive heat flow in the Southern Trough of guaymas basin. Earth Plan Sci Lett 73:211–225

    Article  CAS  Google Scholar 

  • MacDonald IR, Boland GS, Baker JS, Brooks JM, Kennicutt MC II, Bidigare RR (1989) Gulf of Mexico hydrocarbon seep communities. Mar Biol 101:235–247

    Article  CAS  Google Scholar 

  • Marcon Y, Sahling H, Allais AG, Bohrmann G, Olu K (2013) Distribution and temporal variation of mega-fauna at the regab pockmark (northern Congo fan), based on a comparison of videomosaics and geographic information systems analyses. Mar Ecol SSN 0173–9565:1–19. doi:10.1111/maec.12056

    Google Scholar 

  • Martins I, Colaço A, Dando PR, Martins I, Desbruyères D, Sarradin P-M, Marques JC, Serrão-Santos R (2008) Size-dependent variations on the nutritional pathway of bathymodiolus azoricus demonstrated by a C-flux model. Ecol Model 217:59–71

    Article  Google Scholar 

  • Nelson DC, Fisher CR (1995) Chemoautotrophic and methanotrophic endosymbiotic bacteria at deep-sea vents and seeps. In Microbiology of deep-sea hydrothermal vents Karl DM (ed) Boca Raton FL: CRC Press inc pp 125–167

  • Nelson DC, Hagen KD, Edwards DB (1995) The gill symbiont of the hydrothermal vent mussel bathymodiolus thermophilus is a psychrophilic, chemoautotrophic, sulfur bacterium. Mar Biol 121:487–495

    Article  Google Scholar 

  • Niemann H, Lösekann T, de Beer D, Elvert M, Nadalig T, Knittel K, Amann R, Sauter EJ, Schlüter M, Klages M, Foucher JP, Boetius A (2006) Novel microbial communities of the Haakon Mosby mud volcano and their role as a methane sink. Nature 443:854–858

    Article  CAS  PubMed  Google Scholar 

  • Olu-Le Roy K, Caprais J-C, Fifis A, Fabri M-C, Galéron J, Budzinsky H, Le Ménach K, Khripounoff A, Ondreas H, Sibuet M (2007) Cold-seep assemblages on a giant pockmark off West Africa: spatial patterns and environmental control. Mar Ecol 28:115–130

    Article  Google Scholar 

  • Ondréas H, Olu K, Fouquet Y, Charlou JL, Gay A, Dennielou B, Donval JP, Fifis A, Nadalig T, Cochonat P, Cauquil E, Bourillet JF, Moigne ML, Sibuet M (2005) ROV study of a giant pockmark on the Gabon continental margin. Geo Mar Lett 25:281–292

    Article  Google Scholar 

  • Pimenov NV, Kalyuzhnaya MG, Khmelenina VN, Mityushina LL, Trotsenko YA (2002) Utilization of methane and carbon dioxide by symbiotrophic bacteria in gills of Mytilidae (bathymodiolus) from the Rainbow and Logachev hydrothermal fields on the mid-atlantic ridge. Microbiology 71:587–594

    Article  CAS  Google Scholar 

  • Riou V, Duperron S, Halary S, Dehairs F, Bouillon S, Martins I, Colaço A, Serrão Santos R (2010) Variation in physiological indicators in Bathymodiolus azoricus (bivalvia: mytilidae) at the Menez Gwen mid-atlantic ridge deep-sea hydrothermal vent site within a year. Mar Environ Res 70:264–271

    Article  CAS  PubMed  Google Scholar 

  • Robinson JJ, Polz MF, Fiala-Medioni A, Cavanaugh CM (1998) Physiological and immunological evidence for two distinct C1-utilizing pathways in bathymodiolus puteoserpentis (bivalvia: mytilidae), a dual endosymbiotic mussel from the mid-atlantic ridge. Mar Biol 132:625–633

    Article  CAS  Google Scholar 

  • Salerno JL, Macko SA, Hallam SJ, Bright M, Won Y-J, McKiness Z, Van Dover CL (2005) Characterization of symbiont populations in life-history stages of mussels from chemosynthetic environments. Biol Bull 208:145–155

    Article  PubMed  Google Scholar 

  • Sibuet M, Olu K (1998) Biogeography, biodiversity and fluid dependence of deep-sea cold-seep communities at active and passive margins. Deep-Sea Res II 45:517–567

    Article  Google Scholar 

  • Thorsen BK, Enger O, Norland S, Hoff KJ (1992) Long-term starvation survival of Yersinia ruckeri at different salinities studied by microscopical and flow cytometric methods. Appl Environ Microbiol 58:1624–1628

    CAS  PubMed Central  PubMed  Google Scholar 

  • Tivey MK (1995). Modeling chimney growth and associated fluid flow at seafloor hydrothermal vent sites. In Humphris SE, Zierenberg RA, Mullineaux LS, and Thomson RE. (Eds.), Seafloor Hydrothermal Systems: Physical, Chemical, Biol Geol Interac, Am. Geophys. Union, Geophys. Monogr., 91:158–177

  • Van Dover CL (2000) The ecology of deep-sea hydrothermal vents. Princeton University Press, Princeton

    Google Scholar 

  • Van Dover CL (2002) Evolution and biogeography of deep-sea vent and seep invertebrates. Science 295:1253–1257

    Article  PubMed  Google Scholar 

  • Van Dover CL, Trask JL (2000) Diversity at deep-sea hydrothermal vent and intertidal mussel beds. Mar Ecol Prog Ser 195:169–178

    Article  Google Scholar 

  • Van Dover CL, Aharon P, Bernhard JM, Caylor E, Doerries M, Flickinger W, Gilhooly W, Goffredi SK, Knick KE, Macko SA, Rapoport S, Raulfs EC, Ruppel C, Salerno JL, Seitz RD, Sen Gupta BK, Shank T, Turnipseed M, Vrijenhoek R (2003) Blake ridge methane seeps: characterization of a soft-sediment, chemosynthetically based ecosystem. Deep Sea Research Part I Oceano Res Pap 50:281–300

    Article  Google Scholar 

  • Vanreusel A, Fonseca G, Danovaro R, Da Silva MC, Esteves AM, Ferrero T, Gad G, Galtsova V, Gambi C, Da Fonsêca GV, Ingels J, Ingole B, Lampadariou N, Merckx B, Miljutin D, Miljutina M, Muthumbi A, Netto S, Portnova D, Radziejewska T, Raes M, Tchesunov A, Vanaverbeke J, Van Gaever S, Venekey V, Bezerra TN, Flint H, Copley J, Pape E, Zeppilli D, Martinez PA, Galeron J (2010) The contribution of deep-sea macrohabitat heterogeneity to global nematode diversity: Nematode diversity and habitat heterogeneity. Mar Ecol 31:6–20

    Article  Google Scholar 

  • Von Damm KL (1995) Controls on the chemistry and temporal variability of seafloor hydrothermal fluids. In: Humphris SE, Zierenberg RA, Mullineaux LS, Thomson RE (eds) Geophysical monograph series. American Geophysical Union, Washington, pp 222–247

    Google Scholar 

  • Wendeberg A, Zielinski FU, Borowski C, Dubilier N (2012) Expression patterns of mRNAs for methanotrophy and thiotrophy in symbionts of the hydrothermalvent mussel Bathymodiolus puteoserpentis. ISME J 6:104–112

  • Won YJ, Hallam SJ, O’Mullan GD, Pan IL, Buck KR, Vrijenhoek RC (2003) Environmental acquisition of thiotrophic endosymbionts by deep-sea mussels of the genus bathymodiolus. Appl Environ Microbiol 69:6785–6792

    Article  CAS  PubMed Central  PubMed  Google Scholar 

Download references

Acknowledgments

We thank the crew and pilots of the NO Pourquoi Pas? and the ROV Victor 6,000 for their assistance and technical support, as well as the chief scientist Dr. Karine Olu Le Roy during the cruise WACS (2011) and Dr. François Lallier, during the cruise BIOBAZ (2011). We thank Dr. Sophie Le Panse, manager of Optical Imaging Platform Merimage of the Station Biologique de Roscoff, for having introduced us (HG and AA) to the confocal microscopy. We thank the anonymous referees for useful comments and suggestions. This work was funded by the Région Bretagne with the help of GIS Europole Mer (HG), and the JST/CNRS Bathymodiolus program (AT, FHL).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. Tanguy.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Guezi, H., Boutet, I., Andersen, A.C. et al. Comparative analysis of symbiont ratios and gene expression in natural populations of two Bathymodiolus mussel species. Symbiosis 63, 19–29 (2014). https://doi.org/10.1007/s13199-014-0284-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13199-014-0284-0

Keywords

Navigation