Skip to main content

Advertisement

Log in

SMAD7: a timer of tumor progression targeting TGF-β signaling

  • Review
  • Published:
Tumor Biology

Abstract

In the context of cancer, transforming growth factor β (TGF-β) is a cell growth suppressor; however, it is also a critical inducer of invasion and metastasis. SMAD is the important mediator of TGF-β signaling pathway, which includes receptor-regulated SMADs (R-SMADs), common-mediator SMADs (co-SMADs), and inhibitory SMADs (I-SMADs). I-SMADs block the activation of R-SMADs and co-SMADs and thus play important roles especially in the SMAD-dependent signaling. SMAD7 belongs to the I-SMADs. As an inhibitor of TGF-β signaling, SMAD7 is overexpressed in numerous cancer types and its abundance is positively correlated to the malignancy. Emerging evidence has revealed the switch-in-role of SMAD7 in cancer, from a TGF-β inhibiting protein at the early stages that facilitates proliferation to an enhancer of invasion at the late stages. This role change may be accompanied or elicited by the tumor microenvironment and/or somatic mutation. Hence, current knowledge suggests a tumor-favorable timer nature of SMAD7 in cancer progression. In this review, we summarized the advances and recent findings of SMAD7 and TGF-β signaling in cancer, followed by specific discussion on the possible factors that account for the functional changes of SMAD7.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Chin GS, Liu W, Peled Z, Lee TY, Steinbrech DS, Hsu M, et al. Differential expression of transforming growth factor-beta receptors I and II and activation of Smad 3 in keloid fibroblasts. Plast Reconstr Surg. 2001;108:423–9. PMID: 11496185.

    Article  CAS  PubMed  Google Scholar 

  2. Bedossa P, Peltier E, Terris B, Franco D, Poynard T. Transforming growth factor-beta 1 (TGF-beta 1) and TGF-beta 1 receptors in normal, cirrhotic, and neoplastic human livers. Hepatology. 1995;21:760–6. PMID: 7875675.

    CAS  PubMed  Google Scholar 

  3. Willis BC, Liebler JM, Luby-Phelps K, Nicholson AG, Crandall ED, du Bois RM, et al. Induction of epithelial-mesenchymal transition in alveolar epithelial cells by transforming growth factor-beta1: potential role in idiopathic pulmonary fibrosis. Am J Pathol. 2005;166:1321–32. PMID: 15855634.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  4. Leask A, Abraham DJ. TGF-beta signaling and the fibrotic response. FASEB J. 2004;18:816–27. PMID: 15117886.

    Article  CAS  PubMed  Google Scholar 

  5. Laiho M, DeCaprio JA, Ludlow JW, Livingston DM, Massague J. Growth inhibition by TGF-beta linked to suppression of retinoblastoma protein phosphorylation. Cell. 1990;62:175–85. PMID: 2163767.

    Article  CAS  PubMed  Google Scholar 

  6. Perlman R, Schiemann WP, Brooks MW, Lodish HF, Weinberg RA. TGF-beta-induced apoptosis is mediated by the adapter protein Daxx that facilitates JNK activation. Nat Cell Biol. 2001;3:708–14. PMID: 11483955.

    Article  CAS  PubMed  Google Scholar 

  7. Akhurst RJ, Derynck R. TGF-beta signaling in cancer—a double-edged sword. Trends Cell Biol. 2001;11:S44–51. PMID: 11684442.

    CAS  PubMed  Google Scholar 

  8. Yu M, Bardia A, Wittner BS, Stott SL, Smas ME, Ting DT, et al. Circulating breast tumor cells exhibit dynamic changes in epithelial and mesenchymal composition. Science. 2013;339:580–4. PMID: 23372014.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  9. De Craene B, Berx G. Regulatory networks defining EMT during cancer initiation and progression. Nat Rev Cancer. 2013;13:97–110. PMID: 23344542.

    Article  PubMed  Google Scholar 

  10. Wang H, Wang HS, Zhou BH, Li CL, Zhang F, Wang XF, et al. Epithelial-mesenchymal transition (EMT) induced by TNF-alpha requires AKT/GSK-3beta-mediated stabilization of snail in colorectal cancer. PLoS One. 2013;8:e56664. PMID: 23431386.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  11. Wakefield LM, Hill CS. Beyond TGFbeta: roles of other TGFbeta superfamily members in cancer. Nat Rev Cancer. 2013;13:328–41. PMID: 23612460.

    Article  CAS  PubMed  Google Scholar 

  12. Han G, Wang XJ. Roles of TGFbeta signaling Smads in squamous cell carcinoma. Cell Biosci. 2011;1:41. PMID: 22204491.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  13. Papadimitriou E, Kardassis D, Moustakas A, Stournaras C. TGFbeta-induced early activation of the small GTPase RhoA is Smad2/3-independent and involves Src and the guanine nucleotide exchange factor Vav2. Cell Physiol Biochem. 2011;28:229–38. PMID: 21865730.

    Article  CAS  PubMed  Google Scholar 

  14. Xia H, Ooi LL, Hui KM. MicroRNA-216a/217-induced epithelial-mesenchymal transition targets PTEN and SMAD7 to promote drug resistance and recurrence of liver cancer. Hepatology. 2013;58:629–41. PMID: 23471579.

    Article  CAS  PubMed  Google Scholar 

  15. Sanchez NS, Barnett JV. TGFbeta and BMP-2 regulate epicardial cell invasion via TGFbetaR3 activation of the Par6/Smurf1/RhoA pathway. Cell Signal. 2012;24:539–48. PMID: 22033038.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  16. Liu Q, Zhang Y, Mao H, Chen W, Luo N, Zhou Q, et al. A crosstalk between the Smad and JNK signaling in the TGF-beta-induced epithelial-mesenchymal transition in rat peritoneal mesothelial cells. PLoS One. 2012;7:e32009. PMID: 22384127.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  17. Seay U, Sedding D, Krick S, Hecker M, Seeger W, Eickelberg O. Transforming growth factor-beta-dependent growth inhibition in primary vascular smooth muscle cells is p38-dependent. J Pharmacol Exp Ther. 2005;315:1005–12. PMID: 16120811.

    Article  CAS  PubMed  Google Scholar 

  18. Giehl K, Seidel B, Gierschik P, Adler G, Menke A. TGFbeta1 represses proliferation of pancreatic carcinoma cells which correlates with Smad4-independent inhibition of ERK activation. Oncogene. 2000;19:4531–41. PMID: 11002426.

    Article  CAS  PubMed  Google Scholar 

  19. Gore AJ, Deitz SL, Palam LR, Craven KE, Korc M. Pancreatic cancer-associated retinoblastoma 1 dysfunction enables TGF-beta to promote proliferation. J Clin Invest. 2014;124:338–52. PMID: 24334458.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  20. Derynck R, Zhang YE. Smad-dependent and Smad-independent pathways in TGF-beta family signalling. Nature. 2003;425:577–84. PMID: 14534577.

    Article  CAS  PubMed  Google Scholar 

  21. Salomon D. Transforming growth factor beta in cancer: Janus, the two-faced god. J Natl Cancer Inst. 2014;106:djt441. PMID: 24511109.

    Article  PubMed Central  PubMed  Google Scholar 

  22. Medici D, Hay ED, Goodenough DA. Cooperation between snail and LEF-1 transcription factors is essential for TGF-beta1-induced epithelial-mesenchymal transition. Mol Biol Cell. 2006;17:1871–9. PMID: 16467384.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  23. Naber HP, Drabsch Y, Snaar-Jagalska BE, ten Dijke P, van Laar T. Snail and Slug, key regulators of TGF-beta-induced EMT, are sufficient for the induction of single-cell invasion. Biochem Biophys Res Commun. 2013;435:58–63. PMID: 23618854.

    Article  CAS  PubMed  Google Scholar 

  24. Dave N, Guaita-Esteruelas S, Gutarra S, Frias A, Beltran M, Peiro S, et al. Functional cooperation between Snail1 and twist in the regulation of ZEB1 expression during epithelial to mesenchymal transition. J Biol Chem. 2011;286:12024–32. PMID: 21317430.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  25. Shiota M, Zardan A, Takeuchi A, Kumano M, Beraldi E, Naito S, et al. Clusterin mediates TGF-beta-induced epithelial-mesenchymal transition and metastasis via Twist1 in prostate cancer cells. Cancer Res. 2012;72:5261–72. PMID: 22896337.

    Article  CAS  PubMed  Google Scholar 

  26. Thuault S, Valcourt U, Petersen M, Manfioletti G, Heldin CH, Moustakas A. Transforming growth factor-beta employs HMGA2 to elicit epithelial-mesenchymal transition. J Cell Biol. 2006;174:175–83. PMID: 16831886.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  27. Ding X, Wang Y, Ma X, Guo H, Yan X, Chi Q, et al. Expression of HMGA2 in bladder cancer and its association with epithelial-to-mesenchymal transition. Cell Prolif. 2014;47:146–51. PMID: 24571540.

    Article  CAS  PubMed  Google Scholar 

  28. Chen QK, Lee K, Radisky DC, Nelson CM. Extracellular matrix proteins regulate epithelial-mesenchymal transition in mammary epithelial cells. Differentiation. 2013;86(3):126–32. PMID: 23660532.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  29. Labelle M, Schnittler HJ, Aust DE, Friedrich K, Baretton G, Vestweber D, et al. Vascular endothelial cadherin promotes breast cancer progression via transforming growth factor beta signaling. Cancer Res. 2008;68:1388–97. PMID: 18316602.

    Article  CAS  PubMed  Google Scholar 

  30. Fuxe J, Karlsson MC. TGF-beta-induced epithelial-mesenchymal transition: a link between cancer and inflammation. Semin Cancer Biol. 2012;22:455–61. PMID: 22627188.

    Article  CAS  PubMed  Google Scholar 

  31. Singh P, Wig JD, Srinivasan R. The Smad family and its role in pancreatic cancer. Indian J Cancer. 2011;48:351–60. PMID: 21921337.

    Article  CAS  PubMed  Google Scholar 

  32. Hanyu A, Ishidou Y, Ebisawa T, Shimanuki T, Imamura T, Miyazono K. The N domain of Smad7 is essential for specific inhibition of transforming growth factor-beta signaling. J Cell Biol. 2001;155:1017–27. PMID: 11739411.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  33. Denissova NG, Pouponnot C, Long J, He D, Liu F. Transforming growth factor beta-inducible independent binding of SMAD to the Smad7 promoter. Proc Natl Acad Sci U S A. 2000;97:6397–402. PMID: 10823886.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  34. Topper JN, Cai J, Falb D, Gimbrone Jr MA. Identification of vascular endothelial genes differentially responsive to fluid mechanical stimuli: cyclooxygenase-2, manganese superoxide dismutase, and endothelial cell nitric oxide synthase are selectively up-regulated by steady laminar shear stress. Proc Natl Acad Sci U S A. 1996;93:10417–22. PMID: 8816815.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  35. Topper JN, Cai J, Qiu Y, Anderson KR, Xu YY, Deeds JD, et al. Vascular MADs: two novel MAD-related genes selectively inducible by flow in human vascular endothelium. Proc Natl Acad Sci U S A. 1997;94:9314–9. PMID: 9256479.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  36. Hayashi H, Abdollah S, Qiu Y, Cai J, Xu YY, Grinnell BW, et al. The MAD-related protein Smad7 associates with the TGFbeta receptor and functions as an antagonist of TGFbeta signaling. Cell. 1997;89:1165–73. PMID: 9215638.

    Article  CAS  PubMed  Google Scholar 

  37. Mochizuki T, Miyazaki H, Hara T, Furuya T, Imamura T, Watabe T, et al. Roles for the MH2 domain of Smad7 in the specific inhibition of transforming growth factor-beta superfamily signaling. J Biol Chem. 2004;279:31568–74. PMID: 15148321.

    Article  CAS  PubMed  Google Scholar 

  38. Yan X, Pan J, Xiong W, Cheng M, Sun Y, Zhang S, et al. Yin Yang 1 (YY1) synergizes with Smad7 to inhibit TGF-beta signaling in the nucleus. Sci China Life Sci. 2014;57:128–36. PMID: 24369345.

    Article  CAS  PubMed  Google Scholar 

  39. Yan X, Chen YG. Smad7: not only a regulator, but also a cross-talk mediator of TGF-beta signalling. Biochem J. 2011;434:1–10. PMID: 21269274.

    Article  CAS  PubMed  Google Scholar 

  40. Kamiya Y, Miyazono K, Miyazawa K. Smad7 inhibits transforming growth factor-beta family type i receptors through two distinct modes of interaction. J Biol Chem. 2010;285:30804–13. PMID: 20663871.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  41. Chen YG, Hata A, Lo RS, Wotton D, Shi Y, Pavletich N, et al. Determinants of specificity in TGF-beta signal transduction. Genes Dev. 1998;12:2144–52. PMID: 9679059.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  42. Lo RS, Chen YG, Shi Y, Pavletich NP, Massague J. The L3 loop: a structural motif determining specific interactions between SMAD proteins and TGF-beta receptors. EMBO J. 1998;17:996–1005. PMID: 9463378.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  43. ten Dijke P, Miyazono K, Heldin CH. Signaling inputs converge on nuclear effectors in TGF-beta signaling. Trends Biochem Sci. 2000;25:64–70. PMID: 10664585.

    Article  PubMed  Google Scholar 

  44. Yan X, Lin Z, Chen F, Zhao X, Chen H, Ning Y, et al. Human BAMBI cooperates with Smad7 to inhibit transforming growth factor-beta signaling. J Biol Chem. 2009;284:30097–104. PMID: 19758997.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  45. Ferrigno O, Lallemand F, Verrecchia F, L’Hoste S, Camonis J, Atfi A, et al. Yes-associated protein (YAP65) interacts with Smad7 and potentiates its inhibitory activity against TGF-beta/Smad signaling. Oncogene. 2002;21:4879–84. PMID: 12118366.

    Article  CAS  PubMed  Google Scholar 

  46. Guo J, Kleeff J, Zhao Y, Li J, Giese T, Esposito I, et al. Yes-associated protein (YAP65) in relation to Smad7 expression in human pancreatic ductal adenocarcinoma. Int J Mol Med. 2006;17:761–7. PMID: 16596258.

    CAS  PubMed  Google Scholar 

  47. Kavsak P, Rasmussen RK, Causing CG, Bonni S, Zhu H, Thomsen GH, et al. Smad7 binds to Smurf2 to form an E3 ubiquitin ligase that targets the TGF beta receptor for degradation. Mol Cell. 2000;6:1365–75. PMID: 11163210.

    Article  CAS  PubMed  Google Scholar 

  48. Inoue Y, Imamura T. Regulation of TGF-beta family signaling by E3 ubiquitin ligases. Cancer Sci. 2008;99:2107–12. PMID: 18808420.

    Article  CAS  PubMed  Google Scholar 

  49. Bizet AA, Tran-Khanh N, Saksena A, Liu K, Buschmann MD, Philip A. CD109-mediated degradation of TGF-beta receptors and inhibition of TGF-beta responses involve regulation of SMAD7 and Smurf2 localization and function. J Cell Biochem. 2012;113:238–46. PMID: 21898545.

    Article  CAS  PubMed  Google Scholar 

  50. Kowanetz M, Lonn P, Vanlandewijck M, Kowanetz K, Heldin CH, Moustakas A. TGFbeta induces SIK to negatively regulate type I receptor kinase signaling. J Cell Biol. 2008;182:655–62. PMID: 18725536.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  51. Komuro A, Imamura T, Saitoh M, Yoshida Y, Yamori T, Miyazono K, et al. Negative regulation of transforming growth factor-beta (TGF-beta) signaling by WW domain-containing protein 1 (WWP1). Oncogene. 2004;23:6914–23. PMID: 15221015.

    Article  CAS  PubMed  Google Scholar 

  52. Kim BC, Lee HJ, Park SH, Lee SR, Karpova TS, McNally JG, et al. Jab1/CSN5, a component of the COP9 signalosome, regulates transforming growth factor beta signaling by binding to Smad7 and promoting its degradation. Mol Cell Biol. 2004;24:2251–62. PMID: 14993265.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  53. Liu FY, Li XZ, Peng YM, Liu H, Liu YH. Arkadia-Smad7-mediated positive regulation of TGF-beta signaling in a rat model of tubulointerstitial fibrosis. Am J Nephrol. 2007;27:176–83. PMID: 17347560.

    Article  PubMed  Google Scholar 

  54. Liu W, Rui H, Wang J, Lin S, He Y, Chen M, et al. Axin is a scaffold protein in TGF-beta signaling that promotes degradation of Smad7 by Arkadia. EMBO J. 2006;25:1646–58. PMID: 16601693.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  55. Zhou F, Drabsch Y, Dekker TJ, de Vinuesa AG, Li Y, Hawinkels LJ, et al. Nuclear receptor NR4A1 promotes breast cancer invasion and metastasis by activating TGF-beta signalling. Nat Commun. 2014;5:3388. PMID: 24584437.

    PubMed  Google Scholar 

  56. Corcoran JB, McCarthy S, Griffin B, Gaffney A, Bhreathnach U, Borgeson E, et al. IHG-1 must be localised to mitochondria to decrease Smad7 expression and amplify TGF-beta1-induced fibrotic responses. Biochim Biophys Acta. 1833;2013:1969–78. PMID: 23567938.

    Google Scholar 

  57. Zhao Y, Thornton AM, Kinney MC, Ma CA, Spinner JJ, Fuss IJ, et al. The deubiquitinase CYLD targets Smad7 protein to regulate transforming growth factor beta (TGF-beta) signaling and the development of regulatory T cells. J Biol Chem. 2011;286:40520–30. PMID: 21931165.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  58. Chen YK, Huang AH, Cheng PH, Yang SH, Lin LM. Overexpression of Smad proteins, especially Smad7, in oral epithelial dysplasias. Clin Oral Investig. 2013;17:921–32. PMID: 22669485.

    Article  PubMed  Google Scholar 

  59. Parikh A, Lee C, Peronne J, Marchini S, Baccarini A, Kolev V, et al. microRNA-181a has a critical role in ovarian cancer progression through the regulation of the epithelial-mesenchymal transition. Nat Commun. 2014;5:2977. PMID: 24394555.

    Article  PubMed Central  PubMed  Google Scholar 

  60. Li Y, Wang H, Li J, Yue W. MiR-181c modulates the proliferation, migration, and invasion of neuroblastoma cells by targeting Smad7. Acta Biochim Biophys Sin (Shanghai). 2014;46:48–55. PMID: 24345480.

    Article  CAS  Google Scholar 

  61. Li Q, Zou C, Zou C, Han Z, Xiao H, Wei H, et al. MicroRNA-25 functions as a potential tumor suppressor in colon cancer by targeting Smad7. Cancer Lett. 2013;335:168–74. PMID: 23435373.

    Article  CAS  PubMed  Google Scholar 

  62. Xu FX, Su YL, Zhang H, Kong JY, Yu H, Qian BY. Prognostic implications for high expression of MiR-25 in lung adenocarcinomas of female non-smokers. Asian Pac J Cancer Prev. 2014;15:1197–203. PMID: 24606441.

    Article  PubMed  Google Scholar 

  63. Liu G, Friggeri A, Yang Y, Milosevic J, Ding Q, Thannickal VJ, et al. miR-21 mediates fibrogenic activation of pulmonary fibroblasts and lung fibrosis. J Exp Med. 2010;207:1589–97. PMID: 20643828.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  64. Smith AL, Iwanaga R, Drasin DJ, Micalizzi DS, Vartuli RL, Tan AC, et al. The miR-106b-25 cluster targets Smad7, activates TGF-beta signaling, and induces EMT and tumor initiating cell characteristics downstream of Six1 in human breast cancer. Oncogene. 2012;31:5162–71. PMID: 22286770.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  65. Esquela-Kerscher A, Slack FJ. Oncomirs—microRNAs with a role in cancer. Nat Rev Cancer. 2006;6:259–69. PMID: 16557279.

    Article  CAS  PubMed  Google Scholar 

  66. Leng A, Liu T, He Y, Li Q, Zhang G. Smad4/Smad7 balance: a role of tumorigenesis in gastric cancer. Exp Mol Pathol. 2009;87:48–53. PMID: 19341727.

    Article  CAS  PubMed  Google Scholar 

  67. Singh P, Srinivasan R, Wig JD, Radotra BD. A study of Smad4, Smad6 and Smad7 in surgically resected samples of pancreatic ductal adenocarcinoma and their correlation with clinicopathological parameters and patient survival. BMC Res Notes. 2011;4:560. PMID: 22195733.

    Article  PubMed Central  PubMed  Google Scholar 

  68. Yan X, Liu Z, Chen Y. Regulation of TGF-beta signaling by Smad7. Acta Biochim Biophys Sin (Shanghai). 2009;41:263–72. PMID: 19352540.

    Article  CAS  Google Scholar 

  69. Principe DR, Doll JA, Bauer J, Jung B, Munshi HG, Bartholin L, et al. TGF-beta: duality of function between tumor prevention and carcinogenesis. J Natl Cancer Inst. 2014;106:djt369. PMID: 24511106.

    Article  PubMed Central  PubMed  Google Scholar 

  70. Edlund S, Lee SY, Grimsby S, Zhang S, Aspenstrom P, Heldin CH, et al. Interaction between Smad7 and beta-catenin: importance for transforming growth factor beta-induced apoptosis. Mol Cell Biol. 2005;25:1475–88. PMID: 15684397.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  71. Kim TA, Kang JM, Hyun JS, Lee B, Kim SJ, Yang ES, et al. The Smad7-Skp2 complex orchestrates Myc stability, impacting on the cytostatic effect of TGF-beta. J Cell Sci. 2014;127:411–21. PMID: 24259667.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  72. Huo YY, Hu YC, He XR, Wang Y, Song BQ, Zhou PK, et al. Activation of extracellular signal-regulated kinase by TGF-beta1 via TbetaRII and Smad7 dependent mechanisms in human bronchial epithelial BEP2D cells. Cell Biol Toxicol. 2007;23:113–28. PMID: 17096210.

    Article  CAS  PubMed  Google Scholar 

  73. Emori T, Kitamura K, Okazaki K. Nuclear Smad7 overexpressed in mesenchymal cells acts as a transcriptional corepressor by interacting with HDAC-1 and E2F to regulate cell cycle. Biol Open. 2012;1:247–60. PMID: 23213415.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  74. Stolfi C, Marafini I, De Simone V, Pallone F, Monteleone G. The dual role of Smad7 in the control of cancer growth and metastasis. Int J Mol Sci. 2013;14(12):23774–90. PMID: 24317436.

    Article  PubMed Central  PubMed  Google Scholar 

  75. Salot S, Gude R. MTA1-mediated transcriptional repression of SMAD7 in breast cancer cell lines. Eur J Cancer. 2013;49:492–9. PMID: 22841502.

    Article  CAS  PubMed  Google Scholar 

  76. Slattery ML, Herrick J, Curtin K, Samowitz W, Wolff RK, Caan BJ, et al. Increased risk of colon cancer associated with a genetic polymorphism of SMAD7. Cancer Res. 2010;70:1479–85. PMID: 20124488.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  77. Huang Q, Liu L, Liu CH, Shao F, Xie F, Zhang CH, et al. Expression of Smad7 in cholangiocarcinoma: prognostic significance and implications for tumor metastasis. Asian Pac J Cancer Prev. 2012;13:5161–5. PMID: 23244128.

    Article  PubMed  Google Scholar 

  78. Montemayor-Garcia C, Hardin H, Guo Z, Larrain C, Buehler D, Asioli S, et al. The role of epithelial mesenchymal transition markers in thyroid carcinoma progression. Endocr Pathol. 2013;24:206–12. PMID: 24126800.

    Article  CAS  PubMed  Google Scholar 

  79. Huse K, Bakkebo M, Walchli S, Oksvold MP, Hilden VI, Forfang L, et al. Role of Smad proteins in resistance to BMP-induced growth inhibition in B-cell lymphoma. PLoS One. 2012;7:e46117. PMID: 23049692.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  80. Javelaud D, Mohammad KS, McKenna CR, Fournier P, Luciani F, Niewolna M, et al. Stable overexpression of Smad7 in human melanoma cells impairs bone metastasis. Cancer Res. 2007;67:2317–24. PMID: 17332363.

    Article  CAS  PubMed  Google Scholar 

  81. Kim S, Han J, Lee SK, Koo M, Cho DH, Bae SY, et al. Smad7 acts as a negative regulator of the epidermal growth factor (EGF) signaling pathway in breast cancer cells. Cancer Lett. 2012;314:147–54. PMID: 22033246.

    Article  CAS  PubMed  Google Scholar 

  82. Halder SK, Beauchamp RD, Datta PK. Smad7 induces tumorigenicity by blocking TGF-beta-induced growth inhibition and apoptosis. Exp Cell Res. 2005;307:231–46. PMID: 15922743.

    Article  CAS  PubMed  Google Scholar 

  83. Wang J, Zhao J, Chu ES, Mok MT, Go MY, Man K, et al. Inhibitory role of Smad7 in hepatocarcinogenesis in mice and in vitro. J Pathol. 2013;230:441–52. PMID: 23625826.

    Article  CAS  PubMed  Google Scholar 

  84. Halder SK, Rachakonda G, Deane NG, Datta PK. Smad7 induces hepatic metastasis in colorectal cancer. Br J Cancer. 2008;99:957–65. PMID: 18781153.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  85. Theohari I, Giannopoulou I, Magkou C, Nomikos A, Melissaris S, Nakopoulou L. Differential effect of the expression of TGF-beta pathway inhibitors, Smad-7 and Ski, on invasive breast carcinomas: relation to biologic behavior. APMIS. 2012;120:92–100. PMID: 22229264.

    Article  PubMed  Google Scholar 

  86. Ekman M, Mu Y, Lee SY, Edlund S, Kozakai T, Thakur N, et al. APC and Smad7 link TGFbeta type I receptors to the microtubule system to promote cell migration. Mol Biol Cell. 2012;23:2109–21. PMID: 22496417.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  87. Heikkinen PT, Nummela M, Jokilehto T, Grenman R, Kahari VM, Jaakkola PM. Hypoxic conversion of SMAD7 function from an inhibitor into a promoter of cell invasion. Cancer Res. 2010;70:5984–93. PMID: 20551054.

    Article  CAS  PubMed  Google Scholar 

  88. Yoo YG, Kong G, Lee MO. Metastasis-associated protein 1 enhances stability of hypoxia-inducible factor-1alpha protein by recruiting histone deacetylase 1. EMBO J. 2006;25:1231–41. PMID: 16511565.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  89. Garcia-Albeniz X, Nan H, Valeri L, Morikawa T, Kuchiba A, Phipps AI, et al. Phenotypic and tumor molecular characterization of colorectal cancer in relation to a susceptibility SMAD7 variant associated with survival. Carcinogenesis. 2013;34:292–8. PMID: 23104301.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  90. Jiang X, Castelao JE, Vandenberg D, Carracedo A, Redondo CM, Conti DV, et al. Genetic variations in SMAD7 are associated with colorectal cancer risk in the colon cancer family registry. PLoS One. 2013;8(4):e60464. PMID: 23560096.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  91. Nakahata S, Yamazaki S, Nakauchi H, Morishita K. Downregulation of ZEB1 and overexpression of Smad7 contribute to resistance to TGF-beta1-mediated growth suppression in adult T-cell leukemia/lymphoma. Oncogene. 2010;29:4157–69. PMID: 20514018.

    Article  CAS  PubMed  Google Scholar 

  92. Monteleone G, Fantini MC, Onali S, Zorzi F, Sancesario G, Bernardini S, et al. Phase I clinical trial of Smad7 knockdown using antisense oligonucleotide in patients with active Crohn’s disease. Mol Ther. 2012;20(4):870–6. PMID: 22252452.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  93. Zorzi F, Angelucci E, Sedda S, Pallone F, Monteleone G. Smad7 antisense oligonucleotide-based therapy for inflammatory bowel diseases. Dig Liver Dis. 2013;45(7):552–5. PMID: 23287011.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

The present study was supported by Jiangxi provincial Department Science and Technology and founded by technical Support Project of Jiangxi Provincial Department of Science and Technology (2008). We also thank Dr. Zhijun Luo, Dr. Kun-He Zhang, and Dr. Xie Yong for their technological supports.

Conflicts of interest

None

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Deqiang Huang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Luo, L., Li, N., Lv, N. et al. SMAD7: a timer of tumor progression targeting TGF-β signaling. Tumor Biol. 35, 8379–8385 (2014). https://doi.org/10.1007/s13277-014-2203-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13277-014-2203-7

Keywords

Navigation