Skip to main content

Advertisement

Log in

Non-coding RNAs in pancreatic cancer: challenges and opportunities for clinical application

  • Review
  • Published:
Cellular Oncology Aims and scope Submit manuscript

Abstract

Background

Pancreatic ductal adenocarcinoma (PDAC) is a lethal disease with a dismal prognosis for which new therapeutic strategies are desperately needed. Non-coding RNAs (ncRNAs), especially microRNAs (miRNAs) and long non-coding RNAs (lncRNAs), may yield new therapeutic concepts for the treatment of PDAC. A vast number of miRNAs, including the well-studied miR-21, miR-155 and miR-34, has been shown to regulate PDAC growth, invasion and metastasis in vitro and in vivo by targeting members of key signaling pathways. In addition, other miRNAs and lncRNAs, such as HOTTIP and MALAT-1, have been shown to influence the malignant behavior of PDAC cells.

Methods

Here, we discuss several ncRNAs that may be used either as new therapeutic agents or as targets of new therapeutic agents. Furthermore, we discuss the problem of proper delivery of nucleotide-based agents and novel methods that may be used to circumvent this problem.

Conclusions

Although the number of reports addressing the role of ncRNAs in PDAC virtually grows by the day, there are still many steps to be taken before the application of ncRNA-based therapies will become reality in clinical practice.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. M. Malvezzi, P. Bertuccio, F. Levi, C. La Vecchia, E. Negri, European cancer mortality predictions for the year 2014. Ann. Oncol. 25, 1650–1656 (2014)

    Article  CAS  PubMed  Google Scholar 

  2. D.P. Ryan, T.S. Hong, N. Bardeesy, Pancreatic adenocarcinoma. N. Engl. J. Med. 371, 1039–1049 (2014)

    Article  CAS  PubMed  Google Scholar 

  3. T. Furukawa, R. Fujisaki, Y. Yoshida, N. Kanai, M. Sunamura, T. Abe, K. Takeda, S. Matsuno, A. Horii, Distinct progression pathways involving the dysfunction of DUSP6/MKP-3 in pancreatic intraepithelial neoplasia and intraductal papillary-mucinous neoplasms of the pancreas. Mod. Pathol. 18, 1034–1042 (2005)

    Article  CAS  PubMed  Google Scholar 

  4. S.A. Hahn, A.T. Hoque, C.A. Moskaluk, L.T. da Costa, M. Schutte, E. Rozenblum, A.B. Seymour, C.L. Weinstein, C.J. Yeo, R.H. Hruban, S.E. Kern, Homozygous deletion map at 18q21.1 in pancreatic cancer. Cancer Res. 56, 490–494 (1996)

    CAS  PubMed  Google Scholar 

  5. J.M. Bailey, A.M. Hendley, K.J. Lafaro, M.A. Pruski, N.C. Jones, J. Alsina, M. Younes, A. Maitra, F. McAllister, C.A. Iacobuzio-Donahue, S.D. Leach, p53 mutations cooperate with oncogenic Kras to promote adenocarcinoma from pancreatic ductal cells. Oncogene (2015). doi:10.1038/onc.2015.441

  6. E.G. Chiorean, A.L. Coveler, Pancreatic cancer: optimizing treatment options, new, and emerging targeted therapies. Drug Des. Devel. Ther. 9, 3529–3545 (2015)

    Article  PubMed  PubMed Central  Google Scholar 

  7. C.P. Christov, T.J. Gardiner, D. Szuts, T. Krude, Functional requirement of noncoding Y RNAs for human chromosomal DNA replication. Mol. Cell. Biol. 26, 6993–7004 (2006)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. S. Kishore, S. Stamm, Regulation of alternative splicing by snoRNAs. Cold Spring Harb. Symp. Quant. Biol. 71, 329–334 (2006)

    Article  CAS  PubMed  Google Scholar 

  9. A.T. Zhang, A.R. Langley, C.P. Christov, E. Kheir, T. Shafee, T.J. Gardiner, T. Krude, Dynamic interaction of Y RNAs with chromatin and initiation proteins during human DNA replication. J. Cell Sci. 124, 2058–2069 (2011)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Y. Zhu, V. Stribinskis, K.S. Ramos, Y. Li, Sequence analysis of RNase MRP RNA reveals its origination from eukaryotic RNase P RNA. RNA 12, 699–706 (2006)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. A. Huttenhofer, P. Schattner, N. Polacek, Non-coding RNAs: hope or hype? Trends Genet. 21, 289–297 (2005)

    Article  PubMed  CAS  Google Scholar 

  12. P. Kapranov, J. Cheng, S. Dike, D.A. Nix, R. Duttagupta, A.T. Willingham, P.F. Stadler, J. Hertel, J. Hackermuller, I.L. Hofacker, I. Bell, E. Cheung, J. Drenkow, E. Dumais, S. Patel, G. Helt, M. Ganesh, S. Ghosh, A. Piccolboni, V. Sementchenko, H. Tammana, T.R. Gingeras, RNA maps reveal new RNA classes and a possible function for pervasive transcription. Science 316, 1484–1488 (2007)

    Article  CAS  PubMed  Google Scholar 

  13. R.J. Taft, K.C. Pang, T.R. Mercer, M. Dinger, J.S. Mattick, Non-coding RNAs: regulators of disease. J. Pathol. 220, 126–139 (2010)

    Article  CAS  PubMed  Google Scholar 

  14. R. Tanaka, M. Tomosugi, M. Horinaka, Y. Sowa, T. Sakai, Metformin causes G1-phase arrest via down-regulation of MiR-221 and enhances TRAIL sensitivity through DR5 up-regulation in pancreatic cancer cells. PLoS One 10, e0125779 (2015)

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  15. D. Nalls, S.N. Tang, M. Rodova, R.K. Srivastava, S. Shankar, Targeting epigenetic regulation of miR-34a for treatment of pancreatic cancer by inhibition of pancreatic cancer stem cells. PLoS One 6, e24099 (2011)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. L. Buscail, B. Bournet, F. Vernejoul, G. Cambois, H. Lulka, N. Hanoun, M. Dufresne, A. Meulle, A. Vignolle-Vidoni, L. Ligat, N. Saint-Laurent, F. Pont, S. Dejean, M. Gayral, F. Martins, J. Torrisani, O. Barbey, F. Gross, R. Guimbaud, P. Otal, F. Lopez, G. Tiraby, P. Cordelier, First-in-man phase I clinical trial of gene therapy for advanced pancreatic cancer: safety, biodistribution and preliminary clinical findings. Mol. Ther. 23, 202–214 (2015)

  17. V. Ambros, The functions of animal microRNAs. Nature 431, 350–355 (2004)

    Article  CAS  PubMed  Google Scholar 

  18. D.P. Bartel, MicroRNAs: genomics, biogenesis, mechanism, and function. Cell 116, 281–297 (2004)

    Article  CAS  PubMed  Google Scholar 

  19. K. Chen, N. Rajewsky, The evolution of gene regulation by transcription factors and microRNAs. Nat. Rev. Genet. 8, 93–103 (2007)

    Article  CAS  PubMed  Google Scholar 

  20. A. Tanzer, P.F. Stadler, Molecular evolution of a microRNA cluster. J. Mol. Biol. 339, 327–335 (2004)

    Article  CAS  PubMed  Google Scholar 

  21. M.J. Axtell, D.P. Bartel, Antiquity of microRNAs and their targets in land plants. Plant Cell 17, 1658–1673 (2005)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. R.C. Friedman, K.K. Farh, C.B. Burge, D.P. Bartel, Most mammalian mRNAs are conserved targets of microRNAs. Genome Res. 19, 92–105 (2009)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. I. Fkih M’hamed, M. Privat, F. Ponelle, F. Penault-Llorca, A. Kenani, Y.J. Bignon, Identification of miR-10b, miR-26a, miR-146a and miR-153 as potential triple-negative breast cancer biomarkers. Cell. Oncol. 38, 433–442 (2015)

    Article  CAS  Google Scholar 

  24. E. Yiannakopoulou, Targeting epigenetic mechanisms and microRNAs by aspirin and other non steroidal anti-inflammatory agents--implications for cancer treatment and chemoprevention. Cell. Oncol. 37, 167–178 (2014)

    Article  CAS  Google Scholar 

  25. C. Salazar, R. Nagadia, P. Pandit, J. Cooper-White, N. Banerjee, N. Dimitrova, W.B. Coman, C. Punyadeera, A novel saliva-based microRNA biomarker panel to detect head and neck cancers. Cell. Oncol. 37, 331–338 (2014)

    Article  CAS  Google Scholar 

  26. K.J. Peterson, M.R. Dietrich, M.A. McPeek, MicroRNAs and metazoan macroevolution: insights into canalization, complexity, and the Cambrian explosion. Bioessays 31, 736–747 (2009)

    Article  CAS  PubMed  Google Scholar 

  27. Y. Lee, M. Kim, J. Han, K.H. Yeom, S. Lee, S.H. Baek, V.N. Kim, MicroRNA genes are transcribed by RNA polymerase II. EMBO J. 23, 4051–4060 (2004)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. R.I. Gregory, T.P. Chendrimada, R. Shiekhattar, MicroRNA biogenesis: isolation and characterization of the microprocessor complex. Methods Mol. Biol. 342, 33–47 (2006)

    CAS  PubMed  Google Scholar 

  29. E. Lund, J.E. Dahlberg, Substrate selectivity of exportin 5 and Dicer in the biogenesis of microRNAs. Cold Spring Harb. Symp. Quant. Biol. 71, 59–66 (2006)

    Article  CAS  PubMed  Google Scholar 

  30. E. Prodromaki, A. Korpetinou, E. Giannopoulou, E. Vlotinou, M. Chatziathanasiadou, N.I. Papachristou, C.D. Scopa, H. Papadaki, H.P. Kalofonos, D.J. Papachristou, Expression of the microRNA regulators Drosha, Dicer and Ago2 in non-small cell lung carcinomas. Cell. Oncol. 38, 307–317 (2015)

    Article  CAS  Google Scholar 

  31. X.J. Wang, J.L. Reyes, N.H. Chua, T. Gaasterland, Prediction and identification of Arabidopsis thaliana microRNAs and their mRNA targets. Genome Biol. 5, R65 (2004)

    Article  PubMed  PubMed Central  Google Scholar 

  32. A. Eulalio, E. Huntzinger, T. Nishihara, J. Rehwinkel, M. Fauser, E. Izaurralde, Deadenylation is a widespread effect of miRNA regulation. RNA 15, 21–32 (2009)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. A.A. Bazzini, M.T. Lee, A.J. Giraldez, Ribosome profiling shows that miR-430 reduces translation before causing mRNA decay in zebrafish. Science 336, 233–237 (2012)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. B.P. Lewis, I.H. Shih, M.W. Jones-Rhoades, D.P. Bartel, C.B. Burge, Prediction of mammalian microRNA targets. Cell 115, 787–798 (2003)

    Article  CAS  PubMed  Google Scholar 

  35. W.G. Zhao, S.N. Yu, Z.H. Lu, Y.H. Ma, Y.M. Gu, J. Chen, The miR-217 microRNA functions as a potential tumor suppressor in pancreatic ductal adenocarcinoma by targeting KRAS. Carcinogenesis 31, 1726–1733 (2010)

    Article  CAS  PubMed  Google Scholar 

  36. M.C. du Rieu, J. Torrisani, J. Selves, T. Al Saati, A. Souque, M. Dufresne, G.J. Tsongalis, A.A. Suriawinata, N. Carrere, L. Buscail, P. Cordelier, MicroRNA-21 is induced early in pancreatic ductal adenocarcinoma precursor lesions. Clin. Chem. 56, 603–612 (2010)

    Article  PubMed  CAS  Google Scholar 

  37. S. Ye, L. Yang, X. Zhao, W. Song, W. Wang, S. Zheng, Bioinformatics method to predict two regulation mechanism: TF-miRNA-mRNA and lncRNA-miRNA-mRNA in pancreatic cancer. Cell Biochem. Biophys. 70, 1849–1858 (2014)

    Article  CAS  PubMed  Google Scholar 

  38. N. Habbe, J.B. Koorstra, J.T. Mendell, G.J. Offerhaus, J.K. Ryu, G. Feldmann, M.E. Mullendore, M.G. Goggins, S.M. Hong, A. Maitra, MicroRNA miR-155 is a biomarker of early pancreatic neoplasia. Cancer Biol. Ther. 8, 340–346 (2009)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. J.K. Ryu, S.M. Hong, C.A. Karikari, R.H. Hruban, M.G. Goggins, A. Maitra, Aberrant MicroRNA-155 expression is an early event in the multistep progression of pancreatic adenocarcinoma. Pancreatology 10, 66–73 (2010)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. C. Yu, M. Wang, Z. Li, J. Xiao, F. Peng, X. Guo, Y. Deng, J. Jiang, C. Sun, MicroRNA-138-5p regulates pancreatic cancer cell growth through targeting FOXC1. Cell. Oncol. 38, 173–181 (2015)

  41. J.A. Goodrich, J.F. Kugel, Non-coding-RNA regulators of RNA polymerase II transcription. Nat. Rev. Mol. Cell Biol. 7, 612–616 (2006)

    Article  CAS  PubMed  Google Scholar 

  42. M. Beltran, I. Puig, C. Pena, J.M. Garcia, A.B. Alvarez, R. Pena, F. Bonilla, A.G. de Herreros, A natural antisense transcript regulates Zeb2/Sip1 gene expression during Snail1-induced epithelial-mesenchymal transition. Genes Dev. 22, 756–769 (2008)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. A. Mazo, J.W. Hodgson, S. Petruk, Y. Sedkov, H.W. Brock, Transcriptional interference: an unexpected layer of complexity in gene regulation. J. Cell Sci. 120, 2755–2761 (2007)

    Article  CAS  PubMed  Google Scholar 

  44. J.H. Yoon, J. Kim, M. Gorospe, Long noncoding RNA turnover. Biochimie 1859, 209–221 (2015)

  45. K.C. Wang, H.Y. Chang, Molecular mechanisms of long noncoding RNAs. Mol. Cell 43, 904–914 (2011)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. D.B. Pontier, J. Gribnau, Xist regulation and function explored. Hum. Genet. 130, 223–236 (2011)

    Article  PubMed  PubMed Central  Google Scholar 

  47. A. Wutz, T.P. Rasmussen, R. Jaenisch, Chromosomal silencing and localization are mediated by different domains of Xist RNA. Nat. Genet. 30, 167–174 (2002)

    Article  CAS  PubMed  Google Scholar 

  48. M. Mourtada-Maarabouni, A.M. Hasan, F. Farzaneh, G.T. Williams, Inhibition of human T-cell proliferation by mammalian target of rapamycin (mTOR) antagonists requires noncoding RNA growth-arrest-specific transcript 5 (GAS5). Mol. Pharmacol. 78, 19–28 (2010)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. K. Kim, I. Jutooru, G. Chadalapaka, G. Johnson, J. Frank, R. Burghardt, S. Kim, S. Safe, HOTAIR is a negative prognostic factor and exhibits pro-oncogenic activity in pancreatic cancer. Oncogene 32, 1616–1625 (2013)

    Article  CAS  PubMed  Google Scholar 

  50. R. Bonasio, R. Shiekhattar, Regulation of transcription by long noncoding RNAs. Annu. Rev. Genet. 48, 433–455 (2014)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. S. Uchida, S. Dimmeler, Long noncoding RNAs in cardiovascular diseases. Circ. Res. 116, 737–750 (2015)

    Article  CAS  PubMed  Google Scholar 

  52. M. Knoll, H.F. Lodish, L. Sun, Long non-coding RNAs as regulators of the endocrine system. Nat. Rev. Endocrinol. 11, 151–160 (2015)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. K. Tano, N. Akimitsu, Long non-coding RNAs in cancer progression. Front. Genet. 3, 219 (2012)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. A.G. Bader, D. Brown, J. Stoudemire, P. Lammers, Developing therapeutic microRNAs for cancer. Gene Ther. 18, 1121–1126 (2011)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. J. Torrisani, B. Bournet, M.C. du Rieu, M. Bouisson, A. Souque, J. Escourrou, L. Buscail, P. Cordelier, let-7 MicroRNA transfer in pancreatic cancer-derived cells inhibits in vitro cell proliferation but fails to alter tumor progression. Hum.Gene Ther. 20, 831–844 (2009)

    Article  CAS  PubMed  Google Scholar 

  56. P.J. White, F. Anastasopoulos, C.W. Pouton, B.J. Boyd, Overcoming biological barriers to in vivo efficacy of antisense oligonucleotides. Expert Rev. Mol. Med. 11, e10 (2009)

    Article  PubMed  Google Scholar 

  57. X. Zong, L. Huang, V. Tripathi, R. Peralta, S.M. Freier, S. Guo, K.V. Prasanth, Knockdown of nuclear-retained long noncoding RNAs using modified DNA antisense oligonucleotides. Methods Mol. Biol. 1262, 321–331 (2015)

    Article  CAS  PubMed  Google Scholar 

  58. N. Hanna, P. Ohana, F.M. Konikoff, G. Leichtmann, A. Hubert, L. Appelbaum, Y. Kopelman, A. Czerniak, A. Hochberg, Phase 1/2a, dose-escalation, safety, pharmacokinetic and preliminary efficacy study of intratumoral administration of BC-819 in patients with unresectable pancreatic cancer. Cancer Gene Ther. 19, 374–381 (2012)

    Article  CAS  PubMed  Google Scholar 

  59. M. Lohr, P. Maisonneuve, A.B. Lowenfels, K-Ras mutations and benign pancreatic disease. Int. J. Pancreatol. 27, 93–103 (2000)

    Article  CAS  PubMed  Google Scholar 

  60. M. Wang, X. Lu, X. Dong, F. Hao, Z. Liu, G. Ni, D. Chen, pERK1/2 silencing sensitizes pancreatic cancer BXPC-3 cell to gemcitabine-induced apoptosis via regulating Bax and Bcl-2 expression. World J.Surg.Oncol. 13, 66 (2015). doi:10.1186/s12957-015-0451-7

    Article  PubMed  PubMed Central  Google Scholar 

  61. O.A. Kent, R.R. Chivukula, M. Mullendore, E.A. Wentzel, G. Feldmann, K.H. Lee, S. Liu, S.D. Leach, A. Maitra, J.T. Mendell, Repression of the miR-143/145 cluster by oncogenic Ras initiates a tumor-promoting feed-forward pathway. Genes Dev. 24, 2754–2759 (2010)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. I. Keklikoglou, K. Hosaka, C. Bender, A. Bott, C. Koerner, D. Mitra, R. Will, A. Woerner, E. Muenstermann, H. Wilhelm, Y. Cao, S. Wiemann, MicroRNA-206 functions as a pleiotropic modulator of cell proliferation, invasion and lymphangiogenesis in pancreatic adenocarcinoma by targeting ANXA2 and KRAS genes. Oncogene 34, 4867–4878 (2014)

  63. X. Yan, X. Chen, H. Liang, T. Deng, W. Chen, S. Zhang, M. Liu, X. Gao, Y. Liu, C. Zhao, X. Wang, N. Wang, J. Li, R. Liu, K. Zen, C.Y. Zhang, B. Liu, Y. Ba, miR-143 and miR-145 synergistically regulate ERBB3 to suppress cell proliferation and invasion in breast cancer. Mol. Cancer. 13, 220 (2014). doi:10.1186/1476-4598-13-220

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  64. O.A. Kent, J.T. Mendell, R. Rottapel, Transcriptional regulation of miR-31 by oncogenic KRAS mediates metastatic phenotypes by repressing RASA1. Mol. Cancer. Res. (2016). doi:10.1158/1541-7786.MCR-15-0456

  65. J. Su, H. Liang, W. Yao, N. Wang, S. Zhang, X. Yan, H. Feng, W. Pang, Y. Wang, X. Wang, Z. Fu, Y. Liu, C. Zhao, J. Zhang, C.Y. Zhang, K. Zen, X. Chen, Y. Wang, MiR-143 and MiR-145 regulate IGF1R to suppress cell proliferation in colorectal cancer. PLoS One 9, e114420 (2014)

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  66. X. Chen, X. Guo, H. Zhang, Y. Xiang, J. Chen, Y. Yin, X. Cai, K. Wang, G. Wang, Y. Ba, L. Zhu, J. Wang, R. Yang, Y. Zhang, Z. Ren, K. Zen, J. Zhang, C.Y. Zhang, Role of miR-143 targeting KRAS in colorectal tumorigenesis. Oncogene 28, 1385–1392 (2009)

    Article  CAS  PubMed  Google Scholar 

  67. C. Clape, V. Fritz, C. Henriquet, F. Apparailly, P.L. Fernandez, F. Iborra, C. Avances, M. Villalba, S. Culine, L. Fajas, miR-143 interferes with ERK5 signaling, and abrogates prostate cancer progression in mice. PLoS One 4, e7542 (2009)

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  68. M. Sachdeva, S. Zhu, F. Wu, H. Wu, V. Walia, S. Kumar, R. Elble, K. Watabe, Y.Y. Mo, p53 represses c-Myc through induction of the tumor suppressor miR-145. Proc. Natl. Acad. Sci. U. S. A. 106, 3207–3212 (2009)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. P. Wang, C.F. Zhu, M.Z. Ma, G. Chen, M. Song, Z.L. Zeng, W.H. Lu, J. Yang, S. Wen, P.J. Chiao, Y. Hu, P. Huang, Micro-RNA-155 is induced by K-Ras oncogenic signal and promotes ROS stress in pancreatic cancer. Oncotarget 6, 21148–21158 (2015)

  70. T. Greither, L.F. Grochola, A. Udelnow, C. Lautenschlager, P. Wurl, H. Taubert, Elevated expression of microRNAs 155, 203, 210 and 222 in pancreatic tumors is associated with poorer survival. Int. J. Cancer 126, 73–80 (2010)

    Article  CAS  PubMed  Google Scholar 

  71. M. Gironella, M. Seux, M.J. Xie, C. Cano, R. Tomasini, J. Gommeaux, S. Garcia, J. Nowak, M.L. Yeung, K.T. Jeang, A. Chaix, L. Fazli, Y. Motoo, Q. Wang, P. Rocchi, A. Russo, M. Gleave, J.C. Dagorn, J.L. Iovanna, A. Carrier, M.J. Pebusque, N.J. Dusetti, Tumor protein 53-induced nuclear protein 1 expression is repressed by miR-155, and its restoration inhibits pancreatic tumor development. Proc. Natl. Acad. Sci. U. S. A. 104, 16170–16175 (2007)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. W. Pang, J. Su, Y. Wang, H. Feng, X. Dai, Y. Yuan, X. Chen, W. Yao, Pancreatic cancer-secreted miR-155 implicates in the Conversion from Normal Fibroblasts to Cancer-Associated Fibroblasts. Cancer. Sci. 106, 1362–1369 (2015)

  73. C. Huang, H. Li, W. Wu, T. Jiang, Z. Qiu, Regulation of miR-155 affects pancreatic cancer cell invasiveness and migration by modulating the STAT3 signaling pathway through SOCS1. Oncol. Rep. 30, 1223–1230 (2013)

    CAS  PubMed  Google Scholar 

  74. C. Huang, G. Yang, T. Jiang, G. Zhu, H. Li, Z. Qiu, The effects and mechanisms of blockage of STAT3 signaling pathway on IL-6 inducing EMT in human pancreatic cancer cells in vitro. Neoplasma 58, 396–405 (2011)

    Article  CAS  PubMed  Google Scholar 

  75. I.A. Asangani, S.A. Rasheed, D.A. Nikolova, J.H. Leupold, N.H. Colburn, S. Post, H. Allgayer, MicroRNA-21 (miR-21) post-transcriptionally downregulates tumor suppressor Pdcd4 and stimulates invasion, intravasation and metastasis in colorectal cancer. Oncogene 27, 2128–2136 (2008)

    Article  CAS  PubMed  Google Scholar 

  76. J.A. Chan, A.M. Krichevsky, K.S. Kosik, MicroRNA-21 is an antiapoptotic factor in human glioblastoma cells. Cancer Res. 65, 6029–6033 (2005)

    Article  CAS  PubMed  Google Scholar 

  77. D.L. Vaux, S. Cory, J.M. Adams, Bcl-2 gene promotes haemopoietic cell survival and cooperates with c-myc to immortalize pre-B cells. Nature 335, 440–442 (1988)

    Article  CAS  PubMed  Google Scholar 

  78. M. Dillhoff, J. Liu, W. Frankel, C. Croce, M. Bloomston, MicroRNA-21 is overexpressed in pancreatic cancer and a potential predictor of survival. J. Gastrointest. Surg. 12, 2171–2176 (2008)

    Article  PubMed  PubMed Central  Google Scholar 

  79. W.F. Song, L. Wang, W.Y. Huang, X. Cai, J.J. Cui, L.W. Wang, MiR-21 upregulation induced by promoter zone histone acetylation is associated with chemoresistance to gemcitabine and enhanced malignancy of pancreatic cancer cells. Asian Pac. J. Cancer Prev. 14, 7529–7536 (2013)

    Article  PubMed  Google Scholar 

  80. P. Wang, L. Zhuang, J. Zhang, J. Fan, J. Luo, H. Chen, K. Wang, L. Liu, Z. Chen, Z. Meng, The serum miR-21 level serves as a predictor for the chemosensitivity of advanced pancreatic cancer, and miR-21 expression confers chemoresistance by targeting FasL. Mol. Oncol. 7, 334–345 (2013)

    Article  CAS  PubMed  Google Scholar 

  81. J.H. Hwang, J. Voortman, E. Giovannetti, S.M. Steinberg, L.G. Leon, Y.T. Kim, N. Funel, J.K. Park, M.A. Kim, G.H. Kang, S.W. Kim, M. Del Chiaro, G.J. Peters, G. Giaccone, Identification of microRNA-21 as a biomarker for chemoresistance and clinical outcome following adjuvant therapy in resectable pancreatic cancer. PLoS One 5, e10630 (2010)

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  82. P. Liu, H. Liang, Q. Xia, P. Li, H. Kong, P. Lei, S. Wang, Z. Tu, Resveratrol induces apoptosis of pancreatic cancers cells by inhibiting miR-21 regulation of BCL-2 expression. Clin. Transl. Oncol. 15, 741–746 (2013)

    Article  CAS  PubMed  Google Scholar 

  83. J.K. Park, E.J. Lee, C. Esau, T.D. Schmittgen, Antisense inhibition of microRNA-21 or -221 arrests cell cycle, induces apoptosis, and sensitizes the effects of gemcitabine in pancreatic adenocarcinoma. Pancreas 38, e190–e199 (2009)

    Article  CAS  PubMed  Google Scholar 

  84. P.A. Toste, L. Li, B.E. Kadera, A.H. Nguyen, L.M. Tran, N. Wu, D.L. Madnick, S.G. Patel, D.W. Dawson, T.R. Donahue, p85alpha is a microRNA target and affects chemosensitivity in pancreatic cancer. J. Surg. Res. 196, 285–293 (2015)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. W.H. Paik, H.R. Kim, J.K. Park, B.J. Song, S.H. Lee, J.H. Hwang, Chemosensitivity induced by down-regulation of microRNA-21 in gemcitabine-resistant pancreatic cancer cells by indole-3-carbinol. Anticancer Res. 33, 1473–1481 (2013)

    CAS  PubMed  Google Scholar 

  86. T.A. Mace, A.L. Collins, S.E. Wojcik, C.M. Croce, G.B. Lesinski, M. Bloomston, Hypoxia induces the overexpression of microRNA-21 in pancreatic cancer cells. J. Surg. Res. 184, 855–860 (2013)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  87. H. Ying, K.G. Elpek, A. Vinjamoori, S.M. Zimmerman, G.C. Chu, H. Yan, E. Fletcher-Sananikone, H. Zhang, Y. Liu, W. Wang, X. Ren, H. Zheng, A.C. Kimmelman, J.H. Paik, C. Lim, S.R. Perry, S. Jiang, B. Malinn, A. Protopopov, S. Colla, Y. Xiao, A.F. Hezel, N. Bardeesy, S.J. Turley, Y.A. Wang, L. Chin, S.P. Thayer, R.A. DePinho, PTEN is a major tumor suppressor in pancreatic ductal adenocarcinoma and regulates an NF-kappaB-cytokine network. Cancer Discov. 1, 158–169 (2011)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  88. B.E. Kadera, L. Li, P.A. Toste, N. Wu, C. Adams, D.W. Dawson, T.R. Donahue, MicroRNA-21 in pancreatic ductal adenocarcinoma tumor-associated fibroblasts promotes metastasis. PLoS One 8, e71978 (2013)

  89. F. Sicard, M. Gayral, H. Lulka, L. Buscail, P. Cordelier, Targeting miR-21 for the therapy of pancreatic cancer. Mol. Ther. 21, 986–994 (2013)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  90. M. Passadouro, M.C. Pedroso de Lima, H. Faneca, MicroRNA modulation combined with sunitinib as a novel therapeutic strategy for pancreatic cancer. Int. J. Nanomedicine 9, 3203–3217 (2014)

    CAS  PubMed  PubMed Central  Google Scholar 

  91. Y. Zhang, M. Li, H. Wang, W.E. Fisher, P.H. Lin, Q. Yao, C. Chen, Profiling of 95 microRNAs in pancreatic cancer cell lines and surgical specimens by real-time PCR analysis. World J. Surg. 33, 698–709 (2009)

    Article  PubMed  PubMed Central  Google Scholar 

  92. H. Hermeking, The miR-34 family in cancer and apoptosis. Cell Death Differ. 17, 193–199 (2010)

    Article  CAS  PubMed  Google Scholar 

  93. J. Xia, Q. Duan, A. Ahmad, B. Bao, S. Banerjee, Y. Shi, J. Ma, J. Geng, Z. Chen, K. Rahman, L. Miele, F. Sarkar, Z. Wang, Genistein inhibits cell growth and induces apoptosis through up-regulation of miR-34a in pancreatic cancer cells. 13, 1750–1756 (2012)

  94. Q. Ji, X. Hao, M. Zhang, W. Tang, M. Yang, L. Li, D. Xiang, J.T. Desano, G.T. Bommer, D. Fan, E.R. Fearon, T.S. Lawrence, L. Xu, MicroRNA miR-34 inhibits human pancreatic cancer tumor-initiating cells. PLoS One 4, e6816 (2009)

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  95. C. Liu, H. Cheng, S. Shi, X. Cui, J. Yang, L. Chen, P. Cen, X. Cai, Y. Lu, C. Wu, W. Yao, Y. Qin, L. Liu, J. Long, J. Xu, M. Li, X. Yu, MicroRNA-34b inhibits pancreatic cancer metastasis through repressing Smad3. Curr. Mol. Med. 13, 467–478 (2013)

    Article  CAS  PubMed  Google Scholar 

  96. T.C. Chang, E.A. Wentzel, O.A. Kent, K. Ramachandran, M. Mullendore, K.H. Lee, G. Feldmann, M. Yamakuchi, M. Ferlito, C.J. Lowenstein, D.E. Arking, M.A. Beer, A. Maitra, J.T. Mendell, Transactivation of miR-34a by p53 broadly influences gene expression and promotes apoptosis. Mol. Cell 26, 745–752 (2007)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  97. A.K. Bubna, Vorinostat-An overview. Indian J. Dermatol. 60, 419 (2015). doi:10.4103/0019-5154.160511

    Article  PubMed  PubMed Central  Google Scholar 

  98. D.A. Deming, J. Ninan, H.H. Bailey, J.M. Kolesar, J. Eickhoff, J.M. Reid, M.M. Ames, R.M. McGovern, D. Alberti, R. Marnocha, I. Espinoza-Delgado, J. Wright, G. Wilding, W.R. Schelman, A Phase I study of intermittently dosed vorinostat in combination with bortezomib in patients with advanced solid tumors. Invest. New Drugs 32, 323–329 (2014)

    Article  CAS  PubMed  Google Scholar 

  99. J.H. Mitchell, E. Cawood, D. Kinniburgh, A. Provan, A.R. Collins, D.S. Irvine, Effect of a phytoestrogen food supplement on reproductive health in normal males. Clin. Sci. (Lond.) 100, 613–618 (2001)

    Article  CAS  Google Scholar 

  100. S. Babashah, M. Sadeghizadeh, M.R. Tavirani, S. Farivar, M. Soleimani, Aberrant microRNA expression and its implications in the pathogenesis of leukemias. Cell. Oncol. 35, 317–334 (2012)

    Article  CAS  Google Scholar 

  101. J. Haybaeck, N. Zeller, M. Heikenwalder, The parallel universe: microRNAs and their role in chronic hepatitis, liver tissue damage and hepatocarcinogenesis. Swiss Med. Wkly. 141, w13287 (2011)

    PubMed  Google Scholar 

  102. ClinicalTrials.gov [Internet] Identifier: NCT01829971, A multicenter phase I study of MRX34, MicroRNA miR-RX34 liposomal injection, 2016 (2015)

  103. R. Zhang, M. Li, W. Zang, X. Chen, Y. Wang, P. Li, Y. Du, G. Zhao, L. Li, MiR-148a regulates the growth and apoptosis in pancreatic cancer by targeting CCKBR and Bcl-2. Tumour Biol. 35, 837–844 (2014)

    Article  CAS  PubMed  Google Scholar 

  104. S.K. Srivastava, A. Bhardwaj, S. Arora, N. Tyagi, S. Singh, J. Andrews, S. McClellan, B. Wang, A.P. Singh, MicroRNA-345 induces apoptosis in pancreatic cancer cells through potentiation of caspase-dependent and -independent pathways. Br. J. Cancer 113, 660–668 (2015)

    Article  CAS  PubMed  Google Scholar 

  105. J. Hao, S. Zhang, Y. Zhou, X. Hu, C. Shao, MicroRNA 483-3p suppresses the expression of DPC4/Smad4 in pancreatic cancer. FEBS Lett. 585, 207–213 (2011)

    Article  CAS  PubMed  Google Scholar 

  106. P. Singh, J.D. Wig, R. Srinivasan, B.D. Radotra, A comprehensive examination of Smad4, Smad6 and Smad7 mRNA expression in pancreatic ductal adenocarcinoma. Indian J. Cancer 48, 170–174 (2011)

    Article  CAS  PubMed  Google Scholar 

  107. Z. Zhu, Y. Xu, J. Zhao, Q. Liu, W. Feng, J. Fan, P. Wang, miR-367 promotes epithelial-to-mesenchymal transition and invasion of pancreatic ductal adenocarcinoma cells by targeting the Smad7-TGF-beta signalling pathway. Br. J. Cancer 112, 1367–1375 (2015)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  108. X. Zhi, J. Tao, K. Xie, Y. Zhu, Z. Li, J. Tang, W. Wang, H. Xu, J. Zhang, Z. Xu, MUC4-induced nuclear translocation of beta-catenin: a novel mechanism for growth, metastasis and angiogenesis in pancreatic cancer. Cancer Lett. 346, 104–113 (2014)

    Article  CAS  PubMed  Google Scholar 

  109. Y. Zhu, J.J. Zhang, W.B. Liang, R. Zhu, B. Wang, Y. Miao, Z.K. Xu, Pancreatic cancer counterattack: MUC4 mediates Fas-independent apoptosis of antigen-specific cytotoxic T lymphocyte. Oncol. Rep. 31, 1768–1776 (2014)

    CAS  PubMed  Google Scholar 

  110. D. Ansari, C. Urey, K.S. Hilmersson, M.P. Bauden, F. Ek, R. Olsson, R. Andersson, Apicidin sensitizes pancreatic cancer cells to gemcitabine by epigenetically regulating MUC4 expression. Anticancer Res. 34, 5269–5276 (2014)

    CAS  PubMed  Google Scholar 

  111. S.K. Srivastava, A. Bhardwaj, S. Singh, S. Arora, B. Wang, W.E. Grizzle, A.P. Singh, MicroRNA-150 directly targets MUC4 and suppresses growth and malignant behavior of pancreatic cancer cells. Carcinogenesis 32, 1832–1839 (2011)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  112. P. Chaturvedi, A.P. Singh, S. Chakraborty, S.C. Chauhan, S. Bafna, J.L. Meza, P.K. Singh, M.A. Hollingsworth, P.P. Mehta, S.K. Batra, MUC4 mucin interacts with and stabilizes the HER2 oncoprotein in human pancreatic cancer cells. Cancer Res. 68, 2065–2070 (2008)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  113. F. Lahdaoui, Y. Delpu, A. Vincent, F. Renaud, M. Messager, B. Duchene, E. Leteurtre, C. Mariette, J. Torrisani, N. Jonckheere, I. Van, Seuningen, miR-219-1-3p is a negative regulator of the mucin MUC4 expression and is a tumor suppressor in pancreatic cancer. Oncogene 34, 780–788 (2015)

    Article  CAS  PubMed  Google Scholar 

  114. D. Chen, Y. Zhang, J. Wang, J. Chen, C. Yang, K. Cai, X. Wang, F. Shi, J. Dou, MicroRNA-200c overexpression inhibits tumorigenicity and metastasis of CD117+CD44+ ovarian cancer stem cells by regulating epithelial-mesenchymal transition. J. Ovarian Res. 6, 50 (2013). doi:10.1186/1757-2215-6-50

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  115. J. Dou, X.F. He, W.H. Cao, F.S. Zhao, X.Y. Wang, Y.R. Liu, J. Wang, Overexpression of microRna-200c in CD44+CD133+ CSCS inhibits the cellular migratory and invasion as well as tumorigenicity in mice. Cell. Mol. Biol. Suppl 59, OL1861-8 (2013)

  116. F.F. Ibrahim, R. Jamal, S.E. Syafruddin, N.S. Ab Mutalib, S. Saidin, R.R. MdZin, M.M. Hossain Mollah, N.M. Mokhtar, MicroRNA-200c and microRNA-31 regulate proliferation, colony formation, migration and invasion in serous ovarian cancer. J. Ovarian Res. 8, 56 (2015). doi:10.1186/s13048-015-0186-7

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  117. J. Lu, G. Getz, E.A. Miska, E. Alvarez-Saavedra, J. Lamb, D. Peck, A. Sweet-Cordero, B.L. Ebert, R.H. Mak, A.A. Ferrando, J.R. Downing, T. Jacks, H.R. Horvitz, T.R. Golub, MicroRNA expression profiles classify human cancers. Nature 435, 834–838 (2005)

    Article  CAS  PubMed  Google Scholar 

  118. D.M. Dykxhoorn, MicroRNAs and metastasis: little RNAs go a long way. Cancer Res. 70, 6401–6406 (2010)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  119. Y. Lu, J. Lu, X. Li, H. Zhu, X. Fan, S. Zhu, Y. Wang, Q. Guo, L. Wang, Y. Huang, M. Zhu, Z. Wang, MiR-200a inhibits epithelial-mesenchymal transition of pancreatic cancer stem cell. BMC Cancer 14, 85 (2014). doi:10.1186/1471-2407-14-85

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  120. C. Ma, T. Huang, Y.C. Ding, W. Yu, Q. Wang, B. Meng, S.X. Luo, microRNA-200c overexpression inhibits chemoresistance, invasion and colony formation of human pancreatic cancer stem cells. Int. J. Clin. Exp. Pathol. 8, 6533–6539 (2015)

    PubMed  PubMed Central  Google Scholar 

  121. Y. Imanaka, S. Tsuchiya, F. Sato, Y. Shimada, K. Shimizu, G. Tsujimoto, MicroRNA-141 confers resistance to cisplatin-induced apoptosis by targeting YAP1 in human esophageal squamous cell carcinoma. J. Hum. Genet. 56, 270–276 (2011)

    Article  CAS  PubMed  Google Scholar 

  122. L. Xu, Q. Li, D. Xu, Q. Wang, Y. An, Q. Du, J. Zhang, Y. Zhu, Y. Miao, hsa-miR-141 downregulates TM4SF1 to inhibit pancreatic cancer cell invasion and migration. Int. J. Oncol. 44, 459–466 (2014)

    CAS  PubMed  Google Scholar 

  123. G. Zhao, B. Wang, Y. Liu, J.G. Zhang, S.C. Deng, Q. Qin, K. Tian, X. Li, S. Zhu, Y. Niu, Q. Gong, C.Y. Wang, miRNA-141, downregulated in pancreatic cancer, inhibits cell proliferation and invasion by directly targeting MAP4K4. Mol. Cancer. Ther. 12, 2569–2580 (2013)

    Article  CAS  PubMed  Google Scholar 

  124. Z.M. Zhu, Y.F. Xu, Q.J. Su, J.D. Du, X.L. Tan, Y.L. Tu, J.W. Tan, H.B. Jiao, Prognostic significance of microRNA-141 expression and its tumor suppressor function in human pancreatic ductal adenocarcinoma. Mol. Cell. Biochem. 388, 39–49 (2014)

    Article  CAS  PubMed  Google Scholar 

  125. T. Avnit-Sagi, L. Kantorovich, S. Kredo-Russo, E. Hornstein, M.D. Walker, The promoter of the pri-miR-375 gene directs expression selectively to the endocrine pancreas. PLoS One 4, e5033 (2009)

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  126. M.N. Poy, L. Eliasson, J. Krutzfeldt, S. Kuwajima, X. Ma, P.E. Macdonald, S. Pfeffer, T. Tuschl, N. Rajewsky, P. Rorsman, M. Stoffel, A pancreatic islet-specific microRNA regulates insulin secretion. Nature 432, 226–230 (2004)

    Article  CAS  PubMed  Google Scholar 

  127. A. Basu, H. Alder, A. Khiyami, P. Leahy, C.M. Croce, S. Haldar, MicroRNA-375 and MicroRNA-221: potential noncoding RNAs associated with antiproliferative activity of benzyl isothiocyanate in pancreatic cancer. Genes Cancer 2, 108–119 (2011)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  128. J. Zhou, S. Song, S. He, X. Zhu, Y. Zhang, B. Yi, B. Zhang, G. Qin, D. Li, MicroRNA-375 targets PDK1 in pancreatic carcinoma and suppresses cell growth through the Akt signaling pathway. Int. J. Mol. Med. 33, 950–956 (2014)

    CAS  PubMed  Google Scholar 

  129. J. Zhou, S. Song, J. Cen, D. Zhu, D. Li, Z. Zhang, MicroRNA-375 is downregulated in pancreatic cancer and inhibits cell proliferation in vitro. Oncol. Res. 20, 197–203 (2012)

    Article  CAS  PubMed  Google Scholar 

  130. S.D. Song, J. Zhou, J. Zhou, H. Zhao, J.N. Cen, D.C. Li, MicroRNA-375 targets the 3-phosphoinositide-dependent protein kinase-1 gene in pancreatic carcinoma. Oncol. Lett. 6, 953–959 (2013)

    CAS  PubMed  PubMed Central  Google Scholar 

  131. J. Li, Y. Wang, W. Yu, J. Chen, J. Luo, Expression of serum miR-221 in human hepatocellular carcinoma and its prognostic significance. Biochem. Biophys. Res. Commun. 406, 70–73 (2011)

    Article  CAS  PubMed  Google Scholar 

  132. M. Bloomston, W.L. Frankel, F. Petrocca, S. Volinia, H. Alder, J.P. Hagan, C.G. Liu, D. Bhatt, C. Taccioli, C.M. Croce, MicroRNA expression patterns to differentiate pancreatic adenocarcinoma from normal pancreas and chronic pancreatitis. JAMA 297, 1901–1908 (2007)

    Article  CAS  PubMed  Google Scholar 

  133. Q. Xu, P. Li, X. Chen, L. Zong, Z. Jiang, L. Nan, J. Lei, W. Duan, D. Zhang, X. Li, H. Sha, Z. Wu, Q. Ma, Z. Wang, miR-221/222 induces pancreatic cancer progression through the regulation of matrix metalloproteinases. Oncotarget 6, 14153–14164 (2015)

  134. S. Sarkar, H. Dubaybo, S. Ali, P. Goncalves, S.L. Kollepara, S. Sethi, P.A. Philip, Y. Li, Down-regulation of miR-221 inhibits proliferation of pancreatic cancer cells through up-regulation of PTEN, p27(kip1), p57(kip2), and PUMA. Am. J. Cancer. Res. 3, 465–477 (2013)

    PubMed  PubMed Central  Google Scholar 

  135. Y. Li, T.G. VandenBoom 2nd, D. Kong, Z. Wang, S. Ali, P.A. Philip, F.H. Sarkar, Up-regulation of miR-200 and let-7 by natural agents leads to the reversal of epithelial-to-mesenchymal transition in gemcitabine-resistant pancreatic cancer cells. Cancer Res. 69, 6704–6712 (2009)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  136. K. Patel, A. Kollory, A. Takashima, S. Sarkar, D.V. Faller, S.K. Ghosh, MicroRNA let-7 downregulates STAT3 phosphorylation in pancreatic cancer cells by increasing SOCS3 expression. Cancer Lett. 347, 54–64 (2014)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  137. Y.D. Bhutia, S.W. Hung, M. Krentz, D. Patel, D. Lovin, R. Manoharan, J.M. Thomson, R. Govindarajan, Differential processing of let-7a precursors influences RRM2 expression and chemosensitivity in pancreatic cancer: role of LIN-28 and SET oncoprotein. PLoS One 8, e53436 (2013)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  138. S. Watanabe, Y. Ueda, S. Akaboshi, Y. Hino, Y. Sekita, M. Nakao, HMGA2 maintains oncogenic RAS-induced epithelial-mesenchymal transition in human pancreatic cancer cells. Am. J. Pathol. 174, 854–868 (2009)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  139. A. Druz, Y.C. Chen, R. Guha, M. Betenbaugh, S.E. Martin, J. Shiloach, Large-scale screening identifies a novel microRNA, miR-15a-3p, which induces apoptosis in human cancer cell lines. RNA Biol. 10, 287–300 (2013)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  140. S. Guo, X. Xu, Y. Tang, C. Zhang, J. Li, Y. Ouyang, J. Ju, P. Bie, H. Wang, miR-15a inhibits cell proliferation and epithelial to mesenchymal transition in pancreatic ductal adenocarcinoma by down-regulating Bmi-1 expression. Cancer Lett. 344, 40–46 (2014)

    Article  CAS  PubMed  Google Scholar 

  141. F. Wang, X. Xue, J. Wei, Y. An, J. Yao, H. Cai, J. Wu, C. Dai, Z. Qian, Z. Xu, Y. Miao, hsa-miR-520h downregulates ABCG2 in pancreatic cancer cells to inhibit migration, invasion, and side populations. Br. J. Cancer 103, 567–574 (2010)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  142. J. Jiang, C. Yu, M. Chen, H. Zhang, S. Tian, C. Sun, Reduction of miR-29c enhances pancreatic cancer cell migration and stem cell-like phenotype. Oncotarget 6, 2767–2778 (2015)

  143. M.K. Muniyappa, P. Dowling, M. Henry, P. Meleady, P. Doolan, P. Gammell, M. Clynes, N. Barron, MiRNA-29a regulates the expression of numerous proteins and reduces the invasiveness and proliferation of human carcinoma cell lines. Eur. J. Cancer 45, 3104–3118 (2009)

    Article  CAS  PubMed  Google Scholar 

  144. S. Yu, Z. Lu, C. Liu, Y. Meng, Y. Ma, W. Zhao, J. Liu, J. Yu, J. Chen, miRNA-96 suppresses KRAS and functions as a tumor suppressor gene in pancreatic cancer. Cancer Res. 70, 6015–6025 (2010)

    Article  CAS  PubMed  Google Scholar 

  145. J. Feng, J. Yu, X. Pan, Z. Li, Z. Chen, W. Zhang, B. Wang, L. Yang, H. Xu, G. Zhang, Z. Xu, HERG1 functions as an oncogene in pancreatic cancer and is downregulated by miR-96. Oncotarget 5, 5832–5844 (2014)

    Article  PubMed  PubMed Central  Google Scholar 

  146. C. Li, X. Du, S. Tai, X. Zhong, Z. Wang, Z. Hu, L. Zhang, P. Kang, D. Ji, X. Jiang, Q. Zhou, M. Wan, G. Jiang, Y. Cui, GPC1 regulated by miR-96-5p, rather than miR-182-5p, in inhibition of pancreatic carcinoma cell proliferation. Int. J. Mol. Sci. 15, 6314–6327 (2014)

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  147. X. Huang, W. Lv, J.H. Zhang, D.L. Lu, miR96 functions as a tumor suppressor gene by targeting NUAK1 in pancreatic cancer. Int. J. Mol. Med. 34, 1599–1605 (2014)

    CAS  PubMed  Google Scholar 

  148. D. Li, X. Li, W. Cao, Y. Qi, X. Yang, Antagonism of microRNA-99a promotes cell invasion and down-regulates E-cadherin expression in pancreatic cancer cells by regulating mammalian target of rapamycin. Acta Histochem. 116, 723–729 (2014)

    Article  CAS  PubMed  Google Scholar 

  149. Z. Li, X. Li, C. Yu, M. Wang, F. Peng, J. Xiao, R. Tian, J. Jiang, C. Sun, MicroRNA-100 regulates pancreatic cancer cells growth and sensitivity to chemotherapy through targeting FGFR3. Tumour Biol. 35, 11751–11759 (2014)

    Article  CAS  PubMed  Google Scholar 

  150. W. Jiang, W. Gu, R. Qiu, C. Shen, E.Y. YaohaoWu, J. Zhang, J. Zhou, Y. Guo, Z. Li, J. Deng, L. Zeng, J. Tang, Q. Zhi, X. Deng, miRNA-101 suppresses epithelial-to-mesenchymal transition by targeting HMGA2 in pancreatic cancer cells. Anticancer Agents Med. Chem. (2015). doi:10.2174/1871520615666150507122142

  151. A.M. Qazi, O. Gruzdyn, A. Semaan, S. Seward, S. Chamala, V. Dhulipala, S. Sethi, R. Ali-Fehmi, P.A. Philip, D.L. Bouwman, D.W. Weaver, S.A. Gruber, R.B. Batchu, Restoration of E-cadherin expression in pancreatic ductal adenocarcinoma treated with microRNA-101. Surgery 152, 704–711 (2012)

    Article  PubMed  Google Scholar 

  152. K.H. Lee, C. Lotterman, C. Karikari, N. Omura, G. Feldmann, N. Habbe, M.G. Goggins, J.T. Mendell, A. Maitra, Epigenetic silencing of MicroRNA miR-107 regulates cyclin-dependent kinase 6 expression in pancreatic cancer. Pancreatology 9, 293–301 (2009)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  153. P. Wang, L. Chen, J. Zhang, H. Chen, J. Fan, K. Wang, J. Luo, Z. Chen, Z. Meng, L. Liu, Methylation-mediated silencing of the miR-124 genes facilitates pancreatic cancer progression and metastasis by targeting Rac1. Oncogene 33, 514–524 (2014)

    Article  CAS  PubMed  Google Scholar 

  154. S. Hamada, K. Satoh, W. Fujibuchi, M. Hirota, A. Kanno, J. Unno, A. Masamune, K. Kikuta, K. Kume, T. Shimosegawa, MiR-126 acts as a tumor suppressor in pancreatic cancer cells via the regulation of ADAM9. Mol. Cancer Res. 10, 3–10 (2012)

    Article  CAS  PubMed  Google Scholar 

  155. G. Zhao, J.G. Zhang, Y. Shi, Q. Qin, Y. Liu, B. Wang, K. Tian, S.C. Deng, X. Li, S. Zhu, Q. Gong, Y. Niu, C.Y. Wang, MiR-130b is a prognostic marker and inhibits cell proliferation and invasion in pancreatic cancer through targeting STAT3. PLoS One 8, e73803 (2013)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  156. S. Zhang, J. Hao, F. Xie, X. Hu, C. Liu, J. Tong, J. Zhou, J. Wu, C. Shao, Downregulation of miR-132 by promoter methylation contributes to pancreatic cancer development. Carcinogenesis 32, 1183–1189 (2011)

    Article  CAS  PubMed  Google Scholar 

  157. Z. Dang, W.H. Xu, P. Lu, N. Wu, J. Liu, B. Ruan, L. Zhou, W.J. Song, K.F. Dou, MicroRNA-135a inhibits cell proliferation by targeting Bmi1 in pancreatic ductal adenocarcinoma. Int. J. Biol. Sci. 10, 733–745 (2014)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  158. C. Yu, M. Wang, M. Chen, Y. Huang, J. Jiang, Upregulation of microRNA1385p inhibits pancreatic cancer cell migration and increases chemotherapy sensitivity. Mol. Med. Rep. 12, 5135–5140 (2015)

    CAS  PubMed  Google Scholar 

  159. S. Liang, X. Gong, G. Zhang, G. Huang, Y. Lu, Y. Li, MicroRNA-140 regulates cell growth and invasion in pancreatic duct adenocarcinoma by targeting iASPP. Acta Biochim. Biophys. Sin. (Shanghai) 48, 174–181 (2016)

  160. T.N. MacKenzie, N. Mujumdar, S. Banerjee, V. Sangwan, A. Sarver, S. Vickers, S. Subramanian, A.K. Saluja, Triptolide induces the expression of miR-142-3p: a negative regulator of heat shock protein 70 and pancreatic cancer cell proliferation. Mol. Cancer Ther. 12, 1266–1275 (2013)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  161. Y. Hu, Y. Ou, K. Wu, Y. Chen, W. Sun, miR-143 inhibits the metastasis of pancreatic cancer and an associated signaling pathway. Tumour Biol. 33, 1863–1870 (2012)

    Article  CAS  PubMed  Google Scholar 

  162. H. Pham, C.E. Rodriguez, G.W. Donald, K.M. Hertzer, X.S. Jung, H.H. Chang, A. Moro, H.A. Reber, O.J. Hines, G. Eibl, miR-143 decreases COX-2 mRNA stability and expression in pancreatic cancer cells. Biochem. Biophys. Res. Commun. 439, 6–11 (2013)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  163. T. Han, X.P. Yi, B. Liu, M.J. Ke, Y.X. Li, MicroRNA-145 suppresses cell proliferation, invasion and migration in pancreatic cancer cells by targeting NEDD9. Mol. Med. Rep. 11, 4115–4120 (2015)

    CAS  PubMed  PubMed Central  Google Scholar 

  164. S. Khan, M.C. Ebeling, M.S. Zaman, M. Sikander, M.M. Yallapu, N. Chauhan, A.M. Yacoubian, S.W. Behrman, N. Zafar, D. Kumar, P.A. Thompson, M. Jaggi, S.C. Chauhan, MicroRNA-145 targets MUC13 and suppresses growth and invasion of pancreatic cancer. Oncotarget 5, 7599–7609 (2014)

    Article  PubMed  PubMed Central  Google Scholar 

  165. S. Ali, A. Ahmad, A. Aboukameel, A. Ahmed, B. Bao, S. Banerjee, P.A. Philip, F.H. Sarkar, Deregulation of miR-146a expression in a mouse model of pancreatic cancer affecting EGFR signaling. Cancer Lett. 351, 134–142 (2014)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  166. Y. Li, T.G. VandenBoom 2nd, Z. Wang, D. Kong, S. Ali, P.A. Philip, F.H. Sarkar, Up-regulation of miR-146a contributes to the inhibition of invasion of pancreatic cancer cells. Cancer Res. 70, 5703 (2010)

    Article  PubMed  PubMed Central  Google Scholar 

  167. F. Lin, X. Wang, Z. Jie, X. Hong, X. Li, M. Wang, Y. Yu, Inhibitory effects of miR-146b-5p on cell migration and invasion of pancreatic cancer by targeting MMP16. J. Huazhong Univ. Sci. Technolog. Med. Sci. 31, 509–514 (2011)

    Article  CAS  PubMed  Google Scholar 

  168. M. Azizi, L. Teimoori-Toolabi, M.K. Arzanani, K. Azadmanesh, P. Fard-Esfahani, S. Zeinali, MicroRNA-148b and microRNA-152 reactivate tumor suppressor genes through suppression of DNA methyltransferase-1 gene in pancreatic cancer cell lines. Cancer Biol. Ther. 15, 419–427 (2014)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  169. X. Bofill-De Ros, M. Gironella, C. Fillat, miR-148a- and miR-216a-regulated oncolytic adenoviruses targeting pancreatic tumors attenuate tissue damage without perturbation of miRNA activity. Mol. Ther. 22, 1665–1677 (2014)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  170. S.T. Liffers, J.B. Munding, M. Vogt, J.D. Kuhlmann, B. Verdoodt, S. Nambiar, A. Maghnouj, A. Mirmohammadsadegh, S.A. Hahn, A. Tannapfel, MicroRNA-148a is down-regulated in human pancreatic ductal adenocarcinomas and regulates cell survival by targeting CDC25B. Lab. Invest. 91, 1472–1479 (2011)

    Article  CAS  PubMed  Google Scholar 

  171. G. Zhao, J.G. Zhang, Y. Liu, Q. Qin, B. Wang, K. Tian, L. Liu, X. Li, Y. Niu, S.C. Deng, C.Y. Wang, miR-148b functions as a tumor suppressor in pancreatic cancer by targeting AMPKalpha1. Mol. Cancer. Ther. 12, 83–93 (2013)

    Article  CAS  PubMed  Google Scholar 

  172. L. Farhana, M.I. Dawson, F. Murshed, J.K. Das, A.K. Rishi, J.A. Fontana, Upregulation of miR-150* and miR-630 induces apoptosis in pancreatic cancer cells by targeting IGF-1R. PLoS One 8, e61015 (2013)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  173. Y. Sun, X.L. Jin, T.T. Zhang, C.W. Jia, J. Chen, MiR-150-5p inhibits the proliferation and promoted apoptosis of pancreatic cancer cells. Zhonghua Bing Li Xue Za Zhi 42, 460–464 (2013)

    CAS  PubMed  Google Scholar 

  174. L. Zhou, W.G. Zhang, D.S. Wang, K.S. Tao, W.J. Song, K.F. Dou, MicroRNA-183 is involved in cell proliferation, survival and poor prognosis in pancreatic ductal adenocarcinoma by regulating Bmi-1. Oncol. Rep. 32, 1734–1740 (2014)

    CAS  PubMed  Google Scholar 

  175. H. Liu, X.F. Xu, Y. Zhao, M.C. Tang, Y.Q. Zhou, J. Lu, F.H. Gao, MicroRNA-191 promotes pancreatic cancer progression by targeting USP10. Tumour Biol. 35, 12157–12163 (2014)

    Article  CAS  PubMed  Google Scholar 

  176. J. Li, F. Kong, K. Wu, K. Song, J. He, W. Sun, miR-193b directly targets STMN1 and uPA genes and suppresses tumor growth and metastasis in pancreatic cancer. Mol. Med. Rep. 10, 2613–2620 (2014)

    CAS  PubMed  Google Scholar 

  177. C. Marin-Muller, D. Li, U. Bharadwaj, M. Li, C. Chen, S.E. Hodges, W.E. Fisher, Q. Mo, M.C. Hung, Q. Yao, A tumorigenic factor interactome connected through tumor suppressor microRNA-198 in human pancreatic cancer. Clin. Cancer Res. 19, 5901–5913 (2013)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  178. P. Radhakrishnan, A.M. Mohr, P.M. Grandgenett, M.M. Steele, S.K. Batra, M.A. Hollingsworth, MicroRNA-200c modulates the expression of MUC4 and MUC16 by directly targeting their coding sequences in human pancreatic cancer. PLoS One 8, e73356 (2013)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  179. J. Yu, K. Ohuchida, K. Mizumoto, N. Sato, T. Kayashima, H. Fujita, K. Nakata, M. Tanaka, MicroRNA, hsa-miR-200c, is an independent prognostic factor in pancreatic cancer and its upregulation inhibits pancreatic cancer invasion but increases cell proliferation. Mol. Cancer. 9, 169 (2010). doi:10.1186/1476-4598-9-169

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  180. O. Soubani, A.S. Ali, F. Logna, S. Ali, P.A. Philip, F.H. Sarkar, Re-expression of miR-200 by novel approaches regulates the expression of PTEN and MT1-MMP in pancreatic cancer. Carcinogenesis 33, 1563–1571 (2012)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  181. L. Miao, X. Xiong, Y. Lin, Y. Cheng, J. Lu, J. Zhang, N. Cheng, miR-203 inhibits tumor cell migration and invasion via caveolin-1 in pancreatic cancer cells. Oncol. Lett. 7, 658–662 (2014)

    CAS  PubMed  PubMed Central  Google Scholar 

  182. D. Xu, Q. Wang, Y. An, L. Xu, MiR203 regulates the proliferation, apoptosis and cell cycle progression of pancreatic cancer cells by targeting survivin. Mol. Med. Rep. 8, 379–384 (2013)

    PubMed  Google Scholar 

  183. N. Ikenaga, K. Ohuchida, K. Mizumoto, J. Yu, T. Kayashima, H. Sakai, H. Fujita, K. Nakata, M. Tanaka, MicroRNA-203 expression as a new prognostic marker of pancreatic adenocarcinoma. Ann. Surg. Oncol. 17, 3120–3128 (2010)

    Article  PubMed  Google Scholar 

  184. A. Mittal, D. Chitkara, S.W. Behrman, R.I. Mahato, Efficacy of gemcitabine conjugated and miRNA-205 complexed micelles for treatment of advanced pancreatic cancer. Biomaterials 35, 7077–7087 (2014)

    Article  CAS  PubMed  Google Scholar 

  185. C. Stahlhut, Y. Suarez, J. Lu, Y. Mishima, A.J. Giraldez, miR-1 and miR-206 regulate angiogenesis by modulating VegfA expression in zebrafish. Development 139, 4356–4364 (2012)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  186. I. Keklikoglou, K. Hosaka, C. Bender, A. Bott, C. Koerner, D. Mitra, R. Will, A. Woerner, E. Muenstermann, H. Wilhelm, Y. Cao, S. Wiemann, MicroRNA-206 functions as a pleiotropic modulator of cell proliferation, invasion and lymphangiogenesis in pancreatic adenocarcinoma by targeting ANXA2 and KRAS genes. Oncogene 34, 4867–4878 (2015)

    Article  CAS  PubMed  Google Scholar 

  187. M. Maftouh, A. Avan, N. Funel, A.E. Frampton, H. Fiuji, S. Pelliccioni, L. Castellano, V. Galla, G.J. Peters, E. Giovannetti, miR-211 modulates gemcitabine activity through downregulation of ribonucleotide reductase and inhibits the invasive behavior of pancreatic cancer cells. Nucleosides Nucleotides Nucleic Acids 33, 384–393 (2014)

    Article  CAS  PubMed  Google Scholar 

  188. S. Wang, X. Chen, M. Tang, MicroRNA-216a inhibits pancreatic cancer by directly targeting Janus kinase 2. Oncol. Rep. 32, 2824–2830 (2014)

    CAS  PubMed  Google Scholar 

  189. X. Zhang, H. Shi, S. Lin, M. Ba, S. Cui, MicroRNA-216a enhances the radiosensitivity of pancreatic cancer cells by inhibiting beclin-1-mediated autophagy. Oncol. Rep. 34, 1557–1564 (2015)

    PubMed  Google Scholar 

  190. H. He, S.J. Hao, L. Yao, F. Yang, Y. Di, J. Li, Y.J. Jiang, C. Jin, D.L. Fu, MicroRNA-218 inhibits cell invasion and migration of pancreatic cancer via regulating ROBO1. Cancer Biol. Ther. 15, 1333–1339 (2014)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  191. C.H. Li, K.F. To, J.H. Tong, Z. Xiao, T. Xia, P.B. Lai, S.C. Chow, Y.X. Zhu, S.L. Chan, V.E. Marquez, Y. Chen, Enhancer of zeste homolog 2 silences microRNA-218 in human pancreatic ductal adenocarcinoma cells by inducing formation of heterochromatin. Gastroenterology 144, 1086–1097.e9 (2013)

    Article  CAS  PubMed  Google Scholar 

  192. Z.L. Zhang, Z.H. Bai, X.B. Wang, L. Bai, F. Miao, H.H. Pei, miR-186 and 326 predict the prognosis of pancreatic ductal adenocarcinoma and affect the proliferation and migration of cancer cells. PLoS One 10, e0118814 (2015)

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  193. L. Gao, Y. Yang, H. Xu, R. Liu, D. Li, H. Hong, M. Qin, Y. Wang, MiR-335 functions as a tumor suppressor in pancreatic cancer by targeting OCT4. Tumour Biol. 35, 8309–8318 (2014)

    Article  CAS  PubMed  Google Scholar 

  194. R. Guo, J. Gu, Z. Zhang, Y. Wang, C. Gu, MicroRNA-410 functions as a tumor suppressor by targeting angiotensin II type 1 receptor in pancreatic cancer. IUBMB Life 67, 42–53 (2015)

    Article  CAS  PubMed  Google Scholar 

  195. R. Guo, Y. Wang, W.Y. Shi, B. Liu, S.Q. Hou, L. Liu, MicroRNA miR-491-5p targeting both TP53 and Bcl-XL induces cell apoptosis in SW1990 pancreatic cancer cells through mitochondria mediated pathway. Molecules 17, 14733–14747 (2012)

    Article  CAS  PubMed  Google Scholar 

  196. Y. Liu, X. Li, S. Zhu, J.G. Zhang, M. Yang, Q. Qin, S.C. Deng, B. Wang, K. Tian, L. Liu, Y. Niu, C.Y. Wang, G. Zhao, Ectopic expression of miR-494 inhibited the proliferation, invasion and chemoresistance of pancreatic cancer by regulating SIRT1 and c-Myc. Gene Ther. 22, 729–738 (2015)

    Article  CAS  PubMed  Google Scholar 

  197. L. Li, Z. Li, X. Kong, D. Xie, Z. Jia, W. Jiang, J. Cui, Y. Du, D. Wei, S. Huang, K. Xie, Down-regulation of MicroRNA 494 via loss of SMAD4 increases FOXM1 and beta-catenin signaling in pancreatic ductal adenocarcinoma cells. Gastroenterology 147, 485–497 (2014)

  198. J.W. Xu, T.X. Wang, L. You, L.F. Zheng, H. Shu, T.P. Zhang, Y.P. Zhao, Insulin-like growth factor 1 receptor (IGF-1R) as a target of MiR-497 and plasma IGF-1R levels associated with TNM stage of pancreatic cancer. PLoS One 9, e92847 (2014)

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  199. J. Xu, T. Wang, Z. Cao, H. Huang, J. Li, W. Liu, S. Liu, L. You, L. Zhou, T. Zhang, Y. Zhao, MiR-497 downregulation contributes to the malignancy of pancreatic cancer and associates with a poor prognosis. Oncotarget 5, 6983–6993 (2014)

    Article  PubMed  PubMed Central  Google Scholar 

  200. J. Du, X. Zheng, S. Cai, Z. Zhu, J. Tan, B. Hu, Z. Huang, H. Jiao, MicroRNA506 participates in pancreatic cancer pathogenesis by targeting PIM3. Mol. Med. Rep. 12, 5121–5126 (2015)

    CAS  PubMed  Google Scholar 

  201. B. Song, W. Ji, S. Guo, A. Liu, W. Jing, C. Shao, G. Li, G. Jin, miR-545 inhibited pancreatic ductal adenocarcinoma growth by targeting RIG-I. FEBS Lett. 588, 4375–4381 (2014)

    Article  CAS  PubMed  Google Scholar 

  202. H. Heyn, S. Schreek, R. Buurman, T. Focken, B. Schlegelberger, C. Beger, MicroRNA miR-548d is a superior regulator in pancreatic cancer. Pancreas 41, 218–221 (2012)

    Article  CAS  PubMed  Google Scholar 

  203. Y. Sun, T. Zhang, C. Wang, X. Jin, C. Jia, S. Yu, J. Chen, MiRNA-615-5p Functions as a Tumor Suppressor in Pancreatic Ductal Adenocarcinoma by Targeting AKT2. PLoS One 10, e0119783 (2015)

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  204. Y. Harazono, T. Muramatsu, H. Endo, N. Uzawa, T. Kawano, K. Harada, J. Inazawa, K. Kozaki, miR-655 Is an EMT-suppressive microRNA targeting ZEB1 and TGFBR2. PLoS One 8, e62757 (2013)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  205. S. Muller, S. Raulefs, P. Bruns, F. Afonso-Grunz, A. Plotner, R. Thermann, C. Jager, A.M. Schlitter, B. Kong, I. Regel, W.K. Roth, B. Rotter, K. Hoffmeier, G. Kahl, I. Koch, F.J. Theis, J. Kleeff, P. Winter, C.W. Michalski, Next-generation sequencing reveals novel differentially regulated mRNAs, lncRNAs, miRNAs, sdRNAs and a piRNA in pancreatic cancer. Mol. Cancer. 14, 94 (2015). doi:10.1186/s12943-015-0358-5

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  206. J. Jiang, Z. Li, C. Yu, M. Chen, S. Tian, C. Sun, MiR-1181 inhibits stem cell-like phenotypes and suppresses SOX2 and STAT3 in human pancreatic cancer. Cancer Lett. 356, 962–970 (2015)

    Article  CAS  PubMed  Google Scholar 

  207. S. Shi, Y. Lu, Y. Qin, W. Li, H. Cheng, Y. Xu, J. Xu, J. Long, L. Liu, C. Liu, X. Yu, miR-1247 is correlated with prognosis of pancreatic cancer and inhibits cell proliferation by targeting neuropilins. Curr. Mol. Med. 14, 316–327 (2014)

    Article  CAS  PubMed  Google Scholar 

  208. K. Ohuchida, K. Mizumoto, C. Lin, H. Yamaguchi, T. Ohtsuka, N. Sato, H. Toma, M. Nakamura, E. Nagai, M. Hashizume, M. Tanaka, MicroRNA-10a is overexpressed in human pancreatic cancer and involved in its invasiveness partially via suppression of the HOXA1 gene. Ann. Surg. Oncol. 19, 2394–2402 (2012)

    Article  PubMed  Google Scholar 

  209. F.U. Weiss, I.J. Marques, J.M. Woltering, D.H. Vlecken, A. Aghdassi, L.I. Partecke, C.D. Heidecke, M.M. Lerch, C.P. Bagowski, Retinoic acid receptor antagonists inhibit miR-10a expression and block metastatic behavior of pancreatic cancer. Gastroenterology 137, 2136–45.e1-7 (2009)

    Article  CAS  PubMed  Google Scholar 

  210. H. Ouyang, J. Gore, S. Deitz, M. Korc, microRNA-10b enhances pancreatic cancer cell invasion by suppressing TIP30 expression and promoting EGF and TGF-beta actions. Oncogene 33, 4664–4674 (2014)

    Article  CAS  PubMed  Google Scholar 

  211. K. Nakata, K. Ohuchida, K. Mizumoto, T. Kayashima, N. Ikenaga, H. Sakai, C. Lin, H. Fujita, T. Otsuka, S. Aishima, E. Nagai, Y. Oda, M. Tanaka, MicroRNA-10b is overexpressed in pancreatic cancer, promotes its invasiveness, and correlates with a poor prognosis. Surgery 150, 916–922 (2011)

    Article  PubMed  Google Scholar 

  212. J. Yu, K. Ohuchida, K. Mizumoto, H. Fujita, K. Nakata, M. Tanaka, MicroRNA miR-17-5p is overexpressed in pancreatic cancer, associated with a poor prognosis, and involved in cancer cell proliferation and invasion. Cancer Biol. Ther. 10, 748–757 (2010)

    Article  CAS  PubMed  Google Scholar 

  213. H.J. Yan, W.S. Liu, W.H. Sun, J. Wu, M. Ji, Q. Wang, X. Zheng, J.T. Jiang, C.P. Wu, miR-17-5p inhibitor enhances chemosensitivity to gemcitabine via upregulating Bim expression in pancreatic cancer cells. Dig. Dis. Sci. 57, 3160–3167 (2012)

    Article  CAS  PubMed  Google Scholar 

  214. Y. Nagao, M. Hisaoka, A. Matsuyama, S. Kanemitsu, T. Hamada, T. Fukuyama, R. Nakano, A. Uchiyama, M. Kawamoto, K. Yamaguchi, H. Hashimoto, Association of microRNA-21 expression with its targets, PDCD4 and TIMP3, in pancreatic ductal adenocarcinoma. Mod. Pathol. 25, 112–121 (2012)

    Article  CAS  PubMed  Google Scholar 

  215. J. Dong, Y.P. Zhao, L. Zhou, T.P. Zhang, G. Chen, Bcl-2 upregulation induced by miR-21 via a direct interaction is associated with apoptosis and chemoresistance in MIA PaCa-2 pancreatic cancer cells. Arch. Med. Res. 42, 8–14 (2011)

    Article  CAS  PubMed  Google Scholar 

  216. T. Moriyama, K. Ohuchida, K. Mizumoto, J. Yu, N. Sato, T. Nabae, S. Takahata, H. Toma, E. Nagai, M. Tanaka, MicroRNA-21 modulates biological functions of pancreatic cancer cells including their proliferation, invasion, and chemoresistance. Mol. Cancer Ther. 8, 1067–1074 (2009)

    Article  CAS  PubMed  Google Scholar 

  217. Y. Ma, S. Yu, W. Zhao, Z. Lu, J. Chen, miR-27a regulates the growth, colony formation and migration of pancreatic cancer cells by targeting Sprouty2. Cancer Lett. 298, 150–158 (2010)

    Article  CAS  PubMed  Google Scholar 

  218. G. He, L. Zhang, Q. Li, L. Yang, miR-92a/DUSP10/JNK signalling axis promotes human pancreatic cancer cells proliferation. Biomed. Pharmacother. 68, 25–30 (2014)

    Article  CAS  PubMed  Google Scholar 

  219. W.G. Li, Y.Z. Yuan, M.M. Qiao, Y.P. Zhang, High dose glargine alters the expression profiles of microRNAs in pancreatic cancer cells. World J. Gastroenterol. 18, 2630–2639 (2012)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  220. P. Li, Q. Xu, D. Zhang, X. Li, L. Han, J. Lei, W. Duan, Q. Ma, Z. Wu, Z. Wang, Upregulated miR-106a plays an oncogenic role in pancreatic cancer. FEBS Lett. 588, 705–712 (2014)

    Article  CAS  PubMed  Google Scholar 

  221. Z. Bai, J. Sun, X. Wang, H. Wang, H. Pei, Z. Zhang, MicroRNA-153 is a prognostic marker and inhibits cell migration and invasion by targeting SNAI1 in human pancreatic ductal adenocarcinoma. Oncol. Rep. 34, 595–602 (2015)

    PubMed  PubMed Central  Google Scholar 

  222. D. Takiuchi, H. Eguchi, H. Nagano, Y. Iwagami, Y. Tomimaru, H. Wada, K. Kawamoto, S. Kobayashi, S. Marubashi, M. Tanemura, M. Mori, Y. Doki, Involvement of microRNA-181b in the gemcitabine resistance of pancreatic cancer cells. Pancreatology 13, 517–523 (2013)

    Article  CAS  PubMed  Google Scholar 

  223. Z. Song, H. Ren, S. Gao, X. Zhao, H. Zhang, J. Hao, The clinical significance and regulation mechanism of hypoxia-inducible factor-1 and miR-191 expression in pancreatic cancer. Tumour Biol. 35, 11319–11328 (2014)

    Article  CAS  PubMed  Google Scholar 

  224. C. Zhao, J. Zhang, S. Zhang, D. Yu, Y. Chen, Q. Liu, M. Shi, C. Ni, M. Zhu, Diagnostic and biological significance of microRNA-192 in pancreatic ductal adenocarcinoma. Oncol. Rep. 30, 276–284 (2013)

    CAS  PubMed  Google Scholar 

  225. J. Zhang, C.Y. Zhao, S.H. Zhang, D.H. Yu, Y. Chen, Q.H. Liu, M. Shi, C.R. Ni, M.H. Zhu, Upregulation of miR-194 contributes to tumor growth and progression in pancreatic ductal adenocarcinoma. Oncol. Rep. 31, 1157–1164 (2014)

    CAS  PubMed  Google Scholar 

  226. M. Liu, Y. Du, J. Gao, J. Liu, X. Kong, Y. Gong, Z. Li, H. Wu, H. Chen, Aberrant expression miR-196a is associated with abnormal apoptosis, invasion, and proliferation of pancreatic cancer cells. Pancreas 42, 1169–1181 (2013)

    Article  PubMed  CAS  Google Scholar 

  227. F. Huang, J. Tang, X. Zhuang, Y. Zhuang, W. Cheng, W. Chen, H. Yao, S. Zhang, MiR-196a promotes pancreatic cancer progression by targeting nuclear factor kappa-B-inhibitor alpha. PLoS One 9, e87897 (2014)

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  228. S. Hamada, K. Satoh, S. Miura, M. Hirota, A. Kanno, A. Masamune, K. Kikuta, K. Kume, J. Unno, S. Egawa, F. Motoi, M. Unno, T. Shimosegawa, miR-197 induces epithelial-mesenchymal transition in pancreatic cancer cells by targeting p120 catenin. J. Cell. Physiol. 228, 1255–1263 (2013)

    Article  CAS  PubMed  Google Scholar 

  229. A. Liu, C. Shao, G. Jin, R. Liu, J. Hao, B. Song, L. Ouyang, X. Hu, miR-208-induced epithelial to mesenchymal transition of pancreatic cancer cells promotes cell metastasis and invasion. Cell Biochem. Biophys. 69, 341–346 (2014)

    Article  CAS  PubMed  Google Scholar 

  230. J. Jung, C. Yeom, Y.S. Choi, S. Kim, E. Lee, M.J. Park, S.W. Kang, S.B. Kim, S. Chang, Simultaneous inhibition of multiple oncogenic miRNAs by a multi-potent microRNA sponge. Oncotarget 6, 20370–20387 (2015)

    Article  PubMed  PubMed Central  Google Scholar 

  231. J. Ma, B. Fang, F. Zeng, C. Ma, H. Pang, L. Cheng, Y. Shi, H. Wang, B. Yin, J. Xia, Z. Wang, Down-regulation of miR-223 reverses epithelial-mesenchymal transition in gemcitabine-resistant pancreatic cancer cells. Oncotarget 6, 1740–1749 (2015)

    Article  PubMed  PubMed Central  Google Scholar 

  232. J. Ma, L. Cheng, H. Liu, J. Zhang, Y. Shi, F. Zeng, L. Miele, F.H. Sarkar, J. Xia, Z. Wang, Genistein down-regulates miR-223 expression in pancreatic cancer cells. Curr. Drug Targets 14, 1150–1156 (2013)

    Article  CAS  PubMed  Google Scholar 

  233. Z. Chen, L.Y. Chen, H.Y. Dai, P. Wang, S. Gao, K. Wang, miR-301a promotes pancreatic cancer cell proliferation by directly inhibiting Bim expression. J. Cell. Biochem. 113, 3229–3235 (2012)

    Article  CAS  PubMed  Google Scholar 

  234. Z. Lu, Y. Li, A. Takwi, B. Li, J. Zhang, D.J. Conklin, K.H. Young, R. Martin, Y. Li, miR-301a as an NF-kappaB activator in pancreatic cancer cells. EMBO J. 30, 57–67 (2011)

    Article  CAS  PubMed  Google Scholar 

  235. N. Funamizu, C.R. Lacy, S.T. Parpart, A. Takai, Y. Hiyoshi, K. Yanaga, MicroRNA-301b promotes cell invasiveness through targeting TP63 in pancreatic carcinoma cells. Int. J. Oncol. 44, 725–734 (2014)

    CAS  PubMed  Google Scholar 

  236. S. Hamada, A. Masamune, S. Miura, K. Satoh, T. Shimosegawa, MiR-365 induces gemcitabine resistance in pancreatic cancer cells by targeting the adaptor protein SHC1 and pro-apoptotic regulator BAX. Cell. Signal. 26, 179–185 (2014)

    Article  CAS  PubMed  Google Scholar 

  237. D. He, H. Miao, Y. Xu, L. Xiong, Y. Wang, H. Xiang, H. Zhang, Z. Zhang, MiR-371-5p facilitates pancreatic cancer cell proliferation and decreases patient survival. PLoS One 9, e112930 (2014)

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  238. K. Wu, G. Hu, X. He, P. Zhou, J. Li, B. He, W. Sun, MicroRNA-424-5p suppresses the expression of SOCS6 in pancreatic cancer. Pathol. Oncol. Res. 19, 739–748 (2013)

    Article  CAS  PubMed  Google Scholar 

  239. S. Hasegawa, H. Eguchi, H. Nagano, M. Konno, Y. Tomimaru, H. Wada, N. Hama, K. Kawamoto, S. Kobayashi, N. Nishida, J. Koseki, T. Nishimura, N. Gotoh, S. Ohno, N. Yabuta, H. Nojima, M. Mori, Y. Doki, H. Ishii, MicroRNA-1246 expression associated with CCNG2-mediated chemoresistance and stemness in pancreatic cancer. Br. J. Cancer 111, 1572–1580 (2014)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  240. Y. Wang, Z. Li, S. Zheng, Y. Zhou, L. Zhao, H. Ye, X. Zhao, W. Gao, Z. Fu, Q. Zhou, Y. Liu, R. Chen, Expression profile of long non-coding RNAs in pancreatic cancer and their clinical significance as biomarkers. Oncotarget 6, 35684–35698 (2015)

    PubMed  PubMed Central  Google Scholar 

  241. Q. Wang, H. Jiang, C. Ping, R. Shen, T. Liu, J. Li, Y. Qian, Y. Tang, S. Cheng, W. Yao, L. Wang, Exploring the Wnt pathway-associated LncRNAs and genes involved in pancreatic carcinogenesis driven by Tp53 mutation. Pharm. Res. 32, 793–805 (2015)

    Article  CAS  PubMed  Google Scholar 

  242. A.C. Tahira, M.S. Kubrusly, M.F. Faria, B. Dazzani, R.S. Fonseca, V. Maracaja-Coutinho, S. Verjovski-Almeida, M.C. Machado, E.M. Reis, Long noncoding intronic RNAs are differentially expressed in primary and metastatic pancreatic cancer. Mol. Cancer. 10, 141 (2011). doi:10.1186/1476-4598-10-141

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  243. S. Cao, W. Liu, F. Li, W. Zhao, C. Qin, Decreased expression of lncRNA GAS5 predicts a poor prognosis in cervical cancer. Int. J. Clin. Exp. Pathol. 7, 6776–6783 (2014)

    CAS  PubMed  PubMed Central  Google Scholar 

  244. M. Mourtada-Maarabouni, M.R. Pickard, V.L. Hedge, F. Farzaneh, G.T. Williams, GAS5, a non-protein-coding RNA, controls apoptosis and is downregulated in breast cancer. Oncogene 28, 195–208 (2009)

    Article  CAS  PubMed  Google Scholar 

  245. Y. Nakamura, N. Takahashi, E. Kakegawa, K. Yoshida, Y. Ito, H. Kayano, N. Niitsu, I. Jinnai, M. Bessho, The GAS5 (growth arrest-specific transcript 5) gene fuses to BCL6 as a result of t(1;3)(q25;q27) in a patient with B-cell lymphoma. Cancer Genet. Cytogenet. 182, 144–149 (2008)

    Article  CAS  PubMed  Google Scholar 

  246. K. Yacqub-Usman, M.R. Pickard, G.T. Williams, Reciprocal regulation of GAS5 lncRNA levels and mTOR inhibitor action in prostate cancer cells. Prostate 75, 693–705 (2015)

    Article  CAS  PubMed  Google Scholar 

  247. X. Lu, Y. Fang, Z. Wang, J. Xie, Q. Zhan, X. Deng, H. Chen, J. Jin, C. Peng, H. Li, B. Shen, Downregulation of gas5 increases pancreatic cancer cell proliferation by regulating CDK6. Cell Tissue Res. 354, 891–896 (2013)

    Article  CAS  PubMed  Google Scholar 

  248. P. Ji, S. Diederichs, W. Wang, S. Boing, R. Metzger, P.M. Schneider, N. Tidow, B. Brandt, H. Buerger, E. Bulk, M. Thomas, W.E. Berdel, H. Serve, C. Muller-Tidow, MALAT-1, a novel noncoding RNA, and thymosin beta4 predict metastasis and survival in early-stage non-small cell lung cancer. Oncogene 22, 8031–8041 (2003)

    Article  PubMed  CAS  Google Scholar 

  249. E.J. Pang, R. Yang, X.B. Fu, Y.F. Liu, Overexpression of long non-coding RNA MALAT1 is correlated with clinical progression and unfavorable prognosis in pancreatic cancer. Tumour Biol. 36, 2403–2407 (2015)

  250. F. Jiao, H. Hu, C. Yuan, L. Wang, W. Jiang, Z. Jin, Z. Guo, L. Wang, Elevated expression level of long noncoding RNA MALAT-1 facilitates cell growth, migration and invasion in pancreatic cancer. Oncol. Rep. 32, 2485–2492 (2014)

    CAS  PubMed  Google Scholar 

  251. F. Jiao, H. Hu, T. Han, C. Yuan, L. Wang, Z. Jin, Z. Guo, L. Wang, Long noncoding RNA MALAT-1 enhances stem cell-like phenotypes in pancreatic cancer cells. Int. J. Mol. Sci. 16, 6677–6693 (2015)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  252. K. Panzitt, M.M. Tschernatsch, C. Guelly, T. Moustafa, M. Stradner, H.M. Strohmaier, C.R. Buck, H. Denk, R. Schroeder, M. Trauner, K. Zatloukal, Characterization of HULC, a novel gene with striking up-regulation in hepatocellular carcinoma, as noncoding RNA. Gastroenterology 132, 330–342 (2007)

    Article  CAS  PubMed  Google Scholar 

  253. W. Peng, W. Gao, J. Feng, Long noncoding RNA HULC is a novel biomarker of poor prognosis in patients with pancreatic cancer. Med. Oncol. 31, 346 (2014). doi:10.1007/s12032-014-0346-4

    Article  PubMed  CAS  Google Scholar 

  254. M. Hajjari, A. Salavaty, HOTAIR: an oncogenic long non-coding RNA in different cancers. Cancer. Biol. Med. 12, 1–9 (2015)

    PubMed  PubMed Central  Google Scholar 

  255. J.K. Stratford, D.J. Bentrem, J.M. Anderson, C. Fan, K.A. Volmar, J.S. Marron, E.D. Routh, L.S. Caskey, J.C. Samuel, C.J. Der, L.B. Thorne, B.F. Calvo, H.J. Kim, M.S. Talamonti, C.A. Iacobuzio-Donahue, M.A. Hollingsworth, C.M. Perou, J.J. Yeh, A six-gene signature predicts survival of patients with localized pancreatic ductal adenocarcinoma. PLoS Med. 7, e1000307 (2010)

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  256. M.C. Tsai, O. Manor, Y. Wan, N. Mosammaparast, J.K. Wang, F. Lan, Y. Shi, E. Segal, H.Y. Chang, Long noncoding RNA as modular scaffold of histone modification complexes. Science 329, 689–693 (2010)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  257. R.A. Gupta, N. Shah, K.C. Wang, J. Kim, H.M. Horlings, D.J. Wong, M.C. Tsai, T. Hung, P. Argani, J.L. Rinn, Y. Wang, P. Brzoska, B. Kong, R. Li, R.B. West, M.J. van de Vijver, S. Sukumar, H.Y. Chang, Long non-coding RNA HOTAIR reprograms chromatin state to promote cancer metastasis. Nature 464, 1071–1076 (2010)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  258. Y. Jiang, Z. Li, S. Zheng, H. Chen, X. Zhao, W. Gao, Z. Bi, K. You, Y. Wang, W. Li, L. Li, Y. Liu, R. Chen, The long non-coding RNA HOTAIR affects the radiosensitivity of pancreatic ductal adenocarcinoma by regulating the expression of Wnt inhibitory factor 1. Tumour Biol. (2015). doi:10.1007/s13277-015-4234-0

  259. A.E. Teschendorff, S.H. Lee, A. Jones, H. Fiegl, M. Kalwa, W. Wagner, K. Chindera, I. Evans, L. Dubeau, A. Orjalo, H.M. Horlings, L. Niederreiter, A. Kaser, W. Yang, E.L. Goode, B.L. Fridley, R.G. Jenner, E.M. Berns, E. Wik, H.B. Salvesen, G.B. Wisman, A.G. van der Zee, B. Davidson, C.G. Trope, S. Lambrechts, I. Vergote, H. Calvert, I.J. Jacobs, M. Widschwendter, HOTAIR and its surrogate DNA methylation signature indicate carboplatin resistance in ovarian cancer. Genome Med. 7, 108 (2015). doi:10.1186/s13073-015-0233-4

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  260. K.C. Wang, Y.W. Yang, B. Liu, A. Sanyal, R. Corces-Zimmerman, Y. Chen, B.R. Lajoie, A. Protacio, R.A. Flynn, R.A. Gupta, J. Wysocka, M. Lei, J. Dekker, J.A. Helms, H.Y. Chang, A long noncoding RNA maintains active chromatin to coordinate homeotic gene expression. Nature 472, 120–124 (2011)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  261. J.J. Song, R.E. Kingston, WDR5 interacts with mixed lineage leukemia (MLL) protein via the histone H3-binding pocket. J. Biol. Chem. 283, 35258–35264 (2008)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  262. L. Quagliata, M.S. Matter, S. Piscuoglio, L. Arabi, C. Ruiz, A. Procino, M. Kovac, F. Moretti, Z. Makowska, T. Boldanova, J.B. Andersen, M. Hammerle, L. Tornillo, M.H. Heim, S. Diederichs, C. Cillo, L.M. Terracciano, Long noncoding RNA HOTTIP/HOXA13 expression is associated with disease progression and predicts outcome in hepatocellular carcinoma patients. Hepatology 59, 911–923 (2014)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  263. Z. Li, X. Zhao, Y. Zhou, Y. Liu, Q. Zhou, H. Ye, Y. Wang, J. Zeng, Y. Song, W. Gao, S. Zheng, B. Zhuang, H. Chen, W. Li, H. Li, H. Li, Z. Fu, R. Chen, The long non-coding RNA HOTTIP promotes progression and gemcitabine resistance by regulating HOXA13 in pancreatic cancer. J. Transl. Med. 13, 84 (2015). doi:10.1186/s12967-015-0442-z

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  264. Y. Cheng, I. Jutooru, G. Chadalapaka, J.C. Corton, S. Safe, The long non-coding RNA HOTTIP enhances pancreatic cancer cell proliferation, survival and migration. Oncotarget 6, 10840–10852 (2015)

  265. Y.W. Sun, Y.F. Chen, J. Li, Y.M. Huo, D.J. Liu, R. Hua, J.F. Zhang, W. Liu, J.Y. Yang, X.L. Fu, T. Yan, J. Hong, H. Cao, A novel long non-coding RNA ENST00000480739 suppresses tumour cell invasion by regulating OS-9 and HIF-1alpha in pancreatic ductal adenocarcinoma. Br. J. Cancer 111, 2131–2141 (2014)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  266. S. Zheng, H. Chen, Y. Wang, W. Gao, Z. Fu, Q. Zhou, Y. Jiang, Q. Lin, L. Tan, H. Ye, X. Zhao, Y. Luo, G. Li, L. Ye, Y. Liu, W. Li, Z. Li, R. Chen, Long non-coding RNA LOC389641 promotes progression of pancreatic ductal adenocarcinoma and increases cell invasion by regulating E-cadherin in a TNFRSF10A-related manner. Cancer Lett. 37, 354–365 (2016)

  267. A. Ashkenazi, R.C. Pai, S. Fong, S. Leung, D.A. Lawrence, S.A. Marsters, C. Blackie, L. Chang, A.E. McMurtrey, A. Hebert, L. DeForge, I.L. Koumenis, D. Lewis, L. Harris, J. Bussiere, H. Koeppen, Z. Shahrokh, R.H. Schwall, Safety and antitumor activity of recombinant soluble Apo2 ligand. J. Clin. Invest. 104, 155–162 (1999)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  268. I. Ariel, S. Ayesh, E.J. Perlman, G. Pizov, V. Tanos, T. Schneider, V.A. Erdmann, D. Podeh, D. Komitowski, A.S. Quasem, N. de Groot, A. Hochberg, The product of the imprinted H19 gene is an oncofetal RNA. Mol. Pathol. 50, 34–44 (1997)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  269. T. Arima, T. Matsuda, N. Takagi, N. Wake, Association of IGF2 and H19 imprinting with choriocarcinoma development. Cancer Genet. Cytogenet. 93, 39–47 (1997)

    Article  CAS  PubMed  Google Scholar 

  270. G. Banet, O. Bibi, I. Matouk, S. Ayesh, M. Laster, K.M. Kimber, M. Tykocinski, N. de Groot, A. Hochberg, P. Ohana, Characterization of human and mouse H19 regulatory sequences. Mol. Biol. Rep. 27, 157–165 (2000)

    Article  CAS  PubMed  Google Scholar 

  271. I.J. Matouk, N. DeGroot, S. Mezan, S. Ayesh, R. Abu-lail, A. Hochberg, E. Galun, The H19 non-coding RNA is essential for human tumor growth. PLoS One 2, e845 (2007)

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  272. C. Ma, K. Nong, H. Zhu, W. Wang, X. Huang, Z. Yuan, K. Ai, H19 promotes pancreatic cancer metastasis by derepressing let-7’s suppression on its target HMGA2-mediated EMT. Tumour Biol. 35, 9163–9169 (2014)

    Article  CAS  PubMed  Google Scholar 

  273. D. Amit, A. Hochberg, Development of targeted therapy for a broad spectrum of cancers (pancreatic cancer, ovarian cancer, glioblastoma and HCC) mediated by a double promoter plasmid expressing diphtheria toxin under the control of H19 and IGF2-P4 regulatory sequences. Int. J. Clin. Exp. Med. 5, 296–305 (2012)

    CAS  PubMed  PubMed Central  Google Scholar 

  274. A.A. Sidi, P. Ohana, S. Benjamin, M. Shalev, J.H. Ransom, D. Lamm, A. Hochberg, I. Leibovitch, Phase I/II marker lesion study of intravesical BC-819 DNA plasmid in H19 over expressing superficial bladder cancer refractory to bacillus Calmette-Guerin. J. Urol. 180, 2379–2383 (2008)

    Article  PubMed  Google Scholar 

  275. A. Mizrahi, A. Czerniak, T. Levy, S. Amiur, J. Gallula, I. Matouk, R. Abu-lail, V. Sorin, T. Birman, N. de Groot, A. Hochberg, P. Ohana, Development of targeted therapy for ovarian cancer mediated by a plasmid expressing diphtheria toxin under the control of H19 regulatory sequences. J.Transl.Med. 7, 69 (2009). doi:10.1186/1479-5876-7-69

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  276. ClinicalTrials.gov [Internet] Identifier: NCT01413087, Efficacy and safety of BC-819 and gemcitabine in patients with locally advanced pancreatic adenocarcinoma (LAPC-BC-819), 2015 (2012)

  277. J.H. Liu, G. Chen, Y.W. Dang, C.J. Li, D.Z. Luo, Expression and prognostic significance of lncRNA MALAT1 in pancreatic cancer tissues. Asian Pac. J. Cancer Prev. 15, 2971–2977 (2014)

    Article  PubMed  Google Scholar 

  278. E. Heister, V. Neves, C. Lamprecht, S.R.P. Silva, H.M. Coley, J. McFadden, Drug loading, dispersion stability, and therapeutic efficacy in targeted drug delivery with carbon nanotubes. 50, 622–632 (2012)

  279. C.J. Cheng, R. Bahal, I.A. Babar, Z. Pincus, F. Barrera, C. Liu, A. Svoronos, D.T. Braddock, P.M. Glazer, D.M. Engelman, W.M. Saltzman, F.J. Slack, MicroRNA silencing for cancer therapy targeted to the tumour microenvironment. Nature 518, 107–110 (2015)

    Article  CAS  PubMed  Google Scholar 

  280. C.F. Bennett, E.E. Swayze, RNA targeting therapeutics: molecular mechanisms of antisense oligonucleotides as a therapeutic platform. Annu. Rev. Pharmacol. Toxicol. 50, 259–293 (2010)

    Article  CAS  PubMed  Google Scholar 

  281. C.M. Sousa, A.C. Kimmelman, The complex landscape of pancreatic cancer metabolism. Carcinogenesis 35, 1441–1450 (2014)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  282. C.W. Kimbrough, A. Khanal, M. Zeiderman, B.R. Khanal, N.C. Burton, K.M. McMasters, S.M. Vickers, W.E. Grizzle, L.R. McNally, Targeting acidity in pancreatic adenocarcinoma: multispectral optoacoustic tomography detects pH-low insertion peptide probes in vivo. Clin. Cancer Res. 21, 4576–4585 (2015)

  283. H. Atkinson, R. Chalmers, Delivering the goods: viral and non-viral gene therapy systems and the inherent limits on cargo DNA and internal sequences. Genetica 138, 485–498 (2010)

    Article  CAS  PubMed  Google Scholar 

  284. B.D. Adams, C. Parsons, F.J. Slack, The tumor-suppressive and potential therapeutic functions of miR-34a in epithelial carcinomas. Expert Opin. Ther. Targets (2015). doi:10.1517/14728222.2016.1114102

  285. G. Almer, K.L. Summers, B. Scheicher, J. Kellner, I. Stelzer, G. Leitinger, A. Gries, R. Prassl, A. Zimmer, H. Mangge, Interleukin 10-coated nanoparticle systems compared for molecular imaging of atherosclerotic lesions. Int. J. Nanomedicine 9, 4211–4222 (2014)

    PubMed  PubMed Central  Google Scholar 

  286. S. Zalba, A.M. Contreras, A. Haeri, T.L. Ten Hagen, I. Navarro, G. Koning, M.J. Garrido, Cetuximab-oxaliplatin-liposomes for epidermal growth factor receptor targeted chemotherapy of colorectal cancer. J. Control. Release 210, 26–38 (2015)

    Article  CAS  PubMed  Google Scholar 

  287. K. Bates, K. Kostarelos, Carbon nanotubes as vectors for gene therapy: past achievements, present challenges and future goals. Adv. Drug Deliv. Rev. 65, 2023–2033 (2013)

    Article  CAS  PubMed  Google Scholar 

  288. H.L. Janssen, H.W. Reesink, E.J. Lawitz, S. Zeuzem, M. Rodriguez-Torres, K. Patel, A.J. van der Meer, A.K. Patick, A. Chen, Y. Zhou, R. Persson, B.D. King, S. Kauppinen, A.A. Levin, M.R. Hodges, Treatment of HCV infection by targeting microRNA. N. Engl. J. Med. 368, 1685–1694 (2013)

    Article  CAS  PubMed  Google Scholar 

  289. E.C. Verna, V. Dhar, Endoscopic ultrasound-guided fine needle injection for cancer therapy: the evolving role of therapeutic endoscopic ultrasound. Ther. Adv. Gastroenterol. 1, 103–109 (2008)

    Article  Google Scholar 

  290. A. Kambadakone, A. Thabet, D.A. Gervais, P.R. Mueller, R.S. Arellano, CT-guided celiac plexus neurolysis: a review of anatomy, indications, technique, and tips for successful treatment. Radiographics 31, 1599–1621 (2011)

    Article  PubMed  Google Scholar 

  291. V. Scaiewicz, V. Sorin, Y. Fellig, T. Birman, A. Mizrahi, J. Galula, R. Abu-Lail, T. Shneider, P. Ohana, L. Buscail, A. Hochberg, A. Czerniak, Use of H19 gene regulatory sequences in DNA-based therapy for pancreatic cancer. J. Oncol. 2010, 178174 (2010)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  292. J. Kota, R.R. Chivukula, K.A. O’Donnell, E.A. Wentzel, C.L. Montgomery, H.W. Hwang, T.C. Chang, P. Vivekanandan, M. Torbenson, K.R. Clark, J.R. Mendell, J.T. Mendell, Therapeutic delivery of miR-26a inhibits cancer cell proliferation and induces tumor-specific apoptosis. Cell 137, 1005–1017 (2009)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  293. G.A. Calin, C.D. Dumitru, M. Shimizu, R. Bichi, S. Zupo, E. Noch, H. Aldler, S. Rattan, M. Keating, K. Rai, L. Rassenti, T. Kipps, M. Negrini, F. Bullrich, C.M. Croce, Frequent deletions and down-regulation of micro- RNA genes miR15 and miR16 at 13q14 in chronic lymphocytic leukemia. Proc. Natl. Acad. Sci. U. S. A. 99, 15524–15529 (2002)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  294. H.A. Burris 3rd, M.J. Moore, J. Andersen, M.R. Green, M.L. Rothenberg, M.R. Modiano, M.C. Cripps, R.K. Portenoy, A.M. Storniolo, P. Tarassoff, R. Nelson, F.A. Dorr, C.D. Stephens, D.D. Von Hoff, Improvements in survival and clinical benefit with gemcitabine as first-line therapy for patients with advanced pancreas cancer: a randomized trial. J. Clin. Oncol. 15, 2403–2413 (1997)

    CAS  PubMed  Google Scholar 

  295. Y. Ren, J. Gao, J.Q. Liu, X.W. Wang, J.J. Gu, H.J. Huang, Y.F. Gong, Z.S. Li, Differential signature of fecal microRNAs in patients with pancreatic cancer. Mol. Med. Rep. 6, 201–209 (2012)

    CAS  PubMed  Google Scholar 

  296. M. Humeau, A. Vignolle-Vidoni, F. Sicard, F. Martins, B. Bournet, L. Buscail, J. Torrisani, P. Cordelier, Salivary MicroRNA in pancreatic cancer patients. PLoS One 10, e0130996 (2015)

    Article  PubMed  PubMed Central  Google Scholar 

  297. S.A. Dhayat, B. Abdeen, G. Kohler, N. Senninger, J. Haier, W.A. Mardin, MicroRNA-100 and microRNA-21 as markers of survival and chemotherapy response in pancreatic ductal adenocarcinoma UICC stage II. Clin. Epigenetics 7, 132 (2015). doi:10.1186/s13148-015-0166-1. eCollection 2015

    Article  PubMed  PubMed Central  Google Scholar 

  298. J. Liu, J. Gao, Y. Du, Z. Li, Y. Ren, J. Gu, X. Wang, Y. Gong, W. Wang, X. Kong, Combination of plasma microRNAs with serum CA19-9 for early detection of pancreatic cancer. Int. J. Cancer 131, 683–691 (2012)

    Article  CAS  PubMed  Google Scholar 

  299. K.H. Lee, J.K. Lee, D.W. Choi, I.G. Do, I. Sohn, K.T. Jang, S.H. Jung, J.S. Heo, S.H. Choi, K.T. Lee, Postoperative prognosis prediction of pancreatic cancer with seven MicroRNAs. Pancreas 44, 764–768 (2015)

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J. Haybaeck.

Ethics declarations

Conflict of interest

The authors of this article, V.Taucher, J. Haybaeck and H. Mangge declare no conflicts of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Taucher, V., Mangge, H. & Haybaeck, J. Non-coding RNAs in pancreatic cancer: challenges and opportunities for clinical application. Cell Oncol. 39, 295–318 (2016). https://doi.org/10.1007/s13402-016-0275-7

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13402-016-0275-7

Keywords

Navigation