Skip to main content

Advertisement

Log in

Altered primary chromatin structures and their implications in cancer development

  • Review
  • Published:
Cellular Oncology Aims and scope Submit manuscript

Abstract

Background

Cancer development is a complex process involving both genetic and epigenetic changes. Genetic changes in oncogenes and tumor-suppressor genes are generally considered as primary causes, since these genes may directly regulate cellular growth. In addition, it has been found that changes in epigenetic factors, through mutation or altered gene expression, may contribute to cancer development. In the nucleus of eukaryotic cells DNA and histone proteins form a structure called chromatin which consists of nucleosomes that, like beads on a string, are aligned along the DNA strand. Modifications in chromatin structure are essential for cell type-specific activation or repression of gene transcription, as well as other processes such as DNA repair, DNA replication and chromosome segregation. Alterations in epigenetic factors involved in chromatin dynamics may accelerate cell cycle progression and, ultimately, result in malignant transformation. Abnormal expression of remodeler and modifier enzymes, as well as histone variants, may confer to cancer cells the ability to reprogram their genomes and to yield, maintain or exacerbate malignant hallmarks. At the end, genetic and epigenetic alterations that are encountered in cancer cells may culminate in chromatin changes that may, by altering the quantity and quality of gene expression, promote cancer development.

Methods

During the last decade a vast number of studies has uncovered epigenetic abnormalities that are associated with the (anomalous) packaging and remodeling of chromatin in cancer genomes. In this review I will focus on recently published work dealing with alterations in the primary structure of chromatin resulting from imprecise arrangements of nucleosomes along DNA, and its functional implications for cancer development.

Conclusions

The primary chromatin structure is regulated by a variety of epigenetic mechanisms that may be deregulated through gene mutations and/or gene expression alterations. In recent years, it has become evident that changes in chromatin structure may coincide with the occurrence of cancer hallmarks. The functional interrelationships between such epigenetic alterations and cancer development are just becoming manifest and, therefore, the oncology community should continue to explore the molecular mechanisms governing the primary chromatin structure, both in normal and in cancer cells, in order to improve future approaches for cancer detection, prevention and therapy, as also for circumventing drug resistance.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. M.B. Dhiab, S. Ziadi, S. Mestiri, R.B. Gacem, F. Ksiaa, M. Trimeche, DNA methylation patterns in EBV-positive and EBV-negative Hodgkin lymphomas. Cell. Oncol. 38, 453–462 (2015)

    Article  CAS  Google Scholar 

  2. C.B. Moelans, E.J. Vlug, C. Ercan, P. Bult, H. Buerger, G. Cserni, P.J. van Diest, P.W. Derksen, Methylation biomarkers for pleomorphic lobular breast cancer – a short report. Cell. Oncol. 38, 397–405 (2015)

    Article  CAS  Google Scholar 

  3. Y. You, W. Yang, X. Qin, F. Wang, H. Li, C. Lin, W. Li, C. Gu, Y. Zhang, Y. Ran, ECRG4 acts as a tumor suppressor and as a determinant of chemotherapy resistance in human nasopharyngeal carcinoma. Cell. Oncol. 38, 205–214 (2015)

    Article  CAS  Google Scholar 

  4. C. Charfi, E. Edouard, E. Rassart, Identification of GPM6A and GPM6B as potential new human lymphoid leukemia-associated oncogenes. Cell. Oncol. 37, 179–191 (2014)

    Article  CAS  Google Scholar 

  5. C. Yu, M. Wang, Z. Li, J. Xiao, F. Peng, X. Guo, Y. Deng, J. Jiang, C. Sun, MicroRNA-138-5p regulates pancreatic cancer cell growth through targeting FOXC1. Cell. Oncol. 38, 173–1781 (2015)

    Article  CAS  Google Scholar 

  6. A. Valouev, S.M. Johnson, S.D. Boyd, C.L. Smith, A.Z. Fire, A. Sidow, Determinants of nucleosome organization in primary human cells. Nature 474, 516–520 (2011)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. E. Segal, J. Widom, What controls nucleosome positions? Trends Genet. 25, 335–343 (2009)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. P.B. Becker, W. Horz, ATP-dependent nucleosome remodeling. Annu. Rev. Biochem. 71, 247–273 (2002)

    Article  CAS  PubMed  Google Scholar 

  9. A. Flaus, D.M. Martin, G.J. Barton, T. Owen-Hughes, Identification of multiple distinct Snf2 subfamilies with conserved structural motifs. Nucleic Acids Res. 34, 2887–2905 (2006)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. C.B. Gerhold, S.M. Gasser, INO80 and SWR complexes: relating structure to function in chromatin remodeling. Trends Cell Biol. 24, 619–631 (2014)

    Article  CAS  PubMed  Google Scholar 

  11. C.R. Clapier, B.R. Cairns, The biology of chromatin remodeling complexes. Annu. Rev. Biochem. 78, 273–304 (2009)

    Article  CAS  PubMed  Google Scholar 

  12. D.C. Hargreaves, G.R. Crabtree, ATP-dependent chromatin remodeling: genetics, genomics and mechanisms. Cell Res. 21, 396–420 (2011)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Y. Cai, J. Jin, A.J. Gottschalk, T. Yao, J.W. Conaway, R.C. Conaway, Purification and assay of the human INO80 and SRCAP chromatin remodeling complexes. Methods 40, 312–317 (2006)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. K. Dennis, T. Fan, T. Geiman, Q. Yan, K. Muegge, Lsh, a member of the SNF2 family, is required for genome-wide methylation. Genes Dev. 15, 2940–2944 (2001)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. S. Awad, D. Ryan, P. Prochasson, T. Owen-Hughes, A.H. Hassan, The Snf2 homolog Fun30 acts as a homodimeric ATP-dependent chromatin-remodeling enzyme. J. Biol. Chem. 285, 9477–9484 (2010)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. T. Costelloe, R. Louge, N. Tomimatsu, B. Mukherjee, E. Martini, B. Khadaroo, K. Dubois, W.W. Wiegant, A. Thierry, S. Burma, H. van Attikum, B. Llorente, The yeast Fun30 and human SMARCAD1 chromatin remodellers promote DNA end resection. Nature 489, 581–584 (2012)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. A. Gonzalez-Perez, A. Jene-Sanz, N. Lopez-Bigas, The mutational landscape of chromatin regulatory factors across 4,623 tumor samples. Genome Biol. 14, r106 (2013)

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  18. A.H. Shain, J.R. Pollack, The spectrum of SWI/SNF mutations, ubiquitous in human cancers. PLoS One 8, e55119 (2013)

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  19. J.A. Biegel, T.M. Busse, B.E. Weissman, SWI/SNF chromatin remodeling complexes and cancer. Am. J. Med. Genet. C: Semin. Med. Genet. 166, 350–366 (2014)

    Article  CAS  Google Scholar 

  20. B.G. Wilson, X. Wang, X. Shen, E.S. McKenna, M.E. Lemieux, Y.J. Cho, E.C. Koellhoffer, S.L. Pomeroy, S.H. Orkin, C.W. Roberts, Epigenetic antagonism between polycomb and SWI/SNF complexes during oncogenic transformation. Cancer Cell 18, 316–328 (2010)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. T. Davoli, A.W. Xu, K.E. Mengwasser, L.M. Sack, J.C. Yoon, P.J. Park, S.J. Elledge, Cumulative haploinsufficiency and triplosensitivity drive aneuploidy patterns and shape the cancer genome. Cell 155, 948–962 (2013)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. J. Clark, P.J. Rocques, A.J. Crew, S. Gill, J. Shipley, A.M. Chan, B.A. Gusterson, C.S. Cooper, Identification of novel genes, SYT and SSX, involved in the t(X;18)(p11.2;q11.2) translocation found in human synovial sarcoma. Nat. Genet. 7, 502–508 (1994)

    Article  CAS  PubMed  Google Scholar 

  23. M. Ladanyi, C.R. Antonescu, D.H. Leung, J.M. Woodruff, A. Kawai, J.H. Healey, M.F. Brennan, J.A. Bridge, J.R. Neff, F.G. Barr, J.D. Goldsmith, J.S. Brooks, J.R. Goldblum, S.Z. Ali, J. Shipley, C.S. Cooper, C. Fisher, B. Skytting, O. Larsson, Impact of SYT-SSX fusion type on the clinical behavior of synovial sarcoma: a multi-institutional retrospective study of 243 patients. Cancer Res. 62, 135–140 (2002)

    CAS  PubMed  Google Scholar 

  24. Z. Jagani, E.L. Mora-Blanco, C.G. Sansam, E.S. McKenna, B. Wilson, D. Chen, J. Klekota, P. Tamayo, P.T. Nguyen, M. Tolstorukov, P.J. Park, Y.J. Cho, K. Hsiao, S. Buonamici, S.L. Pomeroy, J.P. Mesirov, H. Ruffner, T. Bouwmeester, S.J. Luchansky, J. Murtie, J.F. Kelleher, M. Warmuth, W.R. Sellers, C.W. Roberts, M. Dorsch, Loss of the tumor suppressor Snf5 leads to aberrant activation of the Hedgehog-Gli pathway. Nat. Med. 16, 1429–1433 (2010)

    Article  CAS  PubMed  Google Scholar 

  25. J. Caramel, F. Quignon, O. Delattre, RhoA-dependent regulation of cell migration by the tumor suppressor hSNF5/INI1. Cancer Res. 68, 6154–6161 (2008)

    Article  CAS  PubMed  Google Scholar 

  26. D.F. Corona, J.W. Tamkun, Multiple roles for ISWI in transcription, chromosome organization and DNA replication. Biochim. Biophys. Acta 1677, 113–119 (2004)

    Article  CAS  PubMed  Google Scholar 

  27. W. Dang, B. Bartholomew, Domain architecture of the catalytic subunit in the ISW2-nucleosome complex. Mol. Cell. Biol. 27, 8306–8317 (2007)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Y. Ye, Y. Xiao, W. Wang, Q. Wang, K. Yearsley, A.A. Wani, Q. Yan, J.X. Gao, B.S. Shetuni, S.H. Barsky, Inhibition of expression of the chromatin remodeling gene, SNF2L, selectively leads to DNA damage, growth inhibition, and cancer cell death. Mol. Cancer Res. 7, 1984–1999 (2009)

    Article  CAS  PubMed  Google Scholar 

  29. Q. Jin, X. Mao, B. Li, S. Guan, F. Yao, F. Jin, Overexpression of SMARCA5 correlates with cell proliferation and migration in breast cancer. Tumor Biol. 36, 1895–1902 (2015)

    Article  CAS  Google Scholar 

  30. F.M. Fang, C.F. Li, H.Y. Huang, M.T. Lai, C.M. Chen, I.W. Chiu, T.L. Wang, F.J. Tsai, I.M. Shih, J.J. Sheu, Overexpression of a chromatin remodeling factor, RSF-1/HBXAP, correlates with aggressive oral squamous cell carcinoma. Am. J. Pathol. 178, 2407–2415 (2011)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. J.J. Sheu, B. Guan, J.H. Choi, A. Lin, C.H. Lee, Y.T. Hsiao, T.L. Wang, F.J. Tsai, I.M. Shih, Rsf-1, a chromatin remodeling protein, induces DNA damage and promotes genomic instability. J. Biol. Chem. 285, 38260–38269 (2010)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. J.J. Sheu, J.H. Choi, I. Yildiz, F.J. Tsai, Y. Shaul, T.L. Wang, I.M. Shih, The roles of human sucrose nonfermenting protein 2 homologue in the tumor-promoting functions of Rsf-1. Cancer Res. 68, 4050–4057 (2008)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. I.M. Shih, J.J. Sheu, A. Santillan, K. Nakayama, M.J. Yen, R.E. Bristow, R. Vang, G. Parmigiani, R.J. Kurman, C.G. Trope, B. Davidson, T.L. Wang, Amplification of a chromatin remodeling gene, Rsf-1/HBXAP, in ovarian carcinoma. Proc. Natl. Acad. Sci. U. S. A. 102, 14004–14009 (2005)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. M. Eckey, S. Kuphal, T. Straub, P. Rümmele, E. Kremmer, A.K. Bosserhoff, P.B. Becker, Nucleosome remodeler SNF2L suppresses cell proliferation and migration and attenuates Wnt signaling. Mol. Cell. Biol. 32, 2359–2371 (2012)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. R. Kumar, R.A. Wang, R. Bagheri-Yarmand, Emerging roles of MTA family members in human cancers. Mol. Cell. Biol. 30, 30–37 (2003)

    CAS  Google Scholar 

  36. A. Mazumdar, R.A. Wang, S.K. Mishra, L. Adam, R. Bagheri-Yarmand, M. Mandal, R.K. Vadlamudi, R. Kumar, Transcriptional repression of oestrogen receptor by metastasis-associated protein 1 corepressor. Nat. Cell Biol. 3, 30–37 (2001)

    Article  CAS  PubMed  Google Scholar 

  37. M.D. Hofer, A. Menke, F. Genze, P. Gierschik, K. Giehl, Expression of MTA1 promotes motility and invasiveness of PANC-1 pancreatic carcinoma cells. Br. J. Cancer 90, 455–462 (2004)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. A.E. Gururaj, R.R. Singh, S.K. Rayala, C. Holm, P. den Hollander, H. Zhang, S. Balasenthil, A.H. Talukder, G. Landberg, R. Kumar, MTA1, a transcriptional activator of breast cancer amplified sequence 3. Proc. Natl. Acad. Sci. USA 103, 6670–6675 (2006). Erratum in: Proc. Natl. Acad. Sci. USA 110, 4147–4148 (2013)

  39. O. Monni, M. Barlund, S. Mousses, J. Kononen, G. Sauter, M. Heiskanen, P. Paavola, K. Avela, Y. Chen, M.L. Bittner, A. Kallioniemi, Comprehensive copy number and gene expression profiling of the 17q23 amplicon in human breast cancer. Proc. Natl. Acad. Sci. U. S. A. 98, 5711–5716 (2001)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. J. Basta, M. Rauchman, The nucleosome remodeling and deacetylase complex in development and disease. Transl. Res. 165, 36–47 (2015)

    Article  CAS  PubMed  Google Scholar 

  41. D. Rodríguez, G. Bretones, V. Quesada, N. Villamor, J.R. Arango, A. López-Guillermo, A.J. Ramsay, T. Baumann, P.M. Quirós, A. Navarro, C. Royo, J.I. Martín-Subero, E. Campo, C. López-Otín, Mutations in CHD2 cause defective association with active chromatin in chronic lymphocytic leukemia. Blood 126, 195–202 (2015)

    Article  PubMed  CAS  Google Scholar 

  42. Y. Gui, G. Guo, Y. Huang, X. Hu, A. Tang, S. Gao, R. Wu, C. Chen, X. Li, L. Zhou, M. He, Z. Li, X. Sun, W. Jia, J. Chen, S. Yang, F. Zhou, X. Zhao, S. Wan, R. Ye, C. Liang, Z. Liu, P. Huang, C. Liu, H. Jiang, Y. Wang, H. Zheng, L. Sun, X. Liu, Z. Jiang, D. Feng, J. Chen, S. Wu, J. Zou, Z. Zhang, R. Yang, J. Zhao, C. Xu, W. Yin, Z. Guan, J. Ye, H. Zhang, J. Li, K. Kristiansen, M.L. Nickerson, D. Theodorescu, Y. Li, X. Zhang, S. Li, J. Wang, H. Yang, J. Wang, Z. Cai, Frequent mutations of chromatin remodeling genes in transitional cell carcinoma of the bladder. Nat. Genet. 43, 875–878 (2011)

    Article  CAS  PubMed  Google Scholar 

  43. D. Mouradov, C. Sloggett, R.N. Jorissen, C.G. Love, S. Li, A.W. Burgess, D. Arango, R.L. Strausberg, D. Buchanan, S. Wormald, L. O’Connor, J.L. Wilding, D. Bicknell, I.P. Tomlinson, W.F. Bodmer, J.M. Mariadason, O.M. Sieber, Colorectal cancer cell lines are representative models of the main molecular subtypes of primary cancer. Cancer Res. 74, 3238–3247 (2014)

    Article  CAS  PubMed  Google Scholar 

  44. M.S. Kim, N.G. Chung, M.R. Kang, N.J. Yoo, S.H. Lee, Genetic and expressional alterations of CHD genes in gastric and colorectal cancers. Histopathology 58, 660–668 (2011)

    Article  PubMed  Google Scholar 

  45. F.K. Stanley, S. Moore, A.A. Goodarzi, CHD chromatin remodelling enzymes and the DNA damage response. Mutat. Res. 750, 31–44 (2013)

    Article  CAS  PubMed  Google Scholar 

  46. K. Nio, T. Yamashita, H. Okada, M. Kondo, T. Hayashi, Y. Hara, Y. Nomura, S.S. Zeng, M. Yoshida, T. Hayashi, H. Sunagozaka, N. Oishi, M. Honda, S. Kaneko, Defeating EpCAM(+) liver cancer stem cells by targeting chromatin remodeling enzyme CHD4 in human hepatocellular carcinoma. J. Hepatol. 63, 1164–1172 (2015)

    Article  CAS  PubMed  Google Scholar 

  47. S. Guillemette, R.W. Serra, M. Peng, J.A. Hayes, P.A. Konstantinopoulos, M.R. Green, S.B. Cantor, Resistance to therapy in BRCA2 mutant cells due to loss of the nucleosome remodeling factor CHD4. Genes Dev. 29, 489–494 (2015)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. M. Le Gallo, A.J. O’Hara, M.L. Rudd, M.E. Urick, N.F. Hansen, N.J. O’Neil, J.C. Price, S. Zhang, B.M. England, A.K. Godwin, D.C. Sgroi, NIH Intramural Sequencing Center (NISC) Comparative Sequencing Program, P. Hieter, J.C. Mullikin, M.J. Merino, D.W. Bell, Exome sequencing of serous endometrial tumors identifies recurrent somatic mutations in chromatinremodeling and ubiquitin ligase complex genes. Nat. Genet. 44, 1310–1315 (2012)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. G. Sawada, H. Ueo, T. Matsumura, R. Uchi, M. Ishibashi, K. Mima, J. Kurashige, Y. Takahashi, S. Akiyoshi, T. Sudo, K. Sugimachi, Y. Doki, M. Mori, K. Mimori, CHD8 is an independent prognostic indicator that regulates Wnt/β-catenin signaling and the cell cycle in gastric cancer. Oncol. Rep. 30, 1137–1142 (2013)

    CAS  PubMed  Google Scholar 

  50. L. Wang, S. He, Y. Tu, P. Ji, J. Zong, J. Zhang, F. Feng, J. Zhao, G. Gao, Y. Zhang, Downregulation of chromatin remodeling factor CHD5 is associated with a poor prognosis in human glioma. J. Clin. Neurosci. 20, 958–963 (2013)

    Article  CAS  PubMed  Google Scholar 

  51. A.J. Morrison, J. Highland, N.J. Krogan, A. Arbel-Eden, J.F. Greenblatt, J.E. Haber, X. Shen, INO80 and γ-H2AX interaction links ATP-dependent chromatin remodeling to DNA damage repair. Cell 119, 767–775 (2004)

    Article  CAS  PubMed  Google Scholar 

  52. H. van Attikum, O. Fritsch, S.M. Gasser, Distinct roles for SWR1 and INO80 chromatin remodeling complexes at chromosomal double-strand breaks. EMBO J. 26, 4113–4125 (2007)

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  53. M. Papamichos-Chronakis, S. Watanabe, O.J. Rando, C.L. Peterson, Global regulation of H2A. Z localization by the INO80 chromatin-remodeling enzyme is essential for genome integrity. Cell 144, 200–213 (2011)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. H.E. Alatwi, J.A. Downs, Removal of H2A. Z by INO80 promotes homologous recombination. EMBO Rep. 16, 986–994 (2015)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. S. Watanabe, M. Radman-Livaja, O.J. Rando, C.L. Peterson, A histone acetylation switch regulates H2A. Z deposition by the SWR-C remodeling enzyme. Science 340, 195–199 (2013)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. A.J. Morrison, X. Shen, Chromatin remodelling beyond transcription: the INO80 and SWR1 complexes. Nat. Rev. Mol. Cell Biol. 10, 373–384 (2009)

  57. C. Kadoch, D.C. Hargreaves, C. Hodges, L. Elias, L. Ho, J. Ranish, G.R. Crabtree, Proteomic and bioinformatic analysis of mammalian SWI/SNF complexes identifies extensive roles in human malignancy. Nat. Genet. 45, 592–601 (2013)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. A. Raymond, S. Benhamouche, V. Neaud, J. Di Martino, J. Javary, J. Rosenbaum, Reptin regulates DNA double strand breaks repair in human hepatocellular carcinoma. PLoS One 10, e0123333 (2015)

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  59. S. Dong, J. Han, H. Chen, T. Liu, M.S. Huen, Y. Yang, C. Guo, J. Huang, The human SRCAP chromatin remodeling complex promotes DNA-end resection. Curr. Biol. 24, 2097–2110 (2014)

  60. D.D. Ruhl, J. Jin, Y. Cai, S. Swanson, L. Florens, M.P. Washburn, R.C. Conaway, J.W. Conaway, J.C. Chrivia, Purification of a human SRCAP complex that remodels chromatin by incorporating the histone variant H2A. Z into nucleosomes. Biochemistry 45, 5671–5677 (2006)

    Article  CAS  PubMed  Google Scholar 

  61. M.M. Wong, L.K. Cox, J.C. Chrivia, The chromatin remodeling protein, SRCAP, is critical for deposition of the histone variant H2A. Z at promoters. J. Biol. Chem. 282, 26132–26139 (2007)

    Article  CAS  PubMed  Google Scholar 

  62. A. Slupianek, S. Yerrum, F.F. Safadi, M.A. Monroy, The chromatin remodeling factor SRCAP modulates expression of prostate specific antigen and cellular proliferation in prostate cancer cells. J. Cell. Physiol. 224, 369–375 (2010)

    Article  CAS  PubMed  Google Scholar 

  63. T. Bianco-Miotto, K. Chiam, G. Buchanan, S. Jindal, T.K. Day, M. Thomas, M.A. Pickering, M.A. O’Loughlin, N.K. Ryan, W.A. Raymond, L.G. Horvath, J.G. Kench, P.D. Stricker, V.R. Marshall, R.L. Sutherland, S.M. Henshall, W.L. Gerald, H.I. Scher, G.P. Risbridger, J.A. Clements, L.M. Butler, W.D. Tilley, D.J. Horsfall, C. Ricciardelli, Australian Prostate Cancer BioResource, Global levels of specific histone modifications and an epigenetic gene signature predict prostate cancer progression and development. Cancer Epidemiol. Biomarkers Prev. 19, 2611–2622 (2010)

    Article  CAS  PubMed  Google Scholar 

  64. V. Patil, J. Pal, K. Somasundaram, Elucidating the cancer-specific genetic alteration spectrum of glioblastoma derived cell lines from whole exome and RNA sequencing. Oncotarget 6, 43452–43471 (2015)

    PubMed  PubMed Central  Google Scholar 

  65. W. Martin-Doyle, D.J. Kwiatkowski, Molecular biology of bladder cancer. Hematol. Oncol. Clin. N. Am. 29, 191–203 (2015)

    Article  Google Scholar 

  66. J. Burrage, A. Termanis, A. Geissner, K. Myant, K. Gordon, I. Stancheva, The SNF2 family ATPase LSH promotes phosphorylation of H2AX and efficient repair of DNA double-strand breaks in mammalian cells. J. Cell Sci. 125, 5524–5534 (2012)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Y. Tao, S. Xi, J. Shan, A. Maunakea, A. Che, V. Briones, E.Y. Lee, T. Geiman, J. Huang, R. Stephens, R.M. Leighty, K. Zhao, K. Muegge, Lsh, chromatin remodeling family member, modulates genome-wide cytosine methylation patterns at nonrepeat sequences. Proc. Natl. Acad. Sci. U. S. A. 108, 5626–5631 (2011)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. J. Ren, V. Briones, S. Barbour, W. Yu, Y. Han, M. Terashima, K. Muegge, The ATP binding site of the chromatin remodeling homolog Lsh is required for nucleosome density and de novo DNA methylation at repeat sequences. Nucleic Acids Res. 43, 1444–1455 (2015)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. D.W. Lee, K. Zhang, Z.Q. Ning, E.H. Raabe, S. Tintner, R. Wieland, B.J. Wilkins, J.M. Kim, R.I. Blough, R.J. Arceci, Proliferation-associated SNF2-like gene (PASG): a SNF2 family member altered in leukemia. Cancer Res. 60, 3612–3622 (2000)

    CAS  PubMed  Google Scholar 

  70. M. Yano, M. Ouchida, H. Shigematsu, N. Tanaka, K. Ichimura, K. Kobayashi, Y. Inaki, S. Toyooka, K. Tsukuda, N. Shimizu, K. Shimizu, Tumor-specific exon creation of the HELLS/SMARCA6 gene in non‐small cell lung cancer. Int. J. Cancer 112, 8–13 (2004)

    Article  CAS  PubMed  Google Scholar 

  71. B. von Eyss, J. Maaskola, S. Memczak, K. Möllmann, A. Schuetz, C. Loddenkemper, M.D. Tanh, A. Otto, K. Muegge, U. Heinemann, N. Rajewsky, U. Ziebold, The SNF2‐like helicase HELLS mediates E2F3‐dependent transcription and cellular transformation. EMBO J. 31, 972–985 (2012)

    Article  CAS  Google Scholar 

  72. C.A. Benavente, D. Finkelstein, D.A. Johnson, J.C. Marine, R. Ashery-Padan, M.A. Dyer, Chromatin remodelers HELLS and UHRF1 mediate the epigenetic deregulation of genes that drive retinoblastoma tumor progression. Oncotarget 5, 9594 (2014)

    Article  PubMed  PubMed Central  Google Scholar 

  73. S.P. Rowbotham, L. Barki, A. Neves-Costa, F. Santos, W. Dean, N. Hawkes, P. Choudhary, W.R. Will, J. Webster, D. Oxley, C.M. Green, P. Varga-Weisz, J.E. Mermoud, Maintenance of silent chromatin through replication requires SWI/SNF-like chromatin remodeler SMARCAD1. Mol. Cell 42, 285–296 (2011)

    Article  CAS  PubMed  Google Scholar 

  74. C.N. Adra, J.L. Donato, R. Badovinac, F. Syed, R. Kheraj, H. Cai, C. Moran, M.T. Kolker, H. Turner, S. Weremowicz, T. Shirakawa, C.C. Morton, L.E. Schnipper, R. Drews, SMARCAD1, a novel human helicase family-defining member associated with genetic instability: cloning, expression, and mapping to 4q22–q23, a band rich in breakpoints and deletion mutants involved in several human diseases. Genomics 69, 162–173 (2000)

    Article  CAS  PubMed  Google Scholar 

  75. M. Berg, T.H. Ågesen, E. Thiis-Evensen, M.A. Merok, M.R. Teixeira, M.H. Vatn, A. Nesbakken, R.I. Skotheim, R.A. Lothe, Distinct high resolution genome profiles of early onset and late onset colorectal cancer integrated with gene expression data identify candidate susceptibility loci. Mol. Cancer 9, 100 (2010)

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  76. C.C. Chung, P.A. Kanetsky, Z. Wang, M.A. Hildebrandt, R. Koster, R.I. Skotheim, C.P. Kratz, C. Turnbull, V.K. Cortessis, A.C. Bakken, D.T. Bishop, M.B. Cook, R.L. Erickson, S.D. Fosså, K.B. Jacobs, L.A. Korde, S.M. Kraggerud, R.A. Lothe, J.T. Loud, N. Rahman, E.C. Skinner, D.C. Thomas, X. Wu, M. Yeager, F.R. Schumacher, M.H. Greene, S.M. Schwartz, K.A. McGlynn, S.J. Chanock, K.L. Nathanson, Meta-analysis identifies four new loci associated with testicular germ cell tumor. Nat. Genet. 45, 680–685 (2013)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. E. Cetin, B. Cengiz, E. Gunduz, M. Gunduz, H. Nagatsuka, L. Bekir-Beder, K. Fukushima, D. Pehlivan, N. M.O., K. Nishizaki, K. Shimizu, N. Nagai, Author information Deletion mapping of chromosome 4q22-35 and identification of four frequently deleted regions in head and neck cancers. Neoplasma 55, 299–304 (2007)

    Google Scholar 

  78. L. Tapak, M. Saidijam, M. Sadeghifar, J. Poorolajal, H. Mahjub, Competing risks data analysis with high-dimensional covariates: an application in bladder cancer. Genomics Proteomics Bioinformatics 13, 169–176 (2015)

    Article  PubMed  PubMed Central  Google Scholar 

  79. G.G. Wang, C.D. Allis, P. Chi, Chromatin remodeling and cancer. Part I: covalent histone modifications. Trends Mol. Med. 13, 363–372 (2007)

    Article  CAS  PubMed  Google Scholar 

  80. M. Brehove, T. Wang, J. North, Y. Luo, S.J. Dreher, J.C. Shimko, J.J. Ottesen, K. Luger, M.G. Poirier, Histone core phosphorylation regulates DNA accessibility. J. Biol. Chem. 290, 22612–22621 (2015)

    Article  CAS  PubMed  Google Scholar 

  81. P. Tessarz, T. Kouzarides, Histone core modifications regulating nucleosome structure and dynamics. Nat. Rev. Mol. Cell. Biol. 15, 703–708 (2014)

    Article  CAS  PubMed  Google Scholar 

  82. T. Kouzarides, Chromatin modifications and their function. Cell 128, 693–705 (2007)

    Article  CAS  PubMed  Google Scholar 

  83. P. Filippakopoulos, S. Picaud, M. Mangos, T. Keates, J.P. Lambert, D. Barsyte-Lovejoy, Histone recognition and large-scale structural analysis of the human bromodomain family. Cell 149, 214–231 (2012)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. P. Filippakopoulos, S. Knapp, Targeting bromodomains: epigenetic readers of lysine acetylation. Nat. Rev. Drug Discov. 13, 337–356 (2014)

    Article  CAS  PubMed  Google Scholar 

  85. P. Marks, R.A. Rifkind, V.M. Richon, R. Breslow, T. Miller, W.K. Kelly, Histone deacetylases and cancer: causes and therapies. Nat. Rev. Cancer 1, 194–202 (2001)

    Article  CAS  PubMed  Google Scholar 

  86. V.M. Richon, J.P. O’Brien, Histone deacetylase inhibitors: a new class of potential therapeutic agents for cancer treatment. Commentary re: V. Sandor et al., Phase I trial of the histone deacetylase inhibitor, depsipeptide (FR901228, NSC 630176), in patients with refractory neoplasms. Clin. Cancer Res. 8, 718–728 (2002); Clin. Cancer Res. 8, 662–664 (2002)

  87. K.C. Lakshmaiah, L.A. Jacob, S. Aparna, D. Lokanatha, S.C. Saldanha, Epigenetic therapy of cancer with histone deacetylase inhibitors. J. Cancer Res. Ther. 10, 469–478 (2014)

    CAS  PubMed  Google Scholar 

  88. C. Cortés, S.C. Kozma, A. Tauler, S. Ambrosio, MYCN concurrence with SAHA-induced cell death in human neuroblastoma cells. Cell. Oncol. 38, 341–352 (2015)

    Article  CAS  Google Scholar 

  89. K.S. Zaret, J.S. Carroll, Pioneer transcription factors: establishing competence for gene expression. Genes Dev. 25, 2227–2241 (2011)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  90. P. Voigt, W.W. Tee, D. Reinberg, A double take on bivalent promoters. Genes Dev. 27, 1318–1338 (2013)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  91. G.E. Zentner, S. Henikoff, Regulation of nucleosome dynamics by histone modifications. Nat. Struct. Mol. Biol. 20, 259–266 (2013)

    Article  CAS  PubMed  Google Scholar 

  92. M.F. Fraga, E. Ballestar, A. Villar-Garea, M. Boix-Chornet, J. Espada, G. Schotta, T. Bonaldi, C. Haydon, S. Ropero, K. Petrie, N.G. Iyer, A. Pérez-Rosado, E. Calvo, J.A. Lopez, A. Cano, M.J. Calasanz, D. Colomer, M.A. Piris, N. Ahn, A. Imhof, C. Caldas, T. Jenuwein, M. Esteller, Loss of acetylation at Lys16 and trimethylation at Lys20 of histone H4 is a common hallmark of human cancer. Nat. Genet. 37, 391–400 (2005)

    Article  CAS  PubMed  Google Scholar 

  93. M.A. Hahn, A.X. Li, X. Wu, R. Yang, D.A. Drew, D.W. Rosenberg, G.P. Pfeifer, Loss of the polycomb mark from bivalent promoters leads to activation of cancer-promoting genes in colorectal tumors. Cancer Res. 74, 3617–3629 (2014)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  94. S. Bhatnagar, C. Gazin, L. Chamberlain, J. Ou, X. Zhu, J.S. Tushir, C.M. Virbasius, L. Lin, L.J. Zhu, N. Wajapeyee, M.R. Green, TRIM37 is a new histone H2A ubiquitin ligase and breast cancer oncoprotein. Nature 516, 116–120 (2014)

    CAS  PubMed  PubMed Central  Google Scholar 

  95. A.J. Cole, R. Clifton-Bligh, D.J. Marsh, Histone H2B monoubiquitination: roles to play in human malignancy. Endocr. Relat. Cancer 22, T19–T33 (2015)

    Article  CAS  PubMed  Google Scholar 

  96. M.A. Hahn, K.A. Dickson, S. Jackson, A. Clarkson, A.J. Gill, D.J. Marsh, The tumor suppressor CDC73 interacts with the ring finger proteins RNF20 and RNF40 and is required for the maintenance of histone 2B monoubiquitination. Hum. Mol. Genet. 21, 559–568 (2012)

    Article  CAS  PubMed  Google Scholar 

  97. D.B. Seligson, S. Horvath, T. Shi, H. Yu, S. Tze, M. Grunstein, S.K. Kurdistani, Global histone modification patterns predict risk of prostate cancer recurrence. Nature 435, 1262–1266 (2005)

    Article  CAS  PubMed  Google Scholar 

  98. F. Barlési, G. Giaccone, M.I. Gallegos-Ruiz, A. Loundou, S.W. Span, P. Lefesvre, F.A. Kruyt, J.A. Rodriguez, Global histone modifications predict prognosis of resected non small-cell lung cancer. J. Clin. Oncol. 25, 4358–4364 (2007)

    Article  PubMed  Google Scholar 

  99. Y.S. Park, M.Y. Jin, Y.J. Kim, J.H. Yook, B.S. Kim, S.J. Jang, The global histone modification pattern correlates with cancer recurrence and overall survival in gastric adenocarcinoma. Ann. Surg. Oncol. 15, 1968–1976 (2008)

    Article  PubMed  Google Scholar 

  100. S.E. Elsheikh, A.R. Green, E.A. Rakha, D.G. Powe, R.A. Ahmed, H.M. Collins, D. Soria, J.M. Garibaldi, C.E. Paish, A.A. Ammar, M.J. Grainge, G.R. Ball, M.K. Abdelghany, L. Martinez-Pomares, D.M. Heery, I.O. Ellis, Global histone modifications in breast cancer correlate with tumor phenotypes, prognostic factors, and patient outcome. Cancer Res. 69, 3802–3809 (2009)

    Article  CAS  PubMed  Google Scholar 

  101. K. Zhang, L. Li, M. Zhu, G. Wang, J. Xie, Y. Zhao, E. Fan, L. Xu, E. Li, Comparative analysis of histone H3 and H4 post-translational modifications of esophageal squamous cell carcinoma with different invasive capabilities. J. Proteomics 112, 180–189 (2015)

    Article  CAS  PubMed  Google Scholar 

  102. C. Müller-Tidow, H.U. Klein, A. Hascher, F. Isken, L. Tickenbrock, A. Thoennissen, S. Agrawal-Singh, P. Tschanter, C. Disselhoff, Y. Wang, A. Becker, C. Thiede, G. Ehninger, U. zur Stadt, S. Koschmieder, M. Seidl, F.U. Müller, W. Schmitz, P. Schlenke, M. McClelland, W.E. Berdel, M. Dugas, H. Serve, Study Alliance Leukemia, Profiling of histone H3 lysine 9 trimethylation levels predicts transcription factor activity and survival in acute myeloid leukemia. Blood 116, 3564–3571 (2010)

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  103. A. Laugesen, K. Helin, Chromatin repressive complexes in stem cells, development, and cancer. Cell Stem Cell 14, 735–751 (2014)

    Article  CAS  PubMed  Google Scholar 

  104. C. Bödör, V. Grossmann, N. Popov, J. Okosun, C. O’Riain, K. Tan, J. Marzec, S. Araf, J. Wang, A.M. Lee, A. Clear, S. Montoto, J. Matthews, S. Iqbal, H. Rajnai, A. Rosenwald, G. Ott, E. Campo, L.M. Rimsza, E.B. Smeland, W.C. Chan, R.M. Braziel, L.M. Staudt, G. Wright, T.A. Lister, O. Elemento, R. Hills, J.G. Gribben, C. Chelala, A. Matolcsy, A. Kohlmann, T. Haferlach, R.D. Gascoyne, J. Fitzgibbon, EZH2 mutations are frequent and represent an early event in follicular lymphoma. Blood 122, 3165–3168 (2013)

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  105. M. Wassef, V. Rodilla, A. Teissandier, B. Zeitouni, N. Gruel, B. Sadacca, M. Irondelle, M. Charruel, B. Ducos, A. Michaud, M. Caron, E. Marangoni, P. Chavrier, C. Le Tourneau, M. Kamal, E. Pasmant, M. Vidaud, N. Servant, F. Reyal, D. Meseure, A. Vincent-Salomon, S. Fre, R. Margueron, Impaired PRC2 activity promotes transcriptional instability and favors breast tumorigenesis. Genes Dev. 29, 2547–2562 (2015)

    PubMed  PubMed Central  Google Scholar 

  106. I.M. Schaefer, C.D. Fletcher, J.L. Hornick, Loss of H3K27 trimethylation distinguishes malignant peripheral nerve sheath tumors from histologic mimics. Mod. Pathol. 29, 4–13 (2015)

    Article  PubMed  CAS  Google Scholar 

  107. B.E. Bernstein, T.S. Mikkelsen, X. Xie, M. Kamal, D.J. Huebert, J. Cuff, B. Fry, A. Meissner, M. Wernig, K. Plath, R. Jaenisch, A. Wagschal, R. Feil, S.L. Schreiber, E.S. Lander, A bivalent chromatin structure marks key developmental genes in embryonic stem cells. Cell 125, 315–326 (2006)

    Article  CAS  PubMed  Google Scholar 

  108. A.P. Bracken, D. Kleine-Kohlbrecher, N. Dietrich, D. Pasini, G. Gargiulo, C. Beekman, K. Theilgaard-Mönch, S. Minucci, B.T. Porse, J.C. Marine, K.H. Hansen, K. Helin, The Polycomb group proteins bind throughout the INK4A-ARF locus and are disassociated in senescent cells. Genes Dev. 21, 525–530 (2007)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  109. J.Y. Yao, L. Zhang, X. Zhang, Z.Y. He, Y. Ma, L.J. Hui, X. Wang, Y.P. Hu, H3K27 trimethylation is an early epigenetic event of p16INK4a silencing for regaining tumorigenesis in fusion reprogrammed hepatoma cells. J. Biol. Chem. 285, 18828–18837 (2010)

    CAS  PubMed  PubMed Central  Google Scholar 

  110. C. Vallot, A. Hérault, S. Boyle, W.A. Bickmore, F. Radvanyi, PRC2-independent chromatin compaction and transcriptional repression in cancer. Oncogene 34, 741–751 (2015)

    Article  CAS  PubMed  Google Scholar 

  111. P.B. Talbert, S. Henikoff, Histone variants-ancient wrap artists of the epigenome. Nat. Rev. Mol. Cell Biol. 11, 264–275 (2010)

    Article  CAS  PubMed  Google Scholar 

  112. M. Hondele, A.G. Ladurner, The chaperone-histone partnership: for the greater good of histone traffic and chromatin plasticity. Curr. Opin. Struct. Biol. 21, 698–708 (2011)

    Article  CAS  PubMed  Google Scholar 

  113. C. Bonisch, S.B. Hake, Histone H2A variants in nucleosomes and chromatin: more or less stable? Nucleic Acids Res. 40, 10719–10741 (2012)

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  114. H. Tachiwana, A. Osakabe, T. Shiga, Y. Miya, H. Kimura, W. Kagawa, H. Kurumizaka, Structures of human nucleosomes containing major histone H3 variants. Acta Crystallogr. 67, 578–583 (2011)

    CAS  Google Scholar 

  115. A. Izzo, K. Kamieniarz, R. Schneider, The histone H1 family: specific members, specific functions? Biol. Chem. 389, 333–343 (2008)

    Article  CAS  PubMed  Google Scholar 

  116. E. Dardenne, S. Pierredon, K. Driouch, L. Gratadou, M. Lacroix-Triki, M.P. Espinoza, E. Zonta, S. Germann, H. Mortada, J.P. Villemin, M. Dutertre, R. Lidereau, S. Vagner, D. Auboeuf, Splicing switch of an epigenetic regulator by RNA helicases promotes tumor-cell invasiveness. Nat. Struct. Mol. Biol. 19, 1139–1146 (2012)

    Article  CAS  PubMed  Google Scholar 

  117. C. Vardabasso, A. Gaspar-Maia, D. Hasson, S. Pünzeler, D. Valle-Garcia, T. Straub, E.C. Keilhauer, T. Strub, J. Dong, T. Panda, C.Y. Chung, J.L. Yao, R. Singh, M.F. Segura, B. Fontanals-Cirera, A. Verma, M. Mann, E. Hernando, S.B. Hake, E. Bernstein, Histone variant H2A.Z.2 mediates proliferation and drug sensitivity of malignant melanoma. Mol. Cell 59, 75–88 (2015)

    Article  CAS  PubMed  Google Scholar 

  118. A. Kapoor, M.S. Goldberg, L.K. Cumberland, K. Ratnakumar, M. Segura, P.O. Emanuel, S. Menendez, C. Vardabasso, G. Leroy, C.I. Vidal, D. Polsky, I. Osman, B.A. Garcia, E. Hernando, E. Bernstein, The histone variant macroH2A suppresses melanoma progression through regulation of CDK8. Nature 468, 1105–1109 (2010)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  119. L. Novikov, J.W. Park, H. Chen, H. Klerman, A.S. Jalloh, M.J. Gamble, QKI-mediated alternative splicing of the histone variant MacroH2A1 regulates cancer cell proliferation. Mol. Cell. Biol. 31, 4244–4255 (2011)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  120. A. Gaspar-Maia, Z.A. Qadeer, D. Hasson, K. Ratnakumar, N.A. Leu, G. Leroy, S. Liu, C. Costanzi, D. Valle-Garcia, C. Schaniel, I. Lemischka, B. Garcia, J.R. Pehrson, E. Bernstein, MacroH2A histone variants act as a barrier upon reprogramming towards pluripotency. Nat. Commun. 4, 1565 (2013)

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  121. B.E. Black, D.W. Cleveland, Epigenetic centromere propagation and the nature of CENP-a nucleosomes. Cell 144, 471–479 (2011)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  122. M.C. Barnhart, P.H. Kuich, M.E. Stellfox, J.A. Ward, E.A. Bassett, B.E. Black, D.R. Foltz, HJURP is a CENP-A chromatin assembly factor sufficient to form a functional de novo kinetochore. J. Cell Biol. 194, 229–243 (2011)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  123. T. Tomonaga, K. Matsushita, S. Yamaguchi, T. Oohashi, H. Shimada, T. Ochiai, K. Yoda, F. Nomura, Overexpression and mistargeting of centromere protein-A in human primary colorectal cancer. Cancer Res. 63, 3511–3516 (2003)

    CAS  PubMed  Google Scholar 

  124. Q. Wu, Y.M. Qian, X.L. Zhao, S.M. Wang, X.J. Feng, X.F. Chen, S.H. Zhang, Expression and prognostic significance of centromere protein A in human lung adenocarcinoma. Lung Cancer 77, 407–414 (2012)

    Article  PubMed  Google Scholar 

  125. K. Biermann, L.C. Heukamp, K. Steger, H. Zhou, F.E. Franke, I. Guetgemann, V. Sonnack, R. Brehm, J. Berg, P.J. Bastian, S.C. Müller, L. Wang-Eckert, H. Schorle, R. Büttner, Gene expression profiling identifies new biological markers of neoplastic germ cells. Anticancer Res. 27, 3091–3100 (2007)

    CAS  PubMed  Google Scholar 

  126. X.M. Gu, J. Fu, X.J. Feng, X. Huang, S.M. Wang, X.F. Chen, M.H. Zhu, S.H. Zhang, Expression and prognostic relevance of centromere protein A in primary osteosarcoma. Pathol. Res. Pract. 210, 228–233 (2014)

    Article  CAS  PubMed  Google Scholar 

  127. J.J. Qiu, J.J. Guo, T.J. Lv, H.Y. Jin, J.X. Ding, W.W. Feng, Y. Zhang, K.Q. Hua, Prognostic value of centromere protein-A expression in patients with epithelial ovarian cancer. Tumour Biol. 34, 2971–2975 (2013)

    Article  CAS  PubMed  Google Scholar 

  128. S.L. McGovern, Y. Qi, L. Pusztai, W.F. Symmans, T.A. Buchholz, Centromere protein-A, an essential centromere protein, is a prognostic marker for relapse in estrogen receptor-positive breast cancer. Breast Cancer Res. 14, R72 (2012)

    Article  PubMed  PubMed Central  Google Scholar 

  129. Q. Wu, Y.F. Chen, J. Fu, Q.H. You, S.M. Wang, X. Huang, X.J. Feng, S.H. Zhang, Short hairpin RNA-mediated down-regulation of CENP-A attenuates the aggressive phenotype of lung adenocarcinoma cells. Cell. Oncol. 37, 399–407 (2014)

    Article  CAS  Google Scholar 

  130. R.K. Athwal, M.P. Walkiewicz, S. Baek, S. Fu, M. Bui, J. Camps, T. Ried, M.H. Sung, Y. Dalal, CENP-A nucleosomes localize to transcription factor hotspots and subtelomeric sites in human cancer cells. Epigenetics Chromatin 8, 2 (2015)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  131. J. Bieniek, C. Childress, M.D. Swatski, W. Yang, COX-2 inhibitors arrest prostate cancer cell cycle progression by down-regulation of kinetochore/centromere proteins. Prostate 74, 999–1011 (2014)

    Article  CAS  PubMed  Google Scholar 

  132. J. Schwartzentruber, A. Korshunov, X.Y. Liu, D.T. Jones, E. Pfaff, K. Jacob, D. Sturm, A.M. Fontebasso, D.A. Quang, M. Tönjes, V. Hovestadt, S. Albrecht, M. Kool, A. Nantel, C. Konermann, A. Lindroth, N. Jäger, T. Rausch, M. Ryzhova, J.O. Korbel, T. Hielscher, P. Hauser, M. Garami, A. Klekner, L. Bognar, M. Ebinger, M.U. Schuhmann, W. Scheurlen, A. Pekrun, M.C. Frühwald, W. Roggendorf, C. Kramm, M. Dürken, J. Atkinson, P. Lepage, A. Montpetit, M. Zakrzewska, K. Zakrzewski, P.P. Liberski, Z. Dong, P. Siegel, A.E. Kulozik, M. Zapatka, A. Guha, D. Malkin, J. Felsberg, G. Reifenberger, A. von Deimling, K. Ichimura, V.P. Collins, H. Witt, T. Milde, O. Witt, C. Zhang, P. Castelo-Branco, P. Lichter, D. Faury, U. Tabori, C. Plass, J. Majewski, S.M. Pfister, N. Jabado, Driver mutations in histone H3.3 and chromatin remodelling genes in paediatric glioblastoma. Nature 482, 226–231 (2012)

    Article  CAS  PubMed  Google Scholar 

  133. G. Wu, A. Broniscer, T.A. McEachron, C. Lu, B.S. Paugh, J. Becksfort, C. Qu, L. Ding, R. Huether, M. Parker, J. Zhang, A. Gajjar, M.A. Dyer, C.G. Mullighan, R.J. Gilbertson, E.R. Mardis, R.K. Wilson, J.R. Downing, D.W. Ellison, J. Zhang, S.J. Baker, St. Jude Children's Research Hospital–Washington University Pediatric Cancer Genome Project, Somatic histone H3 alterations in pediatric diffuse intrinsic pontine gliomas and non-brainstem glioblastomas. Nat. Genet. 44, 251–253 (2012)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  134. J. Okosun, C. Bödör, J. Wang, S. Araf, C.Y. Yang, C. Pan, S. Boller, D. Cittaro, M. Bozek, S. Iqbal, J. Matthews, D. Wrench, J. Marzec, K. Tawana, N. Popov, C. O’Riain, D. O’Shea, E. Carlotti, A. Davies, C.H. Lawrie, A. Matolcsy, M. Calaminici, A. Norton, R.J. Byers, C. Mein, E. Stupka, T.A. Lister, G. Lenz, S. Montoto, J.G. Gribben, Y. Fan, R. Grosschedl, C. Chelala, J. Fitzgibbon, Integrated genomic analysis identifies recurrent mutations and evolution patterns driving the initiation and progression of follicular lymphoma. Nat. Genet. 46, 176–181 (2014)

    Article  CAS  PubMed  Google Scholar 

  135. C. Jiang, B.F. Pugh, Nucleosome positioning and gene regulation: advances through genomics. Nat. Rev. Genet. 10, 161–172 (2009)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  136. J.L. Workman, R.E. Kingston, Alteration of nucleosome structure as a mechanism of transcriptional regulation. Annu. Rev. Biochem. 67, 545–579 (1998)

    Article  CAS  PubMed  Google Scholar 

  137. G.C. Yuan, Y.J. Liu, M.F. Dion, M.D. Slack, L.F. Wu, S.J. Altschuler, O.J. Rando, Genome-scale identification of nucleosome positions in S. cerevisiae. Science 309, 626–630 (2005)

    Article  CAS  PubMed  Google Scholar 

  138. F. Ozsolak, J.S. Song, X.S. Liu, D.E. Fisher, High-throughput mapping of the chromatin structure of human promoters. Nat. Biotechnol. 25, 244–248 (2007)

    Article  CAS  PubMed  Google Scholar 

  139. W. Lee, D. Tillo, N. Bray, R.H. Morse, R.W. Davis, T.R. Hughes, C. Nislow, A high-resolution atlas of nucleosome occupancy in yeast. Nat. Genet. 39, 1235–1244 (2007)

    Article  CAS  PubMed  Google Scholar 

  140. D.E. Schones, K. Cui, S. Cuddapah, T.Y. Roh, A. Barski, Z. Wang, G. Wei, K. Zhao, Dynamic regulation of nucleosome positioning in the human genome. Cell 32, 887–898 (2008)

    Article  CAS  Google Scholar 

  141. S. Schwartz, E. Meshorer, G. Ast, Chromatin organization marks exon-intron structure. Nat. Struct. Mol. Biol. 16, 990–995 (2009)

    Article  CAS  PubMed  Google Scholar 

  142. T. Misteli, E. Soutoglou, The emerging role of nuclear architecture in DNA repair and genome maintenance. Nat. Rev. Mol. Cell. Biol. 10, 243–254 (2009)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  143. S. Sasaki, C.C. Mello, A. Shimada, Y. Nakatani, S. Hashimoto, M. Ogawa, K. Matsushima, S.G. Gu, M. Kasahara, B. Ahsan, A. Sasaki, T. Saito, Y. Suzuki, S. Sugano, Y. Kohara, H. Takeda, A. Fire, S. Morishita, Chromatin-associated periodicity in genetic variation downstream of transcriptional start sites. Science 323, 401–404 (2009)

    Article  CAS  PubMed  Google Scholar 

  144. K. Higasa, K. Hayashi, Periodicity of SNP distribution around transcription start sites. BMC Genomics 7, 66 (2006)

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  145. J.G. Prendergast, H. Campbell, N. Gilbert, M.G. Dunlop, W.A. Bickmore, C.A. Semple, Chromatin structure and evolution in the human genome. BMC Evol. Biol. 7, 72 (2007)

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  146. P.G. Yazdi, B.A. Pedersen, J.F. Taylor, O.S. Khattab, Y.H. Chen, Y. Chen, S.E. Jacobsen, P.H. Wang, Increasing nucleosome occupancy is correlated with an increasing mutation rate so long as DNA repair machinery is intact. PLoS One 10, e0136574 (2015)

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  147. P. Polak, R. Karlić, A. Koren, R. Thurman, R. Sandstrom, M.S. Lawrence, A. Reynolds, E. Rynes, K. Vlahoviček, J.A. Stamatoyannopoulos, S.R. Sunyaev, Cell-of-origin chromatin organization shapes the mutational landscape of cancer. Nature 518, 360–364 (2015)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  148. P. Polak, M.S. Lawrence, E. Haugen, N. Stoletzki, P. Stojanov, R.E. Thurman, L.A. Garraway, S. Mirkin, G. Getz, J.A. Stamatoyannopoulos, S.R. Sunyaev, Reduced local mutation density in regulatory DNA of cancer genomes is linked to DNA repair. Nat. Biotechnol. 32, 71–75 (2014)

    Article  CAS  PubMed  Google Scholar 

  149. B. Schuster-Böckler, B. Lehner, Chromatin organization is a major influence on regional mutation rates in human cancer cells. Nature 488, 504–507 (2012)

    Article  PubMed  CAS  Google Scholar 

  150. A. Hodgkinson, Y. Chen, A. Eyre-Walker, The large-scale distribution of somatic mutations in cancer genomes. Hum. Mutat. 33, 136–143 (2012)

    Article  CAS  PubMed  Google Scholar 

  151. S. Ortiz-Cuaran, D. Cox, S. Villar, M.D. Friesen, G. Durand, A. Chabrier, T. Khuhaprema, S. Sangrajrang, S. Ognjanovic, J.D. Groopman, P. Hainaut, F. Le Calvez-Kelm, Association between TP53 R249S mutation and polymorphisms in TP53 intron 1 in hepatocellular carcinoma. Genes Chromosom. Cancer 52, 912–919 (2013)

    Article  CAS  PubMed  Google Scholar 

  152. L.E. Mechanic, E.D. Bowman, J.A. Welsh, M.A. Khan, N. Hagiwara, L. Enewold, P.G. Shields, L. Burdette, S. Chanock, C.C. Harris, Common genetic variation in TP53 is associated with lung cancer risk and prognosis in African Americans and somatic mutations in lung tumors. Cancer Epidemiol. Biomarkers Prev. 16, 214–222 (2007)

    Article  CAS  PubMed  Google Scholar 

  153. C. Lemaître, A. Grabarz, K. Tsouroula, L. Andronov, A. Furst, T. Pankotai, V. Heyer, M. Rogier, K.M. Attwood, P. Kessler, G. Dellaire, B. Klaholz, B. Reina-San-Martin, E. Soutoglou, Nuclear position dictates DNA repair pathway choice. Genes Dev. 28, 2450–2463 (2014)

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  154. F. Aymard, B. Bugler, C.K. Schmidt, E. Guillou, P. Caron, S. Briois, J.S. Iacovoni, V. Daburon, K.M. Miller, S.P. Jackson, G. Legube, Transcriptionally active chromatin recruits homologous recombination at DNA double-strand breaks. Nat. Struct. Mol. Biol. 21, 366–374 (2014)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  155. S.X. Pfister, S. Ahrabi, L.P. Zalmas, S. Sarkar, F. Aymard, C.Z. Bachrati, T. Helleday, G. Legube, N.B. La Thangue, A.C. Porter, T.C. Humphrey, SETD2-dependent histone H3K36 trimethylation is required for homologous recombination repair and genome stability. Cell Rep. 7, 2006–2018 (2014)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  156. C.L. Zheng, N.J. Wang, J. Chung, H. Moslehi, J.Z. Sanborn, J.S. Hur, E.A. Collisson, S.S. Vemula, A. Naujokas, K.E. Chiotti, J.B. Cheng, H. Fassihi, A.J. Blumberg, C.V. Bailey, G.M. Fudem, F.G. Mihm, B.B. Cunningham, I.M. Neuhaus, W. Liao, D.H. Oh, J.E. Cleaver, P.E. LeBoit, J.F. Costello, A.R. Lehmann, J.W. Gray, P.T. Spellman, S.T. Arron, N. Huh, E. Purdom, R.J. Cho, Transcription restores DNA repair to heterochromatin, determining regional mutation rates in cancer genomes. Cell Rep. 9, 1228–1234 (2014)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  157. A. Kalousi, A.S. Hoffbeck, P.N. Selemenakis, J. Pinder, K.I. Savage, K.K. Khanna, L. Brino, G. Dellaire, V.G. Gorgoulis, E. Soutoglou, The nuclear oncogene SET controls DNA repair by KAP1 and HP1 retention to chromatin. Cell Rep. 11, 149–163 (2015)

    Article  CAS  PubMed  Google Scholar 

  158. M. Gkotzamanidou, E. Terpos, C. Bamia, S.A. Kyrtopoulos, P.P. Sfikakis, M.A. Dimopoulos, V.L. Souliotis, Progressive changes in chromatin structure and DNA damage response signals in bone marrow and peripheral blood during myelomagenesis. Leukemia 28, 1113–1121 (2014)

    Article  CAS  PubMed  Google Scholar 

  159. L.B. Hesson, M.A. Sloane, J.W. Wong, A.C. Nunez, S. Srivastava, B. Ng, N.J. Hawkins, M.J. Bourke, R.L. Ward, Altered promoter nucleosome positioning is an early event in gene silencing. Epigenetics 9, 1422–1430 (2014)

    Article  PubMed  PubMed Central  Google Scholar 

  160. L.B. Hesson, V. Patil, M.A. Sloane, A.C. Nunez, J. Liu, J.E. Pimanda, R.L. Ward, Reassembly of nucleosomes at the MLH1 promoter initiates resilencing following decitabine exposure. PLoS Genet. 9, e1003636 (2013)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  161. A.A. Alekseyenko, E.M. Walsh, X. Wang, A.R. Grayson, P.T. Hsi, P.V. Kharchenko, M.I. Kuroda, C.A. French, The oncogenic BRD4-NUT chromatin regulator drives aberrant transcription within large topological domains. Genes Dev. 29, 1507–1523 (2015)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  162. S.R. James, C.D. Cedeno, A. Sharma, W. Zhang, J.L. Mohler, K. Odunsi, E.M. Wilson, A.R. Karpf, DNA methylation and nucleosome occupancy regulate the cancer germline antigen gene MAGEA11. Epigenetics 8, 849–863 (2013)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgments

This work was supported by a grant of the Russian Government (agreement # 02.A03.21.0002) to support the Program of Competitive Growth of the Kazan Federal University among the World’s Leading Academic Centers.

I would like to sincerely thank Mrs. Konstantina Vergadou for help in editing the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Angelo Ferraro.

Ethics declarations

Conflict of interest

Nothing to declare.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ferraro, A. Altered primary chromatin structures and their implications in cancer development. Cell Oncol. 39, 195–210 (2016). https://doi.org/10.1007/s13402-016-0276-6

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13402-016-0276-6

Keywords

Navigation