Skip to main content

Advertisement

Log in

Secretome profiling of heterotypic spheroids suggests a role of fibroblasts in HIF-1 pathway modulation and colorectal cancer photodynamic resistance

  • Original Paper
  • Published:
Cellular Oncology Aims and scope Submit manuscript

Abstract

Purpose

Previous analyses of the tumor microenvironment (TME) have resulted in a concept that tumor progression may depend on interactions between cancer cells and its surrounding stroma. An important aspect of these interactions is the ability of cancer cells to modulate stroma behavior, and vice versa, through the action of a variety of soluble mediators. Here, we aimed to identify soluble factors present in the TME of colorectal cancer cells that may affect relevant pathways through secretome profiling.

Methods

To partially recapitulate the TME and its architecture, we co-cultured colorectal cancer cells (SW480, TC) with stromal fibroblasts (MRC-5, F) as 3D-spheroids. Subsequent characterization of both homotypic (TC) and heterotypic (TC + F) spheroid secretomes was performed using label-free liquid chromatography-mass spectrometry (LC-MS).

Results

Through bioinformatic analysis using the NCI-Pathway Interaction Database (NCI-PID) we found that the HIF-1 signaling pathway was most highly enriched among the proteins whose secretion was enhanced in the heterotypic spheroids. Previously, we found that HIF-1 may be associated with resistance of colorectal cancer cells to photodynamic therapy (PDT), an antitumor therapy that combines photosensitizing agents, O2 and light to create a harmful photochemical reaction. Here, we found that the presence of fibroblasts considerably diminished the sensitivity of colorectal cancer cells to photodynamic activity. Although the biological significance of the HIF-1 pathway of secretomes was decreased after photosensitization, this decrease was partially reversed in heterotypic 3D-spheroids. HIF-1 pathway modulation by both PDT and stromal fibroblasts was confirmed through expression assessment of the HIF-target VEGF, as well as through HIF transcriptional activity assessment.

Conclusion

Collectively, our results delineate a potential mechanism by which stromal fibroblasts may enhance colorectal cancer cell survival and photodynamic treatment resistance via HIF-1 pathway modulation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Abbreviations

3D:

Three dimensional

AGC:

Automatic gain control

CRC:

Colorectal cancer

DMSO:

Dimethyl sulfoxide

ENO1:

Enolase 1

F:

Fibroblast

FBS:

Fetal bovine serum

GFP:

Green fluorescent protein

GLUT-1:

Glucose transporter 1

HCD:

High energy collision induced dissociation

HIF-1:

Hypoxia inducible factor-1

LDHA:

Lactate dehydrogenase

LC-MS:

Liquid chromatography–Mass spectrometry

LFQ:

Label-free quantification

Me-ALA:

Aminolevulinic acid methyl ester

MTT:

1-(4,5-dimethylthiazol-2-yl)-3,5-diphenylformazan

NCI-PID:

National Cancer Institute–Pathway Interaction Database

NPM1:

Nucleophosmin

PAI-1:

Plasminogen activator inhibitor 1

PBS:

Phosphate buffer saline

PpIX:

Protoporphyrin IX

PS:

Photosensitizer

TC:

Tumor cell

TFRC:

Transferrin receptor protein 1

VEGF:

Vascular endothelial growth factor

References

  1. P. Nilendu, S. Sarode, D. Jahagirdar, I. Tandon, S. Patil, G. Sarode, J. Pal, N. Sharma, Mutual concessions and compromises between stromal cells and cancer cells: Driving tumor development and drug resistance. Cell. Oncol. 41, 353 (2018)

    Article  CAS  Google Scholar 

  2. N. Eiro, L. González, A. Martínez-Ordoñez, B. Fernandez-Garcia, L. González, S. Cid, F. Dominguez, R. Perez-Fernandez, F. Vizoso, Cancer-associated fibroblasts affect breast cancer cell gene expression, invasion and angiogenesis. Cell. Oncol. 41, 369 (2018)

    Article  CAS  Google Scholar 

  3. P. Cirri, P. Chiarugi, Cancer-associated-fibroblasts and tumour cells: A diabolic liaison driving cancer progression. Cancer Metastasis Rev. 31, 195 (2012)

    Article  PubMed  Google Scholar 

  4. J. Paltridge, L. Belle, Y. Khew-Goodall, Advances in the proteomic investigation of the cell secretome. Biochim. Biophys. Acta 1834, 2233 (2013)

    Article  CAS  PubMed  Google Scholar 

  5. K. Brown, C. Formolo, H. Seol, R. Marathi, S. Duguez, E. An, D. Pillai, J. Nazarian, B. Rood, Y. Hathout, Advances in the proteomic investigation of the cell secretome. Expert Rev. Proteomics 9, 337 (2012)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. D. Hanahan, L. Coussens, Accessories to the crime: Functions of cells recruited to the tumor microenvironment. Cancer Cell 21, 309 (2012)

    Article  CAS  PubMed  Google Scholar 

  7. D. Hanahan, R. Weinberg, Hallmarks of cancer: The next generation. Cell 144, 646 (2011)

    Article  CAS  PubMed  Google Scholar 

  8. P. Agostinis, E. Buytaert, H. Breyssens, N. Hendrickx, Regulatory pathways in photodynamic therapy induced apoptosis. Photochem. Photobiol. Sci. 3, 721 (2004)

    Article  CAS  PubMed  Google Scholar 

  9. N. Rumie Vittar, M. Lamberti, M. Pansa, R. Vera, M. Rodriguez, I. Cogno, L. Milla Sanabria, V. Rivarola, Ecological photodynamic therapy: New trend to disrupt the intricate networks within tumor ecosystem. Biochim. Biophys. Acta 1835, 86 (2013)

    CAS  PubMed  Google Scholar 

  10. A. Kawczyk-Krupka, A. Bugaj, W. Latos, K. Zaremba, K. Wawrzyniec, A. Sieroń, Photodynamic therapy in colorectal cancer treatment: The state of the art in clinical trials. Photodiagn. Photodyn. Ther. 12, 545 (2015)

    Article  Google Scholar 

  11. M. Lamberti, M. Pansa, R. Vera, M. Fernandez-Zapico, N. Rumie Vittar, V. Rivarola, Transcriptional activation of HIF-1 by a ROS-ERK axis underlies the resistance to photodynamic therapy. PLoS One 12, e0177801 (2017)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. M. Rodríguez, C. Catrinacio, A. Ropolo, V. Rivarola, M. Vaccaro, A novel HIF-1α/VMP1-autophagic pathway induces resistance to photodynamic therapy in colon cancer cells. Photochem. Photobiol. Sci. 16, 1631 (2017)

    Article  PubMed  Google Scholar 

  13. U. Brockmeier, C. Platzek, K. Schneider, P. Patak, A. Bernardini, J. Fandrey, E. Metzen, The function of hypoxia-inducible factor (HIF) is independent of the endoplasmic reticulum protein OS-9. PLoS One 6, e19151 (2011)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. M. Pansa, M. Lamberti, I. Cogno, S. Correa, N. Rumie Vittar, V. Rivarola, Contribution of resident and recruited macrophages to the photodynamic intervention of colorectal tumor microenvironment. Tumour Biol. 37, 541 (2016)

    Article  CAS  PubMed  Google Scholar 

  15. W. Metzger, D. Sossong, A. Bächle, N. Pütz, G. Wennemuth, T. Pohlemann, M. Oberringer, The liquid overlay technique is the key to formation of co-culture spheroids consisting of primary osteoblasts, fibroblasts and endothelial cells. Cytotherapy 13, 1000 (2011)

    Article  CAS  PubMed  Google Scholar 

  16. M. Lamberti, M. Pansa, R. Vera, N. Rumie Vittar, V. Rivarola, Photodynamic therapy potentiates the paracrine endothelial stimulation by colorectal cancer. Laser Phys. 24, 8 (2014)

    Article  Google Scholar 

  17. G. Comito, E. Giannoni, P. Di Gennaro, C. Segura, G. Gerlini, P. Chiarugi, Stromal fibroblasts synergize with hypoxic oxidative stress to enhance melanoma aggressiveness. Cancer Lett. 324, 31 (2012)

    Article  CAS  PubMed  Google Scholar 

  18. C. Hughes, S. Foehr, D. Garfield, E. Furlong, L. Steinmetz, J. Krijgsveld, Ultrasensitive proteome analysis using paramagnetic bead technology. Mol. Syst. Biol. 10, 10 (2014)

    Article  CAS  Google Scholar 

  19. J. Gouw, J. Krijgsveld, MSQuant: A platform for stable isotope-based quantitative proteomics. Methods Mol. Biol. 893, 511 (2012)

    Article  CAS  PubMed  Google Scholar 

  20. M. Arntzen, I. Karlskås, M. Skaugen, V. Eijsink, G. Mathiesen, Proteomic investigation of the response of enterococcus faecalis V583 when cultivated in urine. PLoS One 10, e0126694 (2015)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Y. Zhang, Z. Dong, D. Wang, Y. Wu, Q. Song, P. Gu, P. Zhao, Q. Xia, Proteomics of larval hemolymph in Bombyx mori reveals various nutrient-storage and immunity-related proteins. Amino Acids 46, 1021 (2014)

    Article  CAS  PubMed  Google Scholar 

  22. J. Bendtsen, L. Jensen, N. Blom, G. Von Heijne, S. Brunak, Eature-based prediction of non-classical and leaderless protein secretion. Protein Eng. Des. Sel. 17, 349 (2004)

    Article  CAS  PubMed  Google Scholar 

  23. T. Petersen, S. Brunak, G. von Heijne, H. Nielsen, SignalP 4.0: Discriminating signal peptides from transmembrane regions. Nat. Methods 8, 785 (2011)

    Article  CAS  PubMed  Google Scholar 

  24. C. von Mering, M. Huynen, D. Jaeggi, S. Schmidt, P. Bork, B. Snel, STRING: A database of predicted functional associations between proteins. Nucleic Acids Res. 31, 258 (2003)

    Article  CAS  Google Scholar 

  25. C. Schaefer, K. Anthony, S. Krupa, J. Buchoff, M. Day, T. Hannay, K. Buetow, PID: The pathway interaction database. Nucleic Acids Res. 37, D674 (2009)

    Article  CAS  PubMed  Google Scholar 

  26. M. Ashburner, C. Ball, J. Blake, D. Botstein, H. Butler, J. Cherry, A. Davis, K. Dolinski, S. Dwight, J. Eppig, M. Harris, D. Hill, L. Issel-Tarver, A. Kasarskis, S. Lewis, J. Matese, J. Richardson, M. Ringwald, G. Rubin, G. Sherlock, Gene ontology: Tool for the unification of biology. The gene ontology consortium. Nat. Genet. 25, 25 (2000)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. M. Lamberti, N. Rumie Vittar, F. de Carvalho da Silva, V. Ferreira, V. Rivarola, Synergistic enhancement of antitumor effect of B-Lapachone by photodynamic induction of quinone oxidoreductase (NQO1). Phytomedicine 20, 1007 (2013)

    Article  CAS  PubMed  Google Scholar 

  28. C. Hellweg, C. Baumstark-Khan, G. Horneck, Enhanced green fluorescent protein as reporter protein for biomonitoring of cytotoxic effects in mammalian cells. Anal. Chim. Acta 427, 191 (2001)

    Article  CAS  Google Scholar 

  29. L. Milla, I. Cogno, M. Rodríguez, F. Sanz-Rodríguez, A. Zamarrón, Y. Gilaberte, E. Carrasco, V. Rivarola, A. Juarranz, Isolation and characterization of squamous carcinoma cells resistant to photodynamic therapy. J. Cell. Biochem. 112, 2266 (2011)

    Article  CAS  PubMed  Google Scholar 

  30. V.G. Peddareddigari, D. Wang, R.N. Dubois, The tumor microenvironment in colorectal carcinogenesis. Cancer Microenviron. 3, 149 (2010)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. C. Koumenis, L. Coussens, A. Giaccia, E. Hammond, Tumor Microenvironment: Study Protocols, vol. 899 (Springer, 2016)

  32. T. Tsujino, I. Seshimo, H. Yamamoto, C. Ngan, K. Ezumi, I. Takemasa, M. Ikeda, M. Sekimoto, N. Matsuura, M. Monden, Stromal myofibroblasts predict disease recurrence for colorectal cancer. Clin. Cancer Res. 13, 2082 (2007)

    Article  CAS  PubMed  Google Scholar 

  33. G. Karagiannis, M. Pavlou, E. Diamandis, Cancer secretomics reveal pathophysiological pathways in cancer molecular oncology. Mol. Oncol. 4, 496 (2010)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. H. Soares, J. Campos, L. Gomes-da-Silva, F. Schaberle, J. Dabrowski, L. Arnaut, Pro-oxidant and antioxidant effects in photodynamic therapy: Cells recognise that not all exogenous ROS are alike. Chembiochem 17, 836 (2016)

    Article  CAS  PubMed  Google Scholar 

  35. M.D. Glidden, I. Massodi, I. Rizvi, J.P. Celli, T. Hasan, Probing tumor-stroma interactions and response to photodynamic therapy in a 3D pancreatic cancer-fibroblast co-culture model. Proc. SPIE 8210, 821006 (2012)

    Article  CAS  Google Scholar 

  36. K. Lauber, A. Ernst, M. Orth, M. Herrmann, C. Belka, Dying cell clearance and its impact on the outcome of tumor radiotherapy. Front. Oncol. 2, 116 (2012)

    Article  PubMed  PubMed Central  Google Scholar 

  37. V. Carroll, M. Ashcroft, Role of hypoxia-inducible factor (HIF)-1alpha versus HIF-2alpha in the regulation of HIF target genes in response to hypoxia, insulin-like growth factor-I, or loss of von Hippel-Lindau function: Implications for targeting the HIF pathway. Cancer Res. 66, 6264 (2006)

    Article  CAS  PubMed  Google Scholar 

  38. T. Wu, Y. Dai, Tumor microenvironment and therapeutic response. Cancer Lett. 387, 61 (2017)

    Article  CAS  PubMed  Google Scholar 

  39. S. Sant, P. Johnston, The production of 3D tumor spheroids for cancer drug discovery. Drug Discov. Today Technol. 23, 27 (2017)

    Article  PubMed  PubMed Central  Google Scholar 

  40. M. Zanoni, F. Piccinini, C. Arienti, A. Zamagni, S. Santi, R. Polico, A. Bevilacqua, A. Tesei, 3D tumor spheroid models for in vitro therapeutic screening: A systematic approach to enhance the biological relevance of data obtained. Sci. Rep. 6, 19103 (2016)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. A. Amann, M. Zwierzina, G. Gamerith, M. Bitsche, J. Huber, G. Vogel, M. Blumer, S. Koeck, E. Pechriggl, J. Kelm, W. Hilbe, H. Zwierzina, Development of an innovative 3D cell culture system to study tumour--stroma interactions in non-small cell lung cancer cells. PLoS One 9, e92511 (2014)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. L. Villarreal, O. Méndez, C. Salvans, J. Gregori, J. Baselga, J. Villanueva, Unconventional secretion is a major contributor of cancer cell line secretomes. Mol. Cell. Proteomics 12, 1046 (2013)

    Article  CAS  PubMed  Google Scholar 

  43. G. Butler, C. Overall, proteomic identification of multitasking proteins in unexpected locations complicates drug targeting. Nat. Rev. Drug Discov. 8, 935 (2009)

    Article  CAS  PubMed  Google Scholar 

  44. D. Radisky, M. Stallings-Mann, Y. Hirai, M. Bissell, Single proteins might have dual but related functions in intracellular and extracellular microenvironments. Nat. Rev. Mol. Cell Biol. 10, 228 (2009)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. D. Fukumura, R. Xavier, T. Sugiura, Y. Chen, E. Park, N. Lu, M. Selig, G. Nielsen, T. Taksir, R. Jain, B. Seed, Tumor induction of VEGF promoter activity in stromal cells. Cell 94, 715 (1998)

    Article  CAS  PubMed  Google Scholar 

  46. R. Kalluri, M. Zeisberg, Fibroblasts in cancer. Nat. Rev. Cancer 6, 392 (2006)

    Article  CAS  PubMed  Google Scholar 

  47. C. Holohan, S. Van Schaeybroeck, D. Longley, P. Johnston, Cancer drug resistance: An evolving paradigm. Nat. Rev. Cancer 13, 714 (2013)

    Article  CAS  PubMed  Google Scholar 

  48. S. Jung, H. Song, S. Park, S. Chung, Y. Kim, Pyruvate promotes tumor angiogenesis through HIF-1-dependent PAI-1 expression. Int. J. Oncol. 38, 571 (2011)

    CAS  PubMed  Google Scholar 

  49. Y. Ahn, M. Chua, J.J. Whitlock, Y. Shin, W. Song, Y. Kim, C. Eom, W. An, Rodent-specific hypoxia response elements enhance PAI-1 expression through HIF-1 or HIF-2 in mouse hepatoma cells. Int. J. Oncol. 37, 1627 (2010)

    CAS  PubMed  Google Scholar 

  50. S. Peng, G. Xue, L. Gong, C. Fang, J. Chen, C. Yuan, Z. Chen, L. Yao, B. Furie, M. Huang, A long-acting PAI-1 inhibitor reduce thrombus formation. Thromb. Haemost. 117, 1338 (2017)

  51. G. McMahon, E. Petitclerc, S. Stefansson, E. Smith, M. Wong, R. Westrick, D. Ginsburg, P. Brooks, D. Lawrence, Plasminogen activator inhibitor-1 regulates tumor growth and angiogenesis. J. Biol. Chem. 276, 33964 (2001)

    Article  CAS  PubMed  Google Scholar 

  52. C. Isogai, W. Laug, H. Shimada, P. Declerck, M. Stins, D. Durden, A. Erdreich-Epstein, Y. DeClerck, Plasminogen activator inhibitor-1 promotes angiogenesis by stimulating endothelial cell migration toward fibronectin. Cancer Res. 61, 5587 (2001)

    CAS  PubMed  Google Scholar 

  53. R. Gozzelino, P. Arosio, Iron homeostasis in health and disease. Int. J. Mol. Sci. 17, (2016)

  54. I. Toth, L. Yuan, J. Rogers, H. Boyce, K. Bridges, Hypoxia alters iron-regulatory protein-1 binding capacity and modulates cellular iron homeostasis in human hepatoma and erythroleukemia cells. J. Biol. Chem. 274, 4467 (1999)

    Article  CAS  PubMed  Google Scholar 

  55. L. Tacchini, L. Bianchi, A. Bernelli-Zazzera, G. Cairo, Transferrin receptor induction by hypoxia. HIF-1-mediated transcriptional activation and cell-specific post-transcriptional regulation. J. Biol. Chem. 274, 24142 (1999)

    Article  CAS  PubMed  Google Scholar 

  56. L. Tacchini, E. Gammella, C. De Ponti, S. Recalcati, G. Cairo, Role of HIF-1 and NF-kappaB transcription factors in the modulation of transferrin receptor by inflammatory and anti-inflammatory signals. J. Biol. Chem. 283, 20674 (2008)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. A. de Gassart, C. Geminard, B. Fevrier, G. Raposo, M. Vidal, Lipid raft-associated protein sorting in exosomes. Blood 102, 4336 (2003)

    Article  CAS  PubMed  Google Scholar 

  58. A. Calzolari, C. Raggi, S. Deaglio, N. Sposi, M. Stafsnes, K. Fecchi, I. Parolini, F. Malavasi, C. Peschle, M. Sargiacomo, U. Testa, TfR2 localizes in lipid raft domains and is released in exosomes to activate signal transduction along the MAPK pathway. J. Cell Sci. Pt 21, 4486 (119AD)

  59. M.I. Koukourakis, A. Giatromanolaki, A.L. Harris, E. Sivridis, Comparison of metabolic pathways between cancer cells and stromal cells in colorectal carcinomas: A metabolic survival role for tumor-associated stroma. Cancer Res. 66, 632 (2006)

    Article  CAS  PubMed  Google Scholar 

  60. G. van Niekerk, A. Engelbrecht, Role of PKM2 in directing the metabolic fate of glucose in cancer: A potential therapeutic target. Cell. Oncol. 41, 343 (2018)

    Article  CAS  Google Scholar 

  61. R. Han, F. Wang, P. Zhang, X. Zhou, Y. Li, miR-383 inhibits ovarian cancer cell proliferation, invasion and aerobic glycolysis by targeting LDHA. Neoplasma 64 (2017)

  62. T. He, Y. Zhang, H. Jiang, X. Li, H. Zhu, K. Zheng, The c-Myc-LDHA axis positively regulates aerobic glycolysis and promotes tumor progression in pancreatic cancer. Med. Oncol. 32, 187 (2015)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. M. Capello, S. Ferri-Borgogno, P. Cappello, F. Novelli, α-Enolase: A promising therapeutic and diagnostic tumor target. FEBS J. 287, 1064 (2011)

    Article  CAS  Google Scholar 

  64. C. Hu, A. Sataur, L. Wang, H. Chen, M. Simon, The N-terminal transactivation domain confers target gene specificity of hypoxia-inducible factors HIF-1alpha and HIF-2alpha. Mol. Biol. Cell 18, 4528 (2007)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. G. Semenza, B. Jiang, S. Leung, R. Passantino, J. Concordet, P. Maire, A. Giallongo, Hypoxia response elements in the aldolase a, enolase 1, and lactate dehydrogenase a gene promoters contain essential binding sites for hypoxia-inducible factor 1. J. Biol. Chem. 27, 32529 (1996)

    Article  Google Scholar 

  66. N. Denko, Hypoxia, HIF1 and glucose metabolism in the solid tumour. Nat. Rev. Cancer 8, 705 (2008)

    Article  CAS  PubMed  Google Scholar 

  67. M. Demory Beckler, J. Higginbotham, J. Franklin, A. Ham, P. Halvey, I. Imasuen, C. Whitwell, M. Li, D. Liebler, R. Coffey, Proteomic analysis of exosomes from mutant KRAS colon cancer cells identifies intercellular transfer of mutant KRAS. Mol. Cell. Proteomics 12, 343 (2013)

    Article  CAS  PubMed  Google Scholar 

  68. R. Xu, D. Greening, A. Rai, H. Ji, R. Simpson, Highly-purified exosomes and shed microvesicles isolated from the human colon cancer cell line LIM1863 by sequential centrifugal ultrafiltration are biochemically and functionally distinct. Methods 87, 11 (2015)

    Article  CAS  PubMed  Google Scholar 

  69. D. Choi, J. Lee, G. Park, H. Lim, J. Bang, Y. Kim, K. Kwon, H. Kwon, K. Kim, Y. Gho, Proteomic analysis of microvesicles derived from human colorectal cancer cells. J. Proteome Res. 6, 4646 (2007)

    Article  CAS  PubMed  Google Scholar 

  70. S. Mathivanan, J. Lim, B. Tauro, H. Ji, R. Moritz, R. Simpson, Proteomics analysis of A33 immunoaffinity-purified exosomes released from the human colon tumor cell line LIM1215 reveals a tissue-specific protein signature. Mol. Cell. Proteomics 9, 197 (2010)

    Article  CAS  PubMed  Google Scholar 

  71. R. Borer, C. Lehner, H. Eppenberger, E. Nigg, Major nucleolar proteins shuttle between nucleus and cytoplasm. Cell 56, 379 (1989)

    Article  CAS  PubMed  Google Scholar 

  72. R. Redner, Variations on a theme: The alternate translocations in APL. Leukemia 16, 1927 (2002)

    Article  CAS  PubMed  Google Scholar 

  73. N. Yoneda-Kato, A. Look, M. Kirstein, M. Valentine, S. Raimondi, K. Cohen, A. Carroll, S. Morris, The t(3;5)(q25.1;q34) of myelodysplastic syndrome and acute myeloid leukemia produces a novel fusion gene, NPM-MLF1. Oncogene 12, 265 (1996)

    CAS  PubMed  Google Scholar 

  74. R. Chiarle, J. Gong, I. Guasparri, A. Pesci, J. Cai, J. Liu, W. Simmons, G. Dhall, J. Howes, R. Piva, G. Inghirami, NPM-ALK transgenic mice spontaneously develop T-cell lymphomas and plasma cell tumors. Blood 101, 1919 (2003)

    Article  CAS  PubMed  Google Scholar 

  75. N. van Belzen, M. Diesveld, A. van der Made, Y. Nozawa, W. Dinjens, R. Vlietstra, J. Trapman, F. Bosman, Identification of mRNAs that show modulated expression during colon carcinoma cell differentiation. Eur. J. Biochem. 234, 843 (1995)

    Article  PubMed  Google Scholar 

  76. N. Feuerstein, J. Mond, Identification of a prominent nuclear protein associated with proliferation of normal and malignant B cells. J. Immunol. 139, 1818 (1987)

    CAS  PubMed  Google Scholar 

  77. J. Li, X. Zhang, D. Sejas, G. Bagby, Q. Pang, Hypoxia-induced Nucleophosmin protects cell death through inhibition of p53. J. Biol. Chem. 279, 41275 (2004)

    Article  CAS  PubMed  Google Scholar 

  78. D. Taylor, C. Gerçel-Taylor, Tumour-derived exosomes and their role in cancer-associated T-cell signalling defects. Br. J. Cancer 92, 305 (2005)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

This work was supported by grants from the Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Agencia Nacional de Promoción Científica y Tecnológica (PICT), Secretaría de Ciencia y Técnica (SECyT), Universidad Nacional de Río Cuarto, and a Christian Boulin Fellowship (EMBL). VAR and NBRV are members of the Scientific Researcher Career at CONICET. MJL holds a fellowship from CONICET.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Viviana Alicia Rivarola or Natalia Belén Rumie Vittar.

Ethics declarations

Conflict of interest

None declared.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Table S1

Perseus correlation matrix. Correlation coefficients whose magnitude were greater than 0.7 were considered highly correlated (red numbers indicate correlation values <0.7) (DOCX 19 kb)

Table S2

List of proteins identified in homotypic spheroids secretome. Available information: ID identified according to UniProt, name of the protein, corresponding gene, location of the signal peptide in those proteins secreted by the classical pathway (SignalP), NN-score of proteins secreted by non-classical pathways (SecretomeP, the NN-score should be greater than 0.5), LFQ (“label-free quantification”) value (mean and standard deviation). (DOCX 33 kb)

Table S3

List of proteins identified in heterotypic spheroids secretome. Available information: ID identified according to UniProt, name of the protein, corresponding gene, location of the signal peptide in those proteins secreted by the classical pathway (SignalP), NN-score of proteins secreted by non-classical pathways (SecretomeP, the NN-score should be greater than 0.5), LFQ (“label-free quantification”) value (mean and standard deviation). (DOCX 36 kb)

Table S4

List of proteins identified in PDT-treated homotypic spheroids secretome. Available information: ID identified according to UniProt, name of the protein, corresponding gene, location of the signal peptide in those proteins secreted by the classical pathway (SignalP), NN-score of proteins secreted by non-classical pathways (SecretomeP, the NN-score should be greater than 0.5), LFQ (“label-free quantification”) value (mean and standard deviation). (DOCX 45 kb)

Table S5

List of proteins identified in PDT-treated heterotypic spheroids secretome. Available information: ID identified according to UniProt, name of the protein, corresponding gene, location of the signal peptide in those proteins secreted by the classical pathway (SignalP), NN-score of proteins secreted by non-classical pathways (SecretomeP, the NN-score should be greater than 0.5), LFQ (“label-free quantification”) value (mean and standard deviation). (DOCX 55 kb)

Fig S1

Histograms. Histograms were performed using the logarithmic LFQ values (log10 (x)) to visualize the normal distribution of the data (Perseus software) (JPG 63 kb)

Fig S2

Multiscatter plot. The multiscatter plot was performed using the logarithmic LFQ values (log2 (x)) to visualize the correlation between the replicates (JPG 220 kb)

Fig S3

Gene Ontology. (A) Biological process classification in Gene Ontology analysis of proteins whose secretion was enhanced in in photosensitized homotypic spheroids compared to untreated ones. (B) Biological process classification in Gene Ontology analysis of proteins whose secretion was enhanced in in photosensitized heterotypic spheroids compared to untreated ones. (PNG 980 kb)

High Resolution (TIF 11850 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lamberti, M.J., Rettel, M., Krijgsveld, J. et al. Secretome profiling of heterotypic spheroids suggests a role of fibroblasts in HIF-1 pathway modulation and colorectal cancer photodynamic resistance. Cell Oncol. 42, 173–196 (2019). https://doi.org/10.1007/s13402-018-00418-8

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13402-018-00418-8

Keywords

Navigation