Skip to main content
Log in

Honey bee sociogenomics: a genome-scale perspective on bee social behavior and health

  • Review article
  • Published:
Apidologie Aims and scope Submit manuscript

Abstract

The biology of honey bees involves a host of developmental, behavioral, and physiological components that allow thousands of individual bees to form complex social units. Fueled by a wealth of information from new genomic technologies, a new approach, sociogenomics, uses a focus on the genome to integrate the molecular underpinnings and ultimate explanations of social life. This approach has resulted in a massive influx of data from the honey bee genome and transcriptome, a flurry of research activity, and new insights into honey bee biology. Here, we provide an up-to-date review describing how the honey bee has been successfully studied using this approach, highlighting how the integration of genomic information into honey bee research has provided insights into worker division of labor, communication, caste differences and development, evolution, and honey bee health. We also highlight how genomic studies in other eusocial insect species have provided insights into social evolution via comparative analyses. These data have led to several important new insights about how social behavior is organized on a genomic level, including (1) the fact that gene expression is highly dynamic and responsive to the social environment, (2) that large-scale changes in gene expression can contribute to caste and behavioral differences, (3) that transcriptional networks regulating these behaviors can be related to previously established hormonal mechanisms, and (4) that some genes and pathways retain conserved roles in behavior across contexts and social insect taxa.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Figure 1.

Similar content being viewed by others

References

  • Alaux, C., Robinson, G.E. (2007) Alarm pheromone induces immediate-early gene expression and slow behavioral response in honey bees. J. Chem. Ecol. 33(7), 1346–1350

    CAS  PubMed  Google Scholar 

  • Alaux, C., Duong, N., Schneider, S.S., Southey, B.R., Rodriguez-Zas, S., et al. (2009a) Modulatory communication signal performance is associated with a distinct neurogenomic state in honey bees. PloS ONE 4(8), e6694. doi:10.1371/journal.pone.0006694

  • Alaux, C., Le Conte, Y., Adams, H.A., Rodriguez-Zas, S., Grozinger, C.M., et al. (2009b) Regulation of brain gene expression in honey bees by brood pheromone. Genes Brain Behav. 8(3), 309–319

    CAS  PubMed  Google Scholar 

  • Alaux, C., Sinha, S., Hasadsri, L., Hunt, G.J., Guzman-Novoa, E., et al. (2009c) Honey bee aggression supports a link between gene regulation and behavioral evolution. Proc. Natl. Acad. Sci. U. S. A. 106(36), 15400–15405

    CAS  PubMed Central  PubMed  Google Scholar 

  • Alaux, C., Dantec, C., Parrinello, H., Le Conte, Y. (2011) Nutrigenomics in honey bees: Digital gene expression analysis of pollen’s nutritive effects on healthy and varroa-parasitized bees. BMC Genomics 12, 496. doi:10.1186/1471-2164-12-496

  • Amdam, G.V., Page Jr., R.E., Fondrk, M.K., Brent, C.S. (2010) Hormone response to bidirectional selection on social behavior. Evol. Dev. 12(5), 428–436

    CAS  PubMed Central  PubMed  Google Scholar 

  • Ament, S.A., Corona, M., Pollock, H.S., Robinson, G.E. (2008) Insulin signaling is involved in the regulation of worker division of labor in honey bee colonies. Proc. Natl. Acad. Sci. U. S. A. 105(11), 4226–4231

    CAS  PubMed Central  PubMed  Google Scholar 

  • Ament, S.A., Wang, Y., Robinson, G.E. (2010) Nutritional regulation of division of labor in honey bees: toward a systems biology perspective. WIREs Syst. Biol. Med. 2(5), 566–576

    Google Scholar 

  • Ament, S.A., Blatti, C.A., Alaux, C., Wheeler, M.M., Toth, A.L., et al. (2012a) New meta-analysis tools reveal common transcriptional regulatory basis for multiple determinants of behavior. Proc. Natl. Acad. Sci. U. S. A. 109(26), E1801–E1810

    CAS  PubMed Central  PubMed  Google Scholar 

  • Ament, S.A., Wang, Y., Chen, C.C., Blatti, C.A., Hong, F., et al. (2012b) The transcription factor ultraspiracle influences honey bee social behavior and behavior-related gene expression. PloS Genet. 8(3), e1002596

    PubMed Central  PubMed  Google Scholar 

  • Barchuk, A.R., Cristino, A.S., Kucharski, R., Costa, L.F., Simoes, Z.L.P., et al. (2007) Molecular determinants of caste differentiation in the highly eusocial honeybee Apis mellifera. BMC Dev. Biol. 7, 70. doi:10.1186/1471-213X-7-70

  • Behura, S.K., Whitfield, C.W. (2010) Correlated expression patterns of microRNA genes with age-dependent behavioural changes in honeybee. Insect Mol. Biol. 19(4), 431–439

    CAS  PubMed  Google Scholar 

  • Ben-Shahar, Y. (2005) The foraging gene, behavioral plasticity, and honeybee division of labor. J. Comp. Physiol. A, Neuroethology, Sensory, Neural, and Behavioral Physiology 191(11), 987–994

    CAS  Google Scholar 

  • Bird, A. (2007) Perceptions of epigenetics. Nature 447(7143), 396–398

    CAS  PubMed  Google Scholar 

  • Bonasio, R., Li, Q., Lian, J., Mutti, N.S., Jin, L., et al. (2012) Genome-wide and caste-specific DNA methylomes of the ants Camponotus floridanus and Harpegnathos saltator. Curr. Biol. 22(19), 1755–1764

    CAS  PubMed Central  PubMed  Google Scholar 

  • Cardoen, D., Wenseleers, T., Ernst, U.R., Danneels, E.L., Laget, D., et al. (2011) Genome-wide analysis of alternative reproductive phenotypes in honeybee workers. Mol. Ecol. 20(19), 4070–4084

    CAS  PubMed  Google Scholar 

  • Cash, A.C., Whitfield, C.W., Ismail, N., Robinson, G.E. (2005) Behavior and the limits of genomic plasticity: power and replicability in microarray analysis of honeybee brains. Genes Brain Behav. 4(4), 267–271

    CAS  PubMed  Google Scholar 

  • Chandrasekaran, S., Ament, S.A., Eddy, J.A., Rodriguez-Zas, S.L., Schatz, B.R., et al. (2011) Behavior-specific changes in transcriptional modules lead to distinct and predictable neurogenomic states. Proc. Natl. Acad. Sci. U. S. A. 108(44), 18020–18025

    CAS  PubMed Central  PubMed  Google Scholar 

  • Chen, K., Rajewsky, N. (2007) The evolution of gene regulation by transcription factors and microRNAs. Nat. Rev. Genet. 8(2), 93–103

    CAS  PubMed  Google Scholar 

  • Chen, X., Hu, Y., Zheng, H.Q., Cao, L.F., Niu, D.F., et al. (2012) Transcriptome comparison between honey bee queen- and worker-destined larvae. Insect Biochem. Mol. 42(9), 665–673

    CAS  Google Scholar 

  • Cornman, S.R., Schatz, M.C., Johnston, S.J., Chen, Y.P., Pettis, J., et al. (2010) Genomic survey of the ectoparasitic mite Varroa destructor, a major pest of the honey bee Apis mellifera. BMC Genomics 11, 602. doi:10.1186/1471-2164-11-602

  • Cornman, R.S., Tarpy, D.R., Chen, Y.P., Jeffreys, L., Lopez, D., et al. (2012) Pathogen webs in collapsing honey bee colonies. PloS ONE 7(8), e43562. doi:10.1371/journal.pone.0043562

  • Cornman, R.S., Boncristiani, H., Dainat, B., Chen, Y.P., vanEngelsdorp, D., et al. (2013) Population-genomic variation within RNA viruses of the Western honey bee, Apis mellifera, inferred from deep sequencing. BMC Genomics 14, 154. doi:10.1186/1471-2164-14-154

  • Cox-Foster, D.L., Conlan, S., Holmes, E.C., Palacios, G., Evans, J.D., et al. (2007) A metagenomic survey of microbes in honey bee colony collapse disorder. Science 318(5848), 283–287

    CAS  PubMed  Google Scholar 

  • Crews, D. (2008) Epigenetics and its implications for behavioral neuroendocrinology. Front. Neuroendocrinol. 29(3), 344–357

    CAS  PubMed Central  PubMed  Google Scholar 

  • Cristino, A.S., Nunes, F.M.F., Lobo, C.H., Bitondi, M.M.G., Simoes, Z.L.P., et al. (2006) Caste development and reproduction: a genome-wide analysis of hallmarks of insect eusociality. Insect Mol. Biol. 15(5), 703–714

    CAS  PubMed Central  PubMed  Google Scholar 

  • Daugherty, T.H.F., Toth, A.L., Robinson, G.E. (2011) Nutrition and division of labor: effects on foraging and brain gene expression in the paper wasp Polistes metricus. Mol. Ecol. 20(24), 5337–5347

    CAS  PubMed  Google Scholar 

  • Dickman, M.J., Kucharski, R., Maleszka, R., Hurd, P.J. (2013) Extensive histone post-translational modification in honey bees. Insect Biochem. Mol. 43(2), 125–137

    CAS  Google Scholar 

  • Dyer, F.C. (2002) The biology of the dance language. Annu.Rev. Entomol. 47, 917–949

    CAS  PubMed  Google Scholar 

  • Edgar, B.A. (2006) How flies get their size: genetics meets physiology. Nat. Rev. Genet. 7(12), 907–916

    CAS  PubMed  Google Scholar 

  • Elsik, C.G., Mackey, A.J., Reese, J.T., Milshina, N.V., Roos, D.S., et al. (2007) Creating a honey bee consensus gene set. Genome Biol 8(1)

  • Engel, P., Martinson, V.G., Moran, N.A. (2012) Functional diversity within the simple gut microbiota of the honey bee. Proc. Natl. Acad. Sci. U. S. A. 109(27), 11002–11007

    CAS  PubMed Central  PubMed  Google Scholar 

  • Erickson, D.L., Fenster, C.B., Stenoien, H.K., Price, D. (2004) Quantitative trait locus analyses and the study of evolutionary process. Mol. Ecol. 13(9), 2505–2522

    CAS  PubMed  Google Scholar 

  • Evans, J.D., Schwarz, R.S. (2011) Bees brought to their knees: microbes affecting honey bee health. Trends Microbiol. 19(12), 614–620

    CAS  PubMed  Google Scholar 

  • Evans, J.D., Wheeler, D.E. (2001) Expression profiles during honeybee caste determination. Genome Biol. 2(1), research0001.1–research0001.6.

    Google Scholar 

  • Evans, J.D., Aronstein, K., Chen, Y.P., Hetru, C., Imler, J.L., et al. (2006) Immune pathways and defence mechanisms in honey bees Apis mellifera. Insect Mol. Biol. 15(5), 645–656

    CAS  PubMed Central  PubMed  Google Scholar 

  • Ferreira, P.G., Patalano, S., Chauhan, R., Ffrench-Constant, R., Gabaldon, T., et al. (2013) Transcriptome analyses of primitively eusocial wasps reveal novel insights into the evolution of sociality and the origin of alternative phenotypes. Genome Biol. 14(2), R20

    PubMed  Google Scholar 

  • Fischman, B.J., Woodard, S.H., Robinson, G.E. (2011) Molecular evolutionary analyses of insect societies. Proc. Natl. Acad. Sci. U. S. A. 108, 10847–10854

    CAS  PubMed Central  PubMed  Google Scholar 

  • Flores, K., Wolschin, F., Corneveaux, J.J., Allen, A.N., Huentelman, M.J., et al. (2012) Genome-wide association between DNA methylation and alternative splicing in an invertebrate. Bmc Genomics 13, 480. doi:10.1186/1471-2164-13-480

  • Foret, S., Maleszka, R. (2006) Function and evolution of a gene family encoding odorant binding-like proteins in a social insect, the honey bee (Apis mellifera). Genome Res. 16(11), 1404–1413

    CAS  PubMed Central  PubMed  Google Scholar 

  • Foret, S., Wanner, K.W., Maleszka, R. (2007) Chemosensory proteins in the honey bee: insights from the annotated genome, comparative analyses and expressional profiling. Insect Biochem. Mol. Biol. 37(1), 19–28

    CAS  PubMed  Google Scholar 

  • Foret, S., Kucharski, R., Pellegrini, M., Feng, S.H., Jacobsen, S.E., et al. (2012) DNA methylation dynamics, metabolic fluxes, gene splicing, and alternative phenotypes in honey bees. Proc. Natl. Acad. Sci. U. S. A. 109(13), 4968–4973

    CAS  PubMed Central  PubMed  Google Scholar 

  • Gallai, N., Salles, J.M., Settele, J., Vaissiere, B.E. (2009) Economic valuation of the vulnerability of world agriculture confronted with pollinator decline. Ecol. Econ. 68(3), 810–821

    Google Scholar 

  • Gempe, T., Stach, S., Bienefeld, K., Beye, M. (2012) Mixing of honeybees with different genotypes affects individual worker behavior and transcription of genes in the neuronal substrate. PloS ONE 7(2), e31653. doi:10.1371/journal.pone.0031653

  • Gerhold, D., Caskey, C.T. (1996) It’s the genes! EST access to human genome content. Bioessays 18(12), 973–981

    CAS  PubMed  Google Scholar 

  • Gotzek, D., Ross, K.G. (2007) Genetic regulation of colony social organization in fire ants: an integrative overview. Q. Rev. Biol. 82(3), 201–226

    PubMed  Google Scholar 

  • Gotzek, D., Ross, K.G. (2009) Current status of a model system: the gene Gp-9 and its association with social organization in fire ants. PloS ONE 4(11), e7713. doi:10.1371/journal.pone.0007713

  • Graham, A.M., Munday, M.D., Kaftanoglu, O., Page, R.E., Amdam, G.V., et al. (2011) Support for the reproductive ground plan hypothesis of social evolution and major QTL for ovary traits of Africanized worker honey bees (Apis mellifera L.). BMC Evol. Biol. 11, 95. doi:10.1186/1471-2148-11-95

  • Greenberg, J.K., Xia, J., Zhou, X., Thatcher, S.R., Gu, X., et al. (2012) Behavioral plasticity in honey bees is associated with differences in brain microRNA transcriptome. Genes Brain Behav. 11(6), 660–670

    CAS  PubMed Central  PubMed  Google Scholar 

  • Grozinger, C.M., Robinson, G.E. (2002) Microarray analysis of pheromone-mediated gene expression in the honey bee brain. Integr. Comp. Biol. 42(6), 1237

    Google Scholar 

  • Grozinger, C.M., Robinson, G.E. (2007) Endocrine modulation of a pheromone-responsive gene in the honey bee brain. J. Comp. Physiol. A. 193(4), 461–470

    CAS  Google Scholar 

  • Grozinger, C.M., Sharabash, N.M., Whitfield, C.W., Robinson, G.E. (2003) Pheromone-mediated gene expression in the honey bee brain. Proc. Natl. Acad. Sci. U. S. A. 100, 14519–14525

    CAS  PubMed Central  PubMed  Google Scholar 

  • Hartfelder, K. (2000) Insect juvenile hormone: from “status quo” to high society. Braz. J. Med. Biol. Res. 33, 157–177

    CAS  PubMed  Google Scholar 

  • Herb, B.R., Wolschin, F., Hansen, K.D., Aryee, M.J., Langmead, B., et al. (2012) Reversible switching between epigenetic states in honeybee behavioral subcastes. Nat. Neurosci. 15(10), 1371–1373

    CAS  PubMed Central  PubMed  Google Scholar 

  • Hernandez, L.G., Lu, B.W., da Cruz, G.C.N., Calabria, L.K., Martins, N.F., et al. (2012) Worker honeybee brain proteome. J. Proteome Res. 11(3), 1485–1493

    CAS  PubMed Central  PubMed  Google Scholar 

  • Hogeweg, P. (2011) The roots of bioinformatics in theoretical biology. PloS Comput. Biol. 7(3), e1002021. doi:10.1371/journal.pcbi.1002021

  • Hunt, G.J., Page, R.E., Fondrk, M.K., Dullum, C.J. (1995) Major quantitative trait loci affecting honey-bee foraging behavior. Genetics 141(4), 1537–1545

    CAS  PubMed Central  PubMed  Google Scholar 

  • Hunt, G.J., Guzman-Novoa, E., Fondrk, M.K., Page, R.E. (1998) Quantitative trait loci for honey bee stinging behavior and body size. Genetics 148(3), 1203–1213

    CAS  PubMed Central  PubMed  Google Scholar 

  • Hunt, G.J., Amdam, G.V., Schlipalius, D., Emore, C., Sardesai, N., et al. (2007) Behavioral genomics of honeybee foraging and nest defense. Naturwissenschaften 94(4), 247–267

    CAS  PubMed Central  PubMed  Google Scholar 

  • Hunt, B.G., Wyder, S., Elango, N., Werren, J.H., Zdobnov, E.M., et al. (2010) Sociality is linked to rates of protein evolution in a highly social insect. Mol. Biol. Evol. 27(3), 497–500

    CAS  PubMed  Google Scholar 

  • Johnson, B.R., Tsutsui, N.D. (2011) Taxonomically restricted genes are associated with the evolution of sociality in the honey bee. Bmc Genomics 12, 164. doi:10.1186/1471-2164-12-164

  • Johnson, R.M., Evans, J.D., Robinson, G.E., Berenbaum, M.R. (2009) Changes in transcript abundance relating to colony collapse disorder in honey bees (Apis mellifera). Proc. Natl. Acad. Sci. U. S. A. 106(35), 14790–14795

    CAS  PubMed Central  PubMed  Google Scholar 

  • Kamakura, M. (2011) Royalactin induces queen differentiation in honeybees. Nature 473(7348), 478–483

    CAS  PubMed  Google Scholar 

  • Keller, L., Ross, K.G. (1999) Major gene effects on phenotype and fitness: the relative roles of Pgm-3 and Gp-9 in introduced populations of the fire ant Solenopsis invicta. J. Evol. Biol. 12(4), 672–680

    Google Scholar 

  • Kocher, S.D., Richard, F.J., Tarpy, D.R., Grozinger, C.M. (2008) Genomic analysis of post-mating changes in the honey bee queen (Apis mellifera). Bmc Genomics 9, 232. doi:10.1186/1471-2164-9-232

  • Kocher, S.D., Ayroles, J.F., Stone, E.A., Grozinger, C.M. (2010a) Individual variation in pheromone response correlates with reproductive traits and brain gene expression in worker honey bees. PloS ONE 5(2), e9116. doi:10.1371/journal.pone.0009116

  • Kocher, S.D., Tarpy, D.R., Grozinger, C.M. (2010b) The effects of mating and instrumental insemination on queen honey bee flight behaviour and gene expression. Insect Mol. Biol. 19(2), 153–162

    CAS  PubMed Central  PubMed  Google Scholar 

  • Kronforst, M.R., Gilley, D.C., Strassmann, J.E., Queller, D.C. (2008) DNA methylation is widespread across social Hymenoptera. Current Biology 18(7): R287–R288.

    Google Scholar 

  • Kucharski, R., Maleszka, R. (2002) Evaluation of differential gene expression during behavioral development in the honeybee using microarrays and northern blots. Genome Biol. 3(2), RESEARCH0007.

    Google Scholar 

  • Kucharski, R., Maleszka, J., Foret, S., Maleszka, R. (2008) Nutritional control of reproductive status in honeybees via DNA methylation. Science 319(5871), 1827–1830

    CAS  PubMed  Google Scholar 

  • Le Conte, Y., Hefetz, A. (2008) Primer pheromones in social hymenoptera. Annu. Rev. Entomol. 53, 523–542

    PubMed  Google Scholar 

  • Le Conte, Y., Mohammedi, A., Robinson, G.E. (2001) Primer effects of a brood pheromone on honeybee behavioural development. Proc. R. Soc. B.: Biol. Sci. 268(1463), 163–168

    Google Scholar 

  • Le Conte, Y., Alaux, C., Martin, J.F., Harbo, J.R., Harris, J.W., et al. (2011) Social immunity in honeybees (Apis mellifera): transcriptome analysis of Varroa-hygienic behaviour. Insect Mol. Biol. 20(3), 399–408

    PubMed  Google Scholar 

  • Liang, Z.Z.S., Nguyen, T., Mattila, H.R., Rodriguez-Zas, S.L., Seeley, T.D., et al. (2012) Molecular determinants of scouting behavior in honey bees. Science 335(6073), 1225–1228

    CAS  PubMed  Google Scholar 

  • Linksvayer, T.A., Rueppell, O., Siegel, A., Kaftanoglu, O., Page, R.E., et al. (2009) The genetic basis of transgressive ovary size in honeybee workers. Genetics 183(2), 693–707

    PubMed Central  PubMed  Google Scholar 

  • Liu, F., Peng, W., Li, Z., Li, W., Li, L., et al. (2012) Next-generation small RNA sequencing for microRNAs profiling in Apis mellifera: comparison between nurses and foragers. Insect Mol. Biol. 21(3), 297–303

    CAS  PubMed  Google Scholar 

  • Lobo, N.F., Ton, L.Q., Hill, C.A., Emore, C., Romero-Severson, J., et al. (2003) Genomic analysis in the sting-2 quantitative trait locus for defensive behavior in the honey bee, Apis mellifera. Genome Res. 13(12), 2588–2593

    CAS  PubMed Central  PubMed  Google Scholar 

  • Lutz, C.C., Rodriguez-Zas, S.L., Fahrbach, S.E., Robinson, G.E. (2012) Transcriptional response to foraging experience in the honey bee mushroom bodies. Dev. Neurobiol. 72(2), 153–166

    PubMed Central  PubMed  Google Scholar 

  • Lyko, F., Foret, S., Kucharski, R., Wolf, S., Falckenhayn, C., et al. (2010) The honey bee epigenomes: differential methylation of brain DNA in queens and workers. PloS Biol. 8(11), e1000506. doi:10.1371/journal.pbio.1000506

  • McClung, C.A., Nestler, E.J. (2008) Neuroplasticity mediated by altered gene expression. Neuropsychopharmacol: Off. Publ. Am. Coll. Neuropsychopharmacol. 33(1), 3–17

    CAS  Google Scholar 

  • Mullin, C.A., Frazier, M., Frazier, J.L., Ashcraft, S., Simonds, R., et al. (2010) High levels of miticides and agrochemicals in North American apiaries: implications for honey bee health. PloS ONE 5(3), e9754. doi:10.1371/journal.pone.0009754

  • Naug, D. (2009) Nutritional stress due to habitat loss may explain recent honeybee colony collapses. Biol. Conserv. 142(10), 2369–2372

    Google Scholar 

  • Navajas, M., Migeon, A., Alaux, C., Martin-Magniette, M.L., Robinson, G.E., et al. (2008) Differential gene expression of the honey bee Apis mellifera associated with Varroa destructor infection. BMC Genomics 9, 301. doi:10.1186/1471-2164-9-301

  • Nelson, F.C. (1927) Adaptability of young bees under adverse conditions. Am. Bee J. 67, 242–243

    Google Scholar 

  • Nelson, C.M., Ihle, K., Amdam, G.V., Fondrk, M.K., Page, R.E. (2007) The gene vitellogenin has multiple coordinating effects on social organization. PLoS Biol. 5, 673–677

    CAS  Google Scholar 

  • Ometto, L., Shoemaker, D., Ross, K.G., Keller, L. (2011) Evolution of gene expression in fire ants: the effects of developmental stage, caste, and species. Mol. Biol. Evol. 28(4), 1381–1392

    CAS  PubMed  Google Scholar 

  • Oxley, P.R., Thompson, G.J., Oldroyd, B.P. (2008) Four quantitative trait loci that influence worker sterility in the honeybee (Apis mellifera). Genetics 179(3), 1337–1343

    CAS  PubMed Central  PubMed  Google Scholar 

  • Oxley, P.R., Spivak, M., Oldroyd, B.P. (2010) Six quantitative trait loci influence task thresholds for hygienic behaviour in honeybees (Apis mellifera). Mol. Ecol. 19(7), 1452–1461

    CAS  PubMed  Google Scholar 

  • Page, R.E., Fondrk, M.K. (1995) The effects of colony level selection on the social-organization of honey-bee (Apis mellifera L) colonies—colony level components of pollen hoarding. Behav. Ecol. Sociobiol. 36(2), 135–144

    Google Scholar 

  • Page, R.E., Rueppell, O., Amdam, G.V. (2012) Genetics of reproduction and regulation of honeybee (Apis mellifera L.) social behavior. Annu. Rev. Genet. 46, 97–119

    CAS  PubMed  Google Scholar 

  • Pankiw, T., Huang, Z.Y., Winston, M.L., Robinson, G.E. (1998) Queen mandibular gland pheromone influences worker honey bee (Apis mellifera L.) foraging ontogeny and juvenile hormone titers. J. Insect Physiol. 44(7–8), 685–692

    PubMed  Google Scholar 

  • Pelosi, P., Calvello, M., Ban, L.P. (2005) Diversity of odorant-binding proteins and chemosensory proteins in insects. Chem. Senses 30, I291–I292

    CAS  PubMed  Google Scholar 

  • Qiu, P., Pan, P.C., Govind, S. (1998) A role for the Drosophila Toll/Cactus pathway in larval hematopoiesis. Development 125(10), 1909–1920

    CAS  PubMed  Google Scholar 

  • Rachinsky, A., Hartfelder, K. (1990) Corpora allata activity, a prime regulating element for caste-specific juvenile hormone titre in honey bee larvae (Apis mellifera carnica). J. Insect Physiol. 36, 189–194

    CAS  Google Scholar 

  • Rembold, H. (1987) Caste specific modulation of juvenile hormone titers in Apis mellifera. Insect Biochem. 17, 1003–1006

    CAS  Google Scholar 

  • Rembold, H., Czoppelt, C., Rao, P.J. (1974) Effect of juvenile-hormone treatment on caste differentiation in honeybee, Apis mellifera. J. Insect Physiol. 20(7), 1193–1202

    CAS  PubMed  Google Scholar 

  • Richard, F.J., Holt, H.L., Grozinger, C.M. (2012) Effects of immunostimulation on social behavior, chemical communication and genome-wide gene expression in honey bee workers (Apis mellifera). BMC Genomics 13, 558

    Google Scholar 

  • Robinson, G.E. (1987) Regulation of honey bee age polyethism by juvenile hormone. Behav. Ecol. Sociobiol. 20, 329–338

    Google Scholar 

  • Robinson, G.E. (1992) Regulation of division of labor in insect societies. Annu. Rev. Entomol. 37, 637–665

    CAS  PubMed  Google Scholar 

  • Robinson, G.E. (1999) Integrative animal behaviour and sociogenomics. Trends Ecol. Evol. 14(5), 202–205

    PubMed  Google Scholar 

  • Robinson, G.E. (2002) Genomics and integrative analyses of division of labor in honeybee colonies. Am. Nat. 160, S160–S172

    PubMed  Google Scholar 

  • Robinson, G.E., Page, R.E., Strambi, C., Strambi, A. (1989) Hormonal and genetic-control of behavioral integration in honey bee colonies. Science 246(4926), 109–111

    CAS  PubMed  Google Scholar 

  • Robinson, G.E., Grozinger, C.M., Whitfield, C.W. (2005) Sociogenomics: social life in molecular terms. Nat. Rev. Genet. 6(4), 257–270

    CAS  PubMed  Google Scholar 

  • Rosenkranz, P., Aumeier, P., Ziegelmann, B. (2010) Biology and control of Varroa destructor. J. Invertebr. Pathol. 103, S96–S119

    PubMed  Google Scholar 

  • Rothenbuhler, W.C. (1964) Behaviour genetics of nest cleaning in honey bees. I. Responses of 4 inbred lines to disease-killed brood. Anim. Behav. 12(4), 578

    Google Scholar 

  • Rueppell, O. (2013) The architecture of the pollen hoarding syndrome in honey bees: implications for understanding social evolution, behavioral syndromes, and selective breeding. Apidologie. doi:10.1007/s13592-013-0244-3 (this issue)

  • Schena, M., Shalon, D., Davis, R.W., Brown, P.O. (1995) Quantitative monitoring of gene-expression patterns with a complementary-DNA microarray. Science 270(5235), 467–470

    CAS  PubMed  Google Scholar 

  • Schneider, S.S., Lewis, L.A. (2004) The vibration signal, modulatory communication and the organization of labor in honey bees, Apis mellifera. Apidologie 35(2), 117–131

    Google Scholar 

  • Seeley, T.D. (1985) Honeybee ecology: a study of adaptation in social life. Princeton University Press, Princeton

    Google Scholar 

  • Sen Sarma, M., Whitfield, C.W., Robinson, G.E. (2007) Species differences in brain gene expression profiles associated with adult behavioral maturation in honey bees. BMC Genomics 8, 202.

    Google Scholar 

  • Sen Sarma, M., Rodriguez-Zas, S.L., Hong, F., Zhong, S., Robinson, G.E. (2009) Transcriptomic profiling of central nervous system regions in three species of honey bee during dance communication behavior. PloS ONE 4(7)

  • Sen Sarma, M., Rodriguez-Zas, S.L., Gernat, T., Nguyen, T., Newman, T., et al. (2010) Distance-responsive genes found in dancing honey bees. Genes Brain Behav. 9(7), 825–830

    CAS  PubMed  Google Scholar 

  • Sinha, S., Ling, X., Whitfield, C.W., Zhai, C.X., Robinson, G.E. (2006) Genome scan for cis-regulatory DNA motifs associated with social behavior in honey bees. Proc. Natl. Acad. Sci. U. S. A. 103(44), 16352–16357

    CAS  PubMed Central  PubMed  Google Scholar 

  • Smith, C.R., Toth, A.L., Suarez, A.V., Robinson, G.E. (2008) Genetic and genomic analyses of the division of labour in insect societies. Nat. Rev. Genet. 9(10), 735–748

    CAS  PubMed  Google Scholar 

  • Smith, C.R., Mutti, N.S., Jasper, W.C., Naidu, A., Smith, C.D., et al. (2012) Patterns of DNA methylation in development, division of labor and hybridization in an ant with genetic caste determination. PloS ONE 7(8), e42433. doi:10.1371/journal.pone.0042433

  • Sullivan, J.P., Jassim, O., Fahrbach, S.E., Robinson, G.E. (2000) Juvenile hormone paces behavioral development in the adult worker honey bee. Hormon. Behav. 37, 1–14

    CAS  Google Scholar 

  • Sumner, S., Pereboom, J.J.M., Jordan, W.C. (2006) Differential gene expression and phenotypic plasticity in behavioural castes of the primitively eusocial wasp, Polistes canadensis. Proc. R. Soc. B.: Biol. Sci. 273(1582), 19–26

    CAS  Google Scholar 

  • Thompson, G.J., Kucharski, R., Maleszka, R., Oldroyd, B.P. (2006) Towards a molecular definition of worker sterility: differential gene expression and reproductive plasticity in honey bees. Insect Mol. Biol. 15(5), 637–644

    CAS  PubMed Central  PubMed  Google Scholar 

  • Thompson, G.J., Kucharski, R., Maleszka, R., Oldroyd, B.P. (2008) Genome-wide analysis of genes related to ovary activation in worker honey bees. Insect Mol. Biol. 17(6), 657–665

    CAS  PubMed  Google Scholar 

  • Toth, A.L., Robinson, G.E. (2005) Worker nutrition and division of labour in honeybees. Anim. Behav. 69, 427–435

    Google Scholar 

  • Toth, A.L., Robinson, G.E. (2007) Evo-devo and the evolution of social behavior. Trends Genet. 23(7), 334–341

    CAS  PubMed  Google Scholar 

  • Toth, A.L., Kantarovich, S., Meisel, A.F., Robinson, G.E. (2005) Nutritional status influences socially regulated foraging ontogeny in honey bees. J. Exp. Biol. 208(24), 4641–4649

    PubMed  Google Scholar 

  • Toth, A.L., Varala, K., Henshaw, M.T., Rodriguez-Zas, S.L., Hudson, M.E., et al. (2010) Brain transcriptomic analysis in paper wasps identifies genes associated with behaviour across social insect lineages. Proc. R. Soc. B.: Biol. Sci. 277(1691), 2139–2148

    CAS  Google Scholar 

  • Tu, M.P., Yin, C.M., Tatar, M. (2005) Mutations in insulin signaling pathway alter juvenile hormone synthesis in Drosophila melanogaster. Gen. Comp. Endocrinol. 142(3), 347–356

    CAS  PubMed  Google Scholar 

  • Viljakainen, L., Evans, J.D., Hasselmann, M., Rueppell, O., Tingek, S., et al. (2009) Rapid evolution of immune proteins in social insects. Mol. Biol. Evol. 26(8), 1791–1801

    CAS  PubMed  Google Scholar 

  • Wang, Z., Gerstein, M., Snyder, M. (2009) RNA-Seq: a revolutionary tool for transcriptomics. Nat. Rev. Genet. 10(1), 57–63

    CAS  PubMed Central  PubMed  Google Scholar 

  • Wang, Y., Kocher, S.D., Linksvayer, T.A., Grozinger, C.M., Page, R.E., et al. (2012) Regulation of behaviorally associated gene networks in worker honey bee ovaries. J. Exp. Biol. 215(1), 124–134

    CAS  PubMed Central  PubMed  Google Scholar 

  • Wang, J., Wurm, Y., Nipitwattanaphon, M., Riba-Grognuz, O., Huang, Y.C., et al. (2013) A Y-like social chromosome causes alternative colony organization in fire ants. Nature 493(7434), 664–668

    CAS  PubMed  Google Scholar 

  • Weaver, D.B., Anzola, J.M., Evans, J.D., Reid, J.G., Reese, J.T., et al. (2007) Computational and transcriptional evidence for microRNAs in the honey bee genome. Genome Biol. 8(6), R97.

    Google Scholar 

  • Weiner, S.A., Galbraith, D.A., Adams, D.C., Valenzuela, N., Noll, F.B., et al. (2013) A survey of DNA methylation across social insect species, lifestages, and castes reveals abundant and caste-associated methylation in a primitively social wasp. Naturwissenschaften 100(8), 795–799. doi:10.1007/s00114-013-1064-z

    Google Scholar 

  • Weinstock, G.M., Robinson, G.E., Gibbs, R.A., Weinstock, G.M., Weinstock, G.M., et al. (2006) Insights into social insects from the genome of the honeybee Apis mellifera. Nature 443(7114), 931–949

    CAS  Google Scholar 

  • Wheeler, D.E., Buck, N., Evans, J.D. (2006) Expression of insulin pathway genes during the period of caste determination in the honey bee, Apis mellifera. Insect Mol. Biol. 15(5), 597–602

    CAS  PubMed Central  PubMed  Google Scholar 

  • Whitfield, C.W., Band, M.R., Bonaldo, M.F., Kumar, C.G., Liu, L., et al. (2002) Annotated expressed sequence tags and cDNA microarrays for studies of brain and behavior in the honey bee. Genome Res. 12(4), 555–566

    PubMed Central  PubMed  Google Scholar 

  • Whitfield, C.W., Cziko, A.M., Robinson, G.E. (2003) Gene expression profiles in the brain predict behavior in individual honey bees. Science 302(5643), 296–299

    CAS  PubMed  Google Scholar 

  • Whitfield, C.W., Ben-Shahar, Y., Brillet, C., Leoncini, I., Crauser, D., et al. (2006) Genomic dissection of behavioral maturation in the honey bee. Proc. Natl. Acad. Sci. U. S. A. 103(44), 16068–16075

    CAS  PubMed Central  PubMed  Google Scholar 

  • Wilson, E.O. (1971) The insect societies. Belknap Press of Harvard University Press, Cambridge

    Google Scholar 

  • Wilson-Rich, N., Spivak, M., Fefferman, N.H., Starks, P.T. (2009) Genetic, individual, and group facilitation of disease resistance in insect societies. Annu. Rev. Entomol. 54, 405–423

    CAS  PubMed  Google Scholar 

  • Winston, M.L. (1987) The biology of the honey bee. Harvard University Press, Cambridge

    Google Scholar 

  • Winston, M.L., Slessor, K.N. (1998) Honey bee primer pheromones and colony organization: gaps in our knowledge. Apidologie 29(1–2), 81–95

    Google Scholar 

  • Wolschin, F., Amdam, G.V. (2007) Plasticity and robustness of protein patterns during reversible development in the honey bee (Apis mellifera). Anal. Bioanal. Chem. 389(4), 1095–1100

    CAS  PubMed  Google Scholar 

  • Woodard, S.H., Fischman, B.J., Venkat, A., Hudson, M.E., Varala, K., et al. (2011) Genes involved in convergent evolution of eusociality in bees. Proc. Natl. Acad. Sci. U. S. A. 108(18), 7472–7477

    CAS  PubMed Central  PubMed  Google Scholar 

  • Wray, G.A. (2007) The evolutionary significance of cis-regulatory mutations. Nat. Rev. Genet. 8(3), 206–216

    CAS  PubMed  Google Scholar 

  • Wurm, Y., Wang, J., Riba-Grognuz, O., Corona, M., Nygaard, S., et al. (2011) The genome of the fire ant Solenopsis invicta. Proc. Natl. Acad. Sci. U. S. A. 108(14), 5679–5684

    CAS  PubMed Central  PubMed  Google Scholar 

  • Zhang, Y., Liu, X.J., Zhang, W.Q., Han, R.C. (2010) Differential gene expression of the honey bees Apis mellifera and A. cerana induced by Varroa destructor infection. J. Insect Physiol. 56(9), 1207–1218

    CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Adam G. Dolezal.

Additional information

Manuscript editor: Stan Schneider

Sociogénomique de labeille: une perspective à léchelle génomique sur le comportement social et la santé de labeille

Génome / division du travail / maturation comportementale / caste / génomique comparative

Honigbienen-Soziogenomik: Eine genomweite Sicht auf das Sozialverhalten und die Gesundheit von Honigbienen

Genom / Arbeitsteilung / altersbedingte Verhaltensreifung / Kaste / vergleichende Genomik

Glossary of terms: Words rendered in bold font in the body of the text are defined here.

Bioinformatics

The use of computational techniques to manage and analyze large quantities of information from biological systems, predominantly genomic and transcriptomic data (Hogeweg 2011).

Caste

Term used to describe a group of individuals in social insect colonies that specializes, to some extent, in specific occupations as a result of division of labor. Social insect castes can be associated with differences in age, anatomy, and morphology.

cis-regulatory elements

A sequence of DNA which, via the binding of transcription factors or other proteins, regulates the expression of a gene or genes on the same chromosome (Wray 2007).

Division of labor

A social system in which individuals specialize in specific occupations. In insect societies, queens mostly reproduce, whereas workers engage in all tasks related to colony growth and development. Young workers tend to work in the nest, whereas older individuals forage outside the nest.

DNA methylation

A form of epigenetic modification in which methyl groups are attached to nucleotides, usually CpG dinucleotides, have the potential to affect the expression of methylated sequences (Bird 2007).

Epigenetics

Environmental mediation of an individual’s genome and/or its descendants, without changes in DNA sequence, via mechanisms like DNA methylation and histone modification (Crews 2008).

Eusocial

Traditionally defined as social species that show three features: extreme asymmetries in reproduction, with some individuals reproducing a great deal and others little or not at all; overlapping generations of adults in the nest; and cooperative care of offspring (Wilson 1971).

Expressed sequence tags (EST)

ESTs are produced by sequencing many clones from cDNA libraries; since the sequences from these cDNA libraries are originally derived from mRNA from the organism of interest, ESTs provide important information regarding what genes are being expressed (Gerhold and Caskey 1996).

Genome

The complete genetic code for an organism.

Genetic toolkit

The concept that conserved genes and pathways have similar roles across a variety of taxa, helping to “build” different phenotypes from the same “tools,” resulting in diverse phenotypes regulated by similar factors (Toth and Robinson 2007).

Insulin/insulin-like signaling (IIS)

Metabolic pathway that acts as a key regulator of growth, feeding behavior, and metabolism; in insects, it also interacts with target of TOR and JH (Edgar 2006, Tu et al. 2005).

Juvenile hormone (JH)

Insect hormone involved in many behavioral and developmental processes, including onset of foraging behavior in honey bees (Hartfelder 2000).

Microarray

Technology that allow for the quantification of gene expression via the hybridization of cDNA to complementary sequences on a chip (Schena et al. 1995), used in conjunction with ESTs to quantify known genes.

MicroRNA

A small section of noncoding RNA that has transcriptional and posttranslational effects on gene expression (Chen and Rajewsky 2007).

Quantitative trait loci (QTL)

Sections of DNA sequence (loci) that contain or are linked to quantitative trait. QTLs can also be mapped to whole or partial genomes to further identify genes associated with the trait of interest (Erickson et al. 2004).

Queen mandibular pheromone (QMP)

Pheromone produced by honey bee queens to regulate the behavior and reproductive physiology of workers (Winston and Slessor 1998).

RNA-Seq

A form of transcriptomic profiling where high-throughput sequencing of all the cDNA contained in a sample provides precise measurements of gene expression (Wang et al. 2009).

Single-cohort colonies

Behavioral manipulation in which hives are created solely from young workers. This modification of normal age demography results in newly formed colonies that lack foragers, and young workers subsequently transition to foraging behaviors earlier than normal, allowing researchers to compare same-aged individuals that perform different tasks (Nelson 1927; Robinson et al. 1989).

Target of rapamycin (TOR)

An important metabolic regulator that interacts with the IIS pathway (Tu et al. 2005).

Transcription factor

A protein that binds to a regulatory DNA segment, regulating the transcription of specific target genes into mRNA.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Dolezal, A.G., Toth, A.L. Honey bee sociogenomics: a genome-scale perspective on bee social behavior and health. Apidologie 45, 375–395 (2014). https://doi.org/10.1007/s13592-013-0251-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13592-013-0251-4

Keywords

Navigation