Skip to main content

Advertisement

Log in

Modeling Human Craniofacial Disorders in Xenopus

  • Xenopus and Zebrafish Models for Pathobiology (W Goessling and A Zorn, Section Editors)
  • Published:
Current Pathobiology Reports

Abstract

Purpose of Review

Craniofacial disorders are among the most common human birth defects and present an enormous health care and social burden. The development of animal models has been instrumental to investigate fundamental questions in craniofacial biology, and this knowledge is critical to understand the etiology and pathogenesis of these disorders.

Recent Findings

The vast majority of craniofacial disorders arise from abnormal development of the neural crest, a multipotent and migratory cell population. Therefore, defining the pathogenesis of these conditions starts with a deep understanding of the mechanisms that preside over neural crest formation and its role in craniofacial development.

Summary

This review discusses several studies using Xenopus embryos to model human craniofacial conditions and emphasizes the strength of this system to inform important biological processes as they relate to human craniofacial development and disease.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2

Similar content being viewed by others

Bibliography

Recently published papers of particular interest have been highlighted as: • Of importance

  1. Shaw DW (2004) Global strategies to reduce the health care burden of craniofacial anomalies: report of WHO meetings on international collaborative research on craniofacial anomalies. The Cleft Palate-Craniofacial Journal 41(3):238–243. doi:10.1597/03-214.1

    Article  Google Scholar 

  2. Nieuwkoop PD, Faber J (1956) Normal table of Xenopus laevis (Daudin). A systematical and chronological survey of the development from the fertilized egg till the end of metamorphosis, 2nd edn. North-Holland Publishing Company. Guilders, Amsterdam

    Google Scholar 

  3. Moody SA (1987) Fates of the blastomeres of the 16-cell stage Xenopus embryo. Dev Biol 119(2):560–578. doi:10.1016/0012-1606(87)90059-5

    Article  CAS  PubMed  Google Scholar 

  4. Moody SA (1987) Fates of the blastomeres of the 32-cell-stage Xenopus embryo. Dev Biol 122(2):300–319. doi:10.1016/0012-1606(87)90296-X

    Article  CAS  PubMed  Google Scholar 

  5. Blitz IL, Biesinger J, Xie X, Cho KWY (2013) Biallelic genome modification in F0 Xenopus tropicalis embryos using the CRISPR/Cas system. Genesis 51(12):827–834. doi:10.1002/dvg.22719

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Nakayama T, Fish MB, Fisher M, Oomen-Hajagos J, Thomsen GH, Grainger RM (2013) Simple and efficient CRISPR/Cas9-mediated targeted mutagenesis in Xenopus tropicalis. Genesis 51(12):835–843. doi:10.1002/dvg.22720

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Gans C, Northcutt RG (1983) Neural crest and the origin of vertebrates: a new head. Science 220(4594):268–273. doi:10.1126/science.220.4594.268

    Article  CAS  PubMed  Google Scholar 

  8. Helms JA, Cordero D, Tapadia MD (2005) New insights into craniofacial morphogenesis. Development 132(5):851–861. doi:10.1242/dev.01705

    Article  CAS  PubMed  Google Scholar 

  9. Cordero DR, Brugmann S, Chu Y, Bajpai R, Jame M, Helms JA (2011) Cranial neural crest cells on the move: their roles in craniofacial development. Am J Med Genet A 155(2):270–279. doi:10.1002/ajmg.a.33702

    Article  PubMed Central  Google Scholar 

  10. Le Douarin NM, Kalcheim C (1999) The neural crest. Cambridge University Press, Cambridge

    Book  Google Scholar 

  11. Hörstadius SO (1950) The neural crest: its properties and derivatives in the light of experimental research. Oxford University Press, London [u.a.]

    Google Scholar 

  12. Trueb L, Hanken J (1992) Skeletal development in Xenopus laevis (Anura: Pipidae). J Morphol 214(1):1–41. doi:10.1002/jmor.1052140102

    Article  CAS  PubMed  Google Scholar 

  13. Slater BJ, Liu KJ, Kwan MD, Quarto N, Longaker MT (2009) Cranial osteogenesis and suture morphology in Xenopus laevis: a unique model system for studying craniofacial development. PLoS One 4(1):e3914. doi:10.1371/journal.pone.0003914

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  14. Bae C-J, Saint-Jeannet J-P (2014) Chapter 2—induction and specification of neural crest cells: extracellular signals and transcriptional switches A2—Trainor, Paul A. Neural crest cells. Academic Press, Boston, pp 27–49

    Book  Google Scholar 

  15. Stuhlmiller TJ, García-Castro MI (2012) Current perspectives of the signaling pathways directing neural crest induction. Cell Mol Life Sci 69(22):3715–3737. doi:10.1007/s00018-012-0991-8

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Meulemans D, Bronner-Fraser M (2004) Gene-regulatory interactions in neural crest evolution and development. Dev Cell 7(3):291–299. doi:10.1016/j.devcel.2004.08.007

    Article  CAS  PubMed  Google Scholar 

  17. Betancur P, Bronner-Fraser M, Sauka-Spengler T (2010) Assembling neural crest regulatory circuits into a gene regulatory network. Annu Rev Cell Dev Biol 26(1):581–603. doi:10.1146/annurev.cellbio.042308.113245

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Simões-Costa M, Bronner ME (2015) Establishing neural crest identity: a gene regulatory recipe. Development 142(2):242–257. doi:10.1242/dev.105445

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  19. Helms JA, Schneider RA (2003) Cranial skeletal biology. Nature 423(6937):326–331

    Article  CAS  PubMed  Google Scholar 

  20. Theveneau E, Mayor R (2012) Neural crest delamination and migration: from epithelium-to-mesenchyme transition to collective cell migration. Dev Biol 366(1):34–54. doi:10.1016/j.ydbio.2011.12.041

    Article  CAS  PubMed  Google Scholar 

  21. Chai Y, Maxson RE (2006) Recent advances in craniofacial morphogenesis. Dev Dyn 235(9):2353–2375. doi:10.1002/dvdy.20833

    Article  PubMed  Google Scholar 

  22. Trainor PA, Krumlauf R (2000) Patterning the cranial neural crest: hindbrain segmentation and Hox gene plasticity. Nat Rev Neurosci. 1(2):116–124

    Article  CAS  PubMed  Google Scholar 

  23. Santagati F, Rijli FM (2003) Cranial neural crest and the building of the vertebrate head. Nat Rev Neurosci 4(10):806–818

    Article  CAS  PubMed  Google Scholar 

  24. Minoux M, Rijli FM (2010) Molecular mechanisms of cranial neural crest cell migration and patterning in craniofacial development. Development 137(16):2605–2621. doi:10.1242/dev.040048

    Article  CAS  PubMed  Google Scholar 

  25. Cesario JM, Malt AL, Jeong J (2015) Developmental genetics of the pharyngeal arch system. Colloquium Series on Developmental Biology 2(1):1–108. doi:10.4199/C00127ED1V01Y201503DEB006

    Article  Google Scholar 

  26. Borchers A, Epperlein H-H, Wedlich D (2000) An assay system to study migratory behavior of cranial neural crest cells in Xenopus. Dev Genes Evol 210(4):217–222. doi:10.1007/s004270050307

    Article  CAS  PubMed  Google Scholar 

  27. Alfandari D, Cousin H, Gaultier A, Hoffstrom BG, DeSimone DW (2003) Integrin α5β1 supports the migration of Xenopus cranial neural crest on fibronectin. Dev Biol 260(2):449–464. doi:10.1016/S0012-1606(03)00277-X

    Article  CAS  PubMed  Google Scholar 

  28. Theveneau E, Mayor R (2011) Beads on the run: beads as alternative tools for chemotaxis assays. In: Wells CM, Parsons M (eds) Cell migration: developmental methods and protocols. Humana Press, Totowa, NJ, pp 449–460

    Chapter  Google Scholar 

  29. Milet C, Monsoro-Burq AH (2014) Dissection of Xenopus laevis neural crest for in vitro explant culture or in vivo transplantation. J Vis Exp 85:e51118. doi:10.3791/51118

    Google Scholar 

  30. Sadaghiani B, Thiébaud CH (1987) Neural crest development in the Xenopus laevis embryo, studied by interspecific transplantation and scanning electron microscopy. Dev Biol 124(1):91–110. doi:10.1016/0012-1606(87)90463-5

    Article  CAS  PubMed  Google Scholar 

  31. Gross JB, Hanken J (2004) Use of fluorescent dextran conjugates as a long-term marker of osteogenic neural crest in frogs. Dev Dyn 230(1):100–106. doi:10.1002/dvdy.20036

    Article  CAS  PubMed  Google Scholar 

  32. Gross JB, Hanken J (2005) Cranial neural crest contributes to the bony skull vault in adult Xenopus laevis: insights from cell labeling studies. J Exp Zool B Mol Dev Evol 304B(2):169–176. doi:10.1002/jez.b.21028

    Article  Google Scholar 

  33. Gross JB, Hanken J (2008) Segmentation of the vertebrate skull: neural-crest derivation of adult cartilages in the clawed frog, Xenopus laevis. Integr Comp Biol 48(5):681–696. doi:10.1093/icb/icn077

    Article  PubMed  Google Scholar 

  34. Jones K, Smith D (1973) Recognition of the fetal alcohol syndrome in early infancy. Lancet 302(7836):999–1001. doi:10.1016/S0140-6736(73)91092-1

    Article  CAS  PubMed  Google Scholar 

  35. Riley EP, Infante MA, Warren KR (2011) Fetal alcohol spectrum disorders: an overview. Neuropsychol Rev 21(2):73–80. doi:10.1007/s11065-011-9166-x

    Article  PubMed  PubMed Central  Google Scholar 

  36. Johnson VP, Swayze VW, Sato Y, Andreasen NC (1996) Fetal alcohol syndrome: craniofacial and central nervous system manifestations. Am J Med Genet 61(4):329–339. doi:10.1002/(SICI)1096-8628(19960202)61:4<329::AID-AJMG6>3.0.CO;2-P

    Article  CAS  PubMed  Google Scholar 

  37. Sant'Anna LB, Tosello DO (2006) Fetal alcohol syndrome and developing craniofacial and dental structures—a review. Orthodontics & Craniofacial Research 9(4):172–185. doi:10.1111/j.1601-6343.2006.00377.x

    Article  Google Scholar 

  38. Nakatsuji N (1983) Craniofacial malformation in Xenopus laevis tadpoles caused by the exposure of early embryos to ethanol. Teratology 28(2):299–305. doi:10.1002/tera.1420280220

    Article  CAS  PubMed  Google Scholar 

  39. Yelin R, Ben-Haroush Schyr R, Kot H, Zins S, Frumkin A, Pillemer G et al (2005) Ethanol exposure affects gene expression in the embryonic organizer and reduces retinoic acid levels. Dev Biol 279(1):193–204. doi:10.1016/j.ydbio.2004.12.014

    Article  CAS  PubMed  Google Scholar 

  40. Yelin R, Kot H, Yelin D, Fainsod A (2007) Early molecular effects of ethanol during vertebrate embryogenesis. Differentiation 75(5):393–403. doi:10.1111/j.1432-0436.2006.00147.x

    Article  CAS  PubMed  Google Scholar 

  41. Shi Y, Li J, Chen C, Gong M, Chen Y, Liu Y et al (2014) 5-Methyltetrahydrofolate rescues alcohol-induced neural crest cell migration abnormalities. Molecular Brain 7(1):67. doi:10.1186/s13041-014-0067-9

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  42. Czarnobaj J, Bagnall KM, Bamforth JS, Milos NC (2014) The different effects on cranial and trunk neural crest cell behaviour following exposure to a low concentration of alcohol in vitro. Arch Oral Biol 59(5):500–512. doi:10.1016/j.archoralbio.2014.02.005

    Article  CAS  PubMed  Google Scholar 

  43. Yu W, Serrano M, Miguel SS, Ruest LB, Svoboda KKH (2009) Cleft lip and palate genetics and application in early embryological development. Indian Journal of Plastic Surgery: Official Publication of the Association of Plastic Surgeons of India 42(Suppl):S35–S50. doi:10.4103/0970-0358.57185

    Google Scholar 

  44. Schutte BC, Murray JC (1999) The many faces and factors of orofacial clefts. Hum Mol Genet 8(10):1853–1859. doi:10.1093/hmg/8.10.1853

    Article  CAS  PubMed  Google Scholar 

  45. Dickinson AJG (2016) Using frogs faces to dissect the mechanisms underlying human orofacial defects. Semin Cell Dev Biol 51:54–63. doi:10.1016/j.semcdb.2016.01.016

    Article  PubMed  Google Scholar 

  46. Kennedy AE, Dickinson AJG (2012) Median facial clefts in Xenopus laevis: roles of retinoic acid signaling and homeobox genes. Dev Biol 365(1):229–240. doi:10.1016/j.ydbio.2012.02.033

    Article  CAS  PubMed  Google Scholar 

  47. Dickinson AJG, Sive HL (2009) The Wnt antagonists Frzb-1 and crescent locally regulate basement membrane dissolution in the developing primary mouth. Development 136(7):1071–1081. doi:10.1242/dev.032912

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Wilcox AJ, Lie RT, Solvoll K, Taylor J, McConnaughey DR, Åbyholm F et al (2007) Folic acid supplements and risk of facial clefts: national population based case-control study. BMJ 334(7591):464. doi:10.1136/bmj.39079.618287.0B

    Article  PubMed  PubMed Central  Google Scholar 

  49. Lucock M (2000) Folic acid: nutritional biochemistry, molecular biology, and role in disease processes. Mol Genet Metab 71(1–2):121–138. doi:10.1006/mgme.2000.3027

    Article  CAS  PubMed  Google Scholar 

  50. Martinelli M, Girardi A, Cura F, Carinci F, Morselli PG, Scapoli L (2014) Evidence of the involvement of the DHFR gene in nonsyndromic cleft lip with or without cleft palate. European Journal of Medical Genetics 57(1):1–4. doi:10.1016/j.ejmg.2013.12.002

    Article  PubMed  Google Scholar 

  51. Wahl SE, Kennedy AE, Wyatt BH, Moore AD, Pridgen DE, Cherry AM et al (2015) The role of folate metabolism in orofacial development and clefting. Dev Biol 405(1):108–122. doi:10.1016/j.ydbio.2015.07.001

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Foster JW, Dominguez-Steglich MA, Guioli S, Kwok C, Weller PA, Stevanovic M et al (1994) Campomelic dysplasia and autosomal sex reversal caused by mutations in an SRY-related gene. Nature 372(6506):525–530

    Article  CAS  PubMed  Google Scholar 

  53. Mansour S, Hall CM, Pembrey ME, Young ID (1995) A clinical and genetic study of campomelic dysplasia. J Med Genet 32(6):415–420

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Houston CS, Opitz JM, Spranger JW, Macpherson RI, Reed MH, Gilbert EF et al (1983) The campomelic syndrome: review, report of 17 cases, and follow-up on the currently 17-year-old boy first reported by Maroteaux et al. in 1971. Am J Med Genet 15(1):3–28. doi:10.1002/ajmg.1320150103

    Article  CAS  PubMed  Google Scholar 

  55. Mansour S, Offiah AC, McDowall S, Sim P, Tolmie J, Hall C (2002) The phenotype of survivors of campomelic dysplasia. J Med Genet 39(8):597–602. doi:10.1136/jmg.39.8.597

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Wagner T, Wirth J, Meyer J, Zabel B, Held M, Zimmer J et al (1994) Autosomal sex reversal and campomelic dysplasia are caused by mutations in and around the SRY-related gene SOX9. Cell 79(6):1111–1120. doi:10.1016/0092-8674(94)90041-8

    Article  CAS  PubMed  Google Scholar 

  57. Meyer J, Südbeck P, Held M, Wagner T, Schmitz ML, Dagna Bricarelli F et al (1997) Mutational analysis of the SOX9 gene in campomelic dysplasia and autosomal sex reversal: lack of genotype/phenotype correlations. Hum Mol Genet 6(1):91–98. doi:10.1093/hmg/6.1.91

    Article  CAS  PubMed  Google Scholar 

  58. Lee Y-H, Saint-Jeannet J-P (2011) Sox9 function in craniofacial development and disease. Genesis (New York, NY: 2000) 49(4):200–208. doi:10.1002/dvg.20717

    Article  CAS  Google Scholar 

  59. Hong C-S, Saint-Jeannet J-P (2005) Sox proteins and neural crest development. Semin Cell Dev Biol 16(6):694–703. doi:10.1016/j.semcdb.2005.06.005

    Article  CAS  PubMed  Google Scholar 

  60. Spokony RF, Aoki Y, Saint-Germain N, Magner-Fink E, Saint-Jeannet J-P (2002) The transcription factor Sox9 is required for cranial neural crest development in Xenopus. Development 129(2):421–432

    CAS  PubMed  Google Scholar 

  61. Lee Y-H, Aoki Y, Hong C-S, Saint-Germain N, Credidio C, Saint-Jeannet J-P (2004) Early requirement of the transcriptional activator Sox9 for neural crest specification in Xenopus. Dev Biol 275(1):93–103. doi:10.1016/j.ydbio.2004.07.036

    Article  CAS  PubMed  Google Scholar 

  62. Saint-Germain N, Lee Y-H, Zhang Y, Sargent TD, Saint-Jeannet J-P (2004) Specification of the otic placode depends on Sox9 function in Xenopus. Development 131(8):1755–1763. doi:10.1242/dev.01066

    Article  CAS  PubMed  Google Scholar 

  63. Scambler PJ (2000) The 22q11 deletion syndromes. Hum Mol Genet 9(16):2421–2426. doi:10.1093/hmg/9.16.2421

    Article  CAS  PubMed  Google Scholar 

  64. Fomin ABF, Pastorino AC, Kim CA, Pereira AC, Carneiro-Sampaio M, Abe Jacob CM (2010) DiGeorge Syndrome: a not so rare disease. Clinics 65(9):865–869. doi:10.1590/S1807-59322010000900009

    Article  PubMed  PubMed Central  Google Scholar 

  65. Papaioannou VE (2014) The T-box gene family: emerging roles in development, stem cells and cancer. Development (Cambridge, England) 141(20):3819–3833. doi:10.1242/dev.104471

    Article  CAS  PubMed Central  Google Scholar 

  66. Lindsay EA, Vitelli F, Su H, Morishima M, Huynh T, Pramparo T et al (2001) Tbx1 haploinsufficiency in the DiGeorge syndrome region causes aortic arch defects in mice. Nature 410(6824):97–101

    Article  CAS  PubMed  Google Scholar 

  67. Jerome LA, Papaioannou VE (2001) DiGeorge syndrome phenotype in mice mutant for the T-box gene, Tbx1. Nat Genet 27(3):286–291

    Article  CAS  PubMed  Google Scholar 

  68. Vitelli F, Morishima M, Taddei I, Lindsay EA, Baldini A (2002) Tbx1 mutation causes multiple cardiovascular defects and disrupts neural crest and cranial nerve migratory pathways. Hum Mol Genet 11(8):915–922. doi:10.1093/hmg/11.8.915

    Article  CAS  PubMed  Google Scholar 

  69. Ataliotis P, Ivins S, Mohun TJ, Scambler PJ (2005) XTbx1 is a transcriptional activator involved in head and pharyngeal arch development in Xenopus laevis. Dev Dyn 232(4):979–991. doi:10.1002/dvdy.20276

    Article  CAS  PubMed  Google Scholar 

  70. Tazumi S, Yabe S, Uchiyama H (2010) Paraxial T-box genes, Tbx6 and Tbx1, are required for cranial chondrogenesis and myogenesis. Dev Biol 346(2):170–180. doi:10.1016/j.ydbio.2010.07.028

    Article  CAS  PubMed  Google Scholar 

  71. Hall BD (1979) Choanal atresia and associated multiple anomalies. J Pediatr 95(3):395–398. doi:10.1016/S0022-3476(79)80513-2

    Article  CAS  PubMed  Google Scholar 

  72. Källén K, Robert E, Mastroiacovo P, Castilla EE, Källén B (1999) CHARGE association in newborns: a registry-based study. Teratology 60(6):334–343. doi:10.1002/(SICI)1096-9926(199912)60:6<334::AID-TERA5>3.0.CO;2-S

    Article  PubMed  Google Scholar 

  73. Blake KD, Prasad C (2006) CHARGE syndrome. Orphanet Journal of Rare Diseases 1:34. doi:10.1186/1750-1172-1-34

    Article  PubMed  PubMed Central  Google Scholar 

  74. Hughes SS, Welsh HI, Safina NP, Bejaoui K, Ardinger HH (2014) Family history and clefting as major criteria for CHARGE syndrome. Am J Med Genet A 164(1):48–53. doi:10.1002/ajmg.a.36192

    Article  CAS  Google Scholar 

  75. Sanlaville D, Etchevers HC, Gonzales M, Martinovic J, Clément-Ziza M, Delezoide A-L et al (2006) Phenotypic spectrum of CHARGE syndrome in fetuses with CHD7 truncating mutations correlates with expression during human development. J Med Genet 43(3):211–317. doi:10.1136/jmg.2005.036160

    Article  CAS  PubMed  Google Scholar 

  76. Lalani SR, Safiullah AM, Fernbach SD, Harutyunyan KG, Thaller C, Peterson LE et al (2006) Spectrum of CHD7 mutations in 110 individuals with CHARGE syndrome and genotype-phenotype correlation. Am J Hum Genet 78(2):303–314. doi:10.1086/500273

    Article  CAS  PubMed  Google Scholar 

  77. Bajpai R, Chen DA, Rada-Iglesias A, Zhang J, Xiong Y, Helms J et al (2010) CHD7 cooperates with PBAF to control multipotent neural crest formation. Nature 463. doi:10.1038/nature08733

  78. Schulz Y, Wehner P, Opitz L, Salinas-Riester G, Bongers EMHF, van Ravenswaaij-Arts CMA et al (2014) CHD7, the gene mutated in CHARGE syndrome, regulates genes involved in neural crest cell guidance. Hum Genet 133(8):997–1009. doi:10.1007/s00439-014-1444-2

    Article  CAS  PubMed  Google Scholar 

  79. Elsea SH, Williams SR (2011) Smith–Magenis syndrome: haploinsufficiency of RAI1 results in altered gene regulation in neurological and metabolic pathways. Expert Reviews in Molecular Medicine 13. doi:10.1017/S1462399411001827

  80. Greenberg F, Guzzetta V, Montes de Oca-Luna R, Magenis RE, Smith AC, Richter SF et al (1991) Molecular analysis of the Smith-Magenis syndrome: a possible contiguous-gene syndrome associated with del(17)(p11.2). Am J Hum Genet 49(6):1207–1218

    CAS  PubMed  PubMed Central  Google Scholar 

  81. Elsea SH, Girirajan S (2008) Smith-Magenis syndrome. Eur J Hum Genet 16(4):412–421. doi:10.1038/sj.ejhg.5202009

    Article  CAS  PubMed  Google Scholar 

  82. Slager RE, Newton TL, Vlangos CN, Finucane B, Elsea SH (2003) Mutations in RAI1 associated with Smith-Magenis syndrome. Nat Genet 33(4):466–468. doi:10.1038/ng1126

    Article  CAS  PubMed  Google Scholar 

  83. Imai Y, Suzuki Y, Matsui T, Tohyama M, Wanaka A, Takagi T (1995) Cloning of a retinoic acid-induced gene, GT1, in the embryonal carcinoma cell line P19: neuron-specific expression in the mouse brain. Mol Brain Res 31(1–2):1–9. doi:10.1016/0169-328X(95)00020-S

    Article  CAS  PubMed  Google Scholar 

  84. Tahir R, Kennedy A, Elsea SH, Dickinson AJ (2014) Retinoic acid induced-1 (Rai1) regulates craniofacial and brain development in Xenopus. Mech Dev 133:91–104. doi:10.1016/j.mod.2014.05.004

    Article  CAS  PubMed  Google Scholar 

  85. Nguyen H-L, Pieper GH, Wilders R (2013) Andersen–Tawil syndrome: clinical and molecular aspects. Int J Cardiol 170(1):1–16. doi:10.1016/j.ijcard.2013.10.010

    Article  PubMed  Google Scholar 

  86. Tawil R, Ptacek LJ, Pavlakis SG, DeVivo DC, Penn AS, Özdemir C et al (1994) Andersen’s syndrome: potassium-sensitive periodic paralysis, ventricular ectopy, and dysmorphic features. Ann Neurol 35(3):326–330. doi:10.1002/ana.410350313

    Article  CAS  PubMed  Google Scholar 

  87. Plaster NM, Tawil R, Tristani-Firouzi M, Canún S, Bendahhou S, Tsunoda A et al (2001) Mutations in Kir2.1 cause the developmental and episodic electrical phenotypes of Andersen’s syndrome. Cell 105(4):511–519. doi:10.1016/S0092-8674(01)00342-7

    Article  CAS  PubMed  Google Scholar 

  88. Yoon G, Oberoi S, Tristani-Firouzi M, Etheridge SP, Quitania L, Kramer JH et al (2006) Andersen-Tawil syndrome: prospective cohort analysis and expansion of the phenotype. Am J Med Genet A 140A(4):312–321. doi:10.1002/ajmg.a.31092

    Article  Google Scholar 

  89. Hibino H, Inanobe A, Furutani K, Murakami S, Findlay I, Kurachi Y (2010) Inwardly rectifying potassium channels: their structure, function, and physiological roles. Physiol Rev 90(1):291–366. doi:10.1152/physrev.00021.2009

    Article  CAS  PubMed  Google Scholar 

  90. Wang H, Ma Y, Huynh J, Yu W, Xi Y, Hu P et al (2012) Functional characterization of KCNJ2 missense variants identified in patients with Andersen-Tawil Syndrome. J Am Coll Cardiol 59(13s1):E718–E71E. doi:10.1016/S0735-1097(12)60719-0

    Article  Google Scholar 

  91. Tristani-Firouzi M, Jensen JL, Donaldson MR, Sansone V, Meola G, Hahn A et al (2002) Functional and clinical characterization of KCNJ2 mutations associated with LQT7 (Andersen syndrome). J Clin Invest 110(3):381–388. doi:10.1172/JCI15183

  92. • Adams DS, Uzel SGM, Akagi J, Wlodkowic D, Andreeva V, Yelick PC et al (2016) Bioelectric signalling via potassium channels: a mechanism for craniofacial dysmorphogenesis in KCNJ2-associated Andersen–Tawil Syndrome. J Physiol 594(12):3245–3270. doi:10.1113/JP271930. This is one of the first studies using optogenetics in Xenopus to manipulate spatially and temporally the electrical state of non-neural cells during embryonic development.

  93. Tseng A, Levin M (2013) Cracking the bioelectric code: probing endogenous ionic controls of pattern formation. Communicative & Integrative Biology 6(1):e22595. doi:10.4161/cib.22595

    Article  Google Scholar 

  94. Hamamy HA, Teebi AS, Oudjhane K, Shegem NN, Ajlouni KM (2007) Severe hypertelorism, midface prominence, prominent/simple ears, severe myopia, borderline intelligence, and bone fragility in two brothers: new syndrome?†. Am J Med Genet A 143A(3):229–234. doi:10.1002/ajmg.a.31594

    Article  PubMed  Google Scholar 

  95. Bonnard C, Strobl AC, Shboul M, Lee H, Merriman B, Nelson SF et al (2012) Mutations in IRX5 impair craniofacial development and germ cell migration via SDF1. Nat Genet 44(6):709–713. doi:10.1038/ng.2259

    Article  CAS  PubMed  Google Scholar 

  96. Cavodeassi F, Modolell J, Gómez-Skarmeta JL (2001) The Iroquois family of genes: from body building to neural patterning. Development 128(15):2847–2855

    CAS  PubMed  Google Scholar 

  97. Theveneau E, Marchant L, Kuriyama S, Gull M, Moepps B, Parsons M et al (2010) Collective chemotaxis requires contact-dependent cell polarity. Dev Cell 19(1):39–53. doi:10.1016/j.devcel.2010.06.012

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  98. Müller T, Mizumoto S, Suresh I, Komatsu Y, Vodopiutz J, Dundar M et al (2013) Loss of dermatan sulfate epimerase (DSE) function results in musculocontractural Ehlers–Danlos syndrome. Hum Mol Genet 22(18):3761–3772. doi:10.1093/hmg/ddt227

    Article  PubMed  CAS  Google Scholar 

  99. Syx D, Van Damme T, Symoens S, Maiburg MC, van de Laar I, Morton J et al (2015) Genetic heterogeneity and clinical variability in musculocontractural Ehlers–Danlos syndrome caused by impaired dermatan sulfate biosynthesis. Hum Mutat 36(5):535–547. doi:10.1002/humu.22774

    Article  CAS  PubMed  Google Scholar 

  100. Trowbridge JM, Gallo RL (2002) Dermatan sulfate: new functions from an old glycosaminoglycan. Glycobiology 12(9):117R–125R. doi:10.1093/glycob/cwf066

    Article  CAS  PubMed  Google Scholar 

  101. • Gouignard N, Maccarana M, Strate I, von Stedingk K, Malmström A, Pera EM (2016) Musculocontractural Ehlers–Danlos syndrome and neurocristopathies: dermatan sulfate is required for Xenopus neural crest cells to migrate and adhere to fibronectin. Disease Models & Mechanisms 9(6):607–620. doi:10.1242/dmm.024661. This study used a combination of in vivo and in vitro approaches to establish that in Dse-depleted Xenopus embryos NCCs migration was defective, providing a strong basis for the disease mechanisms underlying craniofacial defects in musculocontractural Ehlers-Danlos syndrome.

  102. Nager FR, de Reynier JP (1948) Das Gehörorgan Bei Den Angeborenen Kopfmissbildungen. ORL 10(Suppl. 2):53–90

    Article  Google Scholar 

  103. Schlieve T, Almusa M, Miloro M, Kolokythas A (2012) Temporomandibular joint replacement for ankylosis correction in Nager syndrome: case report and review of the literature. J Oral Maxillofac Surg 70(3):616–625. doi:10.1016/j.joms.2011.02.053

    Article  PubMed  Google Scholar 

  104. Bernier Francois P, Caluseriu O, Ng S, Schwartzentruber J, Buckingham Kati J, Innes AM et al (2012) Haploinsufficiency of SF3B4, a component of the pre-mRNA spliceosomal complex, causes Nager syndrome. Am J Hum Genet 90(5):925–933. doi:10.1016/j.ajhg.2012.04.004

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  105. Petit F, Escande F, Jourdain AS, Porchet N, Amiel J, Doray B et al (2014) Nager syndrome: confirmation of SF3B4 haploinsufficiency as the major cause. Clin Genet 86(3):246–251. doi:10.1111/cge.12259

    Article  CAS  PubMed  Google Scholar 

  106. Czeschik JC, Voigt C, Alanay Y, Albrecht B, Avci S, FitzPatrick D et al (2013) Clinical and mutation data in 12 patients with the clinical diagnosis of Nager syndrome. Hum Genet 132(8):885–898. doi:10.1007/s00439-013-1295-2

    Article  CAS  PubMed  Google Scholar 

  107. Will CL, Lührmann R (2011) Spliceosome structure and function. Cold Spring Harb Perspect Biol 3(7). doi:10.1101/cshperspect.a003707

  108. Devotta A, Juraver-Geslin H, Gonzalez JA, Hong C-S, Saint-Jeannet J-P (2016) Sf3b4-depleted Xenopus embryos: a model to study the pathogenesis of craniofacial defects in Nager syndrome. Dev Biol 415(2):371–382. doi:10.1016/j.ydbio.2016.02.010

    Article  CAS  PubMed  Google Scholar 

  109. Dixon J, Jones NC, Sandell LL, Jayasinghe SM, Crane J, Rey J-P et al (2006) Tcof1/Treacle is required for neural crest cell formation and proliferation deficiencies that cause craniofacial abnormalities. Proc Natl Acad Sci 103(36):13403–13408. doi:10.1073/pnas.0603730103

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  110. Aoki Y, Saint-Germain N, Gyda M, Magner-Fink E, Lee Y-H, Credidio C et al (2003) Sox10 regulates the development of neural crest-derived melanocytes in Xenopus. Dev Biol 259(1):19–33. doi:10.1016/S0012-1606(03)00161-1

    Article  CAS  PubMed  Google Scholar 

  111. Baltzinger M, Ori M, Pasqualetti M, Nardi I, Rijli FM (2005) Hoxa2 knockdown in Xenopus results in hyoid to mandibular homeosis. Dev Dyn 234(4):858–867. doi:10.1002/dvdy.20567

    Article  CAS  PubMed  Google Scholar 

  112. O'Donnell M, Hong C-S, Huang X, Delnicki RJ, Saint-Jeannet J-P (2006) Functional analysis of Sox8 during neural crest development in Xenopus. Development 133(19):3817–3826. doi:10.1242/dev.02558

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgements

Work in the Saint-Jeannet Lab is supported by the National Institutes of Health (NIH), grant numbers R01DE25806 and R01DE25468.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jean-Pierre Saint-Jeannet.

Ethics declarations

Conflict of Interest

A.D. and J.-P.S.-J. declare that they have no competing interests.

Human and Animal Rights and Informed Consent

This article does not contain any studies with human or animal subjects performed by any of the authors.

Additional information

This article is part of the Topical Collection on Xenopus and Zebrafish Models for Pathobiology

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dubey, A., Saint-Jeannet, JP. Modeling Human Craniofacial Disorders in Xenopus . Curr Pathobiol Rep 5, 79–92 (2017). https://doi.org/10.1007/s40139-017-0128-8

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40139-017-0128-8

Keywords

Navigation