Skip to main content
Log in

Cytosine Deamination Is a Major Cause of Baseline Noise in Next-Generation Sequencing

  • Original Research Article
  • Published:
Molecular Diagnosis & Therapy Aims and scope Submit manuscript

Abstract

Background and Objectives

As next-generation sequencing (NGS) becomes a major sequencing platform in clinical diagnostic laboratories, it is critical to identify artifacts that constitute baseline noise and may interfere with detection of low-level gene mutations. This is especially critical for applications requiring ultrasensitive detection, such as molecular relapse of solid tumors and early detection of cancer. We recently observed a ~10-fold higher frequency of C:G > T:A mutations than the background noise level in both wild-type peripheral blood and formalin-fixed paraffin-embedded samples. We hypothesized that these might represent cytosine deamination events, which have been seen using other platforms.

Methods

To test this hypothesis, we pretreated samples with uracil N-glycosylase (UNG). Additionally, to test whether some of the cytosine deamination might be a laboratory artifact, we simulated the heat associated with polymerase chain reaction thermocycling by subjecting samples to thermocycling in the absence of polymerase. To test the safety of universal UNG pretreatment, we tested known positive samples treated with UNG.

Results

UNG pretreatment significantly reduced the frequencies of these mutations, consistent with a biologic source of cytosine deamination. The simulated thermocycling-heated samples demonstrated significantly increased frequencies of C:G > T:A mutations without other baseline base substitutions being affected. Samples with known mutations demonstrated no decrease in our ability to detect these after treatment with UNG.

Conclusion

Baseline noise during NGS is mostly due to cytosine deamination, the source of which is likely to be both biologic and an artifact of thermocycling, and it can be reduced by UNG pretreatment.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Margulies M, Egholm M, Altman WE, Attiya S, Bader JS, Bemben LA, et al. Genome sequencing in microfabricated high-density picolitre reactors. Nature. 2005;437:376–80.

    PubMed  CAS  PubMed Central  Google Scholar 

  2. Jones S, Zhang X, Parsons DW, Lin JC, Leary RJ, Angenendt P, et al. Core signaling pathways in human pancreatic cancers revealed by global genomic analyses. Science. 2008;321:1801–6.

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  3. Biankin AV, Waddell N, Kassahn KS, Gingras MC, Muthuswamy LB, Johns AL, et al. Pancreatic cancer genomes reveal aberrations in axon guidance pathway genes. Nature. 2012;491:399–405.

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  4. Wu J, Matthaei H, Maitra A, Dal Molin M, Wood LD, Eshleman JR, et al. Recurrent GNAS mutations define an unexpected pathway for pancreatic cyst development. Sci Transl Med. 2011;3:92ra66.

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  5. Jiao Y, Shi C, Edil BH, de Wilde RF, Klimstra DS, Maitra A, et al. DAXX/ATRX, MEN1, and mTOR pathway genes are frequently altered in pancreatic neuroendocrine tumors. Science. 2011;331:1199–203.

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  6. Dal Molin M, Hong SM, Hebbar S, Sharma R, Scrimieri F, de Wilde RF, et al. Loss of expression of the SWI/SNF chromatin remodeling subunit BRG1/SMARCA4 is frequently observed in intraductal papillary mucinous neoplasms of the pancreas. Hum Pathol. 2012;43:585–91.

    Article  PubMed  CAS  Google Scholar 

  7. Pritchard CC, Smith C, Salipante SJ, Lee MK, Thornton AM, Nord AS, et al. ColoSeq provides comprehensive lynch and polyposis syndrome mutational analysis using massively parallel sequencing. J Mol Diagn. 2012;14:357–66.

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  8. van der Heijden MS, Brody JR, Dezentje DA, Gallmeier E, Cunningham SC, Swartz MJ, et al. In vivo therapeutic responses contingent on Fanconi anemia/BRCA2 status of the tumor. Clin Cancer Res. 2005;11:7508–15.

    Article  PubMed  Google Scholar 

  9. Turner NC, Lord CJ, Iorns E, Brough R, Swift S, Elliott R, et al. A synthetic lethal siRNA screen identifying genes mediating sensitivity to a PARP inhibitor. EMBO J. 2008;27:1368–77.

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  10. Diehl F, Schmidt K, Choti MA, Romans K, Goodman S, Li M, et al. Circulating mutant DNA to assess tumor dynamics. Nat Med. 2008;14:985–90.

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  11. Heitzer E, Auer M, Gasch C, Pichler M, Ulz P, Hoffmann EM, et al. Complex tumor genomes inferred from single circulating tumor cells by array-CGH and next-generation sequencing. Cancer Res. 2013;73:2965–75.

    Article  PubMed  CAS  Google Scholar 

  12. Kanda M, Knight S, Topazian M, Syngal S, Farrell J, Lee J, et al. Mutant GNAS detected in duodenal collections of secretin-stimulated pancreatic juice indicates the presence or emergence of pancreatic cysts. Gut. 2013;62:1024–33.

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  13. Leary RJ, Kinde I, Diehl F, Schmidt K, Clouser C, Duncan C, et al. Development of personalized tumor biomarkers using massively parallel sequencing. Sci Transl Med. 2010;2:20ra14.

    Article  PubMed  PubMed Central  Google Scholar 

  14. Leary RJ, Sausen M, Kinde I, Papadopoulos N, Carpten JD, Craig D, et al. Detection of chromosomal alterations in the circulation of cancer patients with whole-genome sequencing. Sci Transl Med. 2012;4:162ra54.

    Article  Google Scholar 

  15. Hofreiter M, Jaenicke V, Serre D, von Haeseler A, Paabo S. DNA sequences from multiple amplifications reveal artifacts induced by cytosine deamination in ancient DNA. Nucleic Acids Res. 2001;29:4793–9.

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  16. Do H, Dobrovic A. Dramatic reduction of sequence artefacts from DNA isolated from formalin-fixed cancer biopsies by treatment with uracil-DNA glycosylase. Oncotarget. 2012;3:546–58.

    PubMed  PubMed Central  Google Scholar 

  17. Williams C, Ponten F, Moberg C, Soderkvist P, Uhlen M, Ponten J, et al. A high frequency of sequence alterations is due to formalin fixation of archival specimens. Am J Pathol. 1999;155:1467–71.

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  18. Lin MT, Mosier S, Cope L, Thiess M, Beierl K, Chen G, et al. Clinical validation of KRAS, BRAF, and EGFR mutation detection using next generation sequencing. Am J Clin Pathol. 2014;141:856–66.

    Article  PubMed  CAS  Google Scholar 

  19. Ehrlich M, Norris KF, Wang RY, Kuo KC, Gehrke CW. DNA cytosine methylation and heat-induced deamination. Biosci Rep. 1986;6:387–93.

    Article  PubMed  CAS  Google Scholar 

  20. Tsiatis AC, Norris-Kirby A, Rich RG, Hafez MJ, Gocke CD, Eshleman JR, et al. Comparison of Sanger sequencing, pyrosequencing, and melting curve analysis for the detection of KRAS mutations: diagnostic and clinical implications. J Mol Diagn. 2010;12:425–32.

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  21. Lin MT, Tseng LH, Rich RG, Hafez MJ, Harada S, Murphy KM, et al. Delta-PCR, a simple method to detect translocations and insertion/deletion mutations. J Mol Diagn. 2011;13:85–92.

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  22. Do H, Wong SQ, Li J, Dobrovic A. Reducing sequence artifacts in amplicon-based massively parallel sequencing of formalin-fixed paraffin-embedded DNA by enzymatic depletion of uracil-containing templates. Clin Chem. 2013;59:1376–83.

    Article  PubMed  CAS  Google Scholar 

  23. Yonekura S, Nakamura N, Yonei S, Zhang-Akiyama QM. Generation, biological consequences and repair mechanisms of cytosine deamination in DNA. J Radiat Res. 2009;50:19–26.

    Article  PubMed  CAS  Google Scholar 

  24. Duncan BK, Miller JH. Mutagenic deamination of cytosine residues in DNA. Nature. 1980;287:560–1.

    Article  PubMed  CAS  Google Scholar 

  25. Bjelland S, Seeberg E. Mutagenicity, toxicity and repair of DNA base damage induced by oxidation. Mutat Res. 2003;531:37–80.

    Article  PubMed  CAS  Google Scholar 

  26. Briggs AW, Stenzel U, Meyer M, Krause J, Kircher M, Paabo S. Removal of deaminated cytosines and detection of in vivo methylation in ancient DNA. Nucleic Acids Res. 2010;38:e87.

    Article  PubMed  PubMed Central  Google Scholar 

  27. Sandigursky M, Franklin WA. Uracil-DNA glycosylase in the extreme thermophile Archaeoglobus fulgidus. J Biol Chem. 2000;275:19146–9.

    Article  PubMed  CAS  Google Scholar 

  28. Sartori AA, Fitz-Gibbon S, Yang H, Miller JH, Jiricny J. A novel uracil-DNA glycosylase with broad substrate specificity and an unusual active site. EMBO J. 2002;21:3182–91.

    Article  PubMed  CAS  PubMed Central  Google Scholar 

Download references

Acknowledgments

The authors wish to acknowledge Dr. James Stivers (Johns Hopkins University School of Medicine) for helpful discussions. Grant support was received from the Women’s Board of The Johns Hopkins Hospital (to Ming-Tseh Lin) and through National Institutes of Health grant numbers R21HG005745 (to Christopher D. Gocke) and R21CA164592 (to James R. Eshleman), and the Pancreatic Cancer Action Network Innovation Award (to James R. Eshleman).

Conflicts of Interest

Guoli Chen, Stacy Mosier, Christopher D. Gocke, Ming-Tseh Lin, and James R. Eshleman have no conflicts of interest that are directly relevant to the content of this study.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to James R. Eshleman.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chen, G., Mosier, S., Gocke, C.D. et al. Cytosine Deamination Is a Major Cause of Baseline Noise in Next-Generation Sequencing. Mol Diagn Ther 18, 587–593 (2014). https://doi.org/10.1007/s40291-014-0115-2

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40291-014-0115-2

Keywords

Navigation