A peculiar rhythmic EEG activity from ventrobasal thalamus during paradoxical sleep in manActivité EEG rythmique particulière provenant du thalamus ventrobasal au cours du sommeil paradoxal chez l'homme

https://doi.org/10.1016/0013-4694(79)90213-XGet rights and content

Abstract

A peculiar 3/sec rhythmic EEG activity (named Vc rhythm) was consistently found at the ventrobasal thalamus (nucleus ventrocaudalis) during paradoxical sleep of patients with implanted electrodes used as an electrophysiological procedure for identification of the thalamic targets for the surgical treatment of tremor and rigidity.

The Vc rhythm was formed by high voltage, sharp biphasic positive negative potentials which were absent during wakefulness, rare and isolated during slow wave sleep, increased in number and organized in trains during paradoxical sleep and blocked during arousal. Significant changes in number of Vc waves were found when patients shifted through these wakefulness-sleep states. Integrated EMG multiple unit activity also showed significant changes during these wakefulness-sleep shifts, which were parallel although inverse to those showed by Vc waves.

A significant negative correlation (r = −0.7126) between number of Vc waves and EMG units was found. In contrast, Vc waves showed no correlation with other electrophysiological indicators of thalamic excitability (multiple unit activity and early evoked potentials) and sleep (scalp EEG frequency and ocular movements).

Résumé

Une activité EEG rythmique particulière à 3/sec (nommée rythme Vc) est constamment trouvée au niveau du thalamus ventrobasal (noyau ventro-caudal) au cours du sommeil paradoxal de malades porteurs d'électrodes implantées utilisées comme procédé électrophysiologique d'identification de la cible thalamique pour traitement chirurgical du tremblement et de la rigidité.

Le rythme Vc est constitué par des potentiels de haut voltage, aigus, biphasiques positifs-négatifs, qui ne s'observent pas au cours de l'état de veille, sont rares et isolés au cours du sommeil à ondes lentes, augmentent en nombre et s'organisent en bouffées au cours du sommeil paradoxal et sont bloqués lors de l'éveil. Des modifications significatives du nombre des ondes Vc s'observent au cours de ces stades veille-sommeil. L'activité multi-unitaire EMG intégrée montre également des modifications significatives au cours de ces variations veille-sommeil, qui sont parallèles, bien qu'inverses, à celles observées au niveau des ondes Vc.

Une corrélation négative significative (r = −0.7126) entre le nombre des ondes Vc et les unités EMG's observe. Par contraste, les ondes Vc ne montrent aucune corrélation avec d'autres indicateurs électrophysiologiques d'excitabilité thalamique (activité multi-unitaire et potentiels évoqués précoces) et du scalp (fréquence EEG et mouvements oculaires).

References (16)

There are more references available in the full text version of this article.

Cited by (9)

  • Thalamic activity during scalp slow waves in humans

    2022, NeuroImage
    Citation Excerpt :

    A systematic study of invasive recordings from the human thalamus was reported already in the 1940s (Williams and Parsons-Smith 1949). Some further studies of sleep oscillations (Velasco et al., 2002; Velasco et al., 1979; Wennberg et al., 2002) and patterns of single-cell activity (Tsoukatos et al., 1997) in this structure were published decades ago. These findings confirmed that the thalamus – much like the cortex - exhibits different activity patterns across vigilance states, and that the morphology and temporal evolution of cortical and thalamic electroencephalographic signals are often similar.

  • The subcortical belly of sleep: New possibilities in neuromodulation of basal ganglia?

    2020, Sleep Medicine Reviews
    Citation Excerpt :

    Deep brain stimulation (DBS) is increasingly used to treat a variety of neurological disorders including Parkinson's disease, dystonia, tremor, pain, and epilepsy [18]. Several studies have utilised LFP recordings from externalised DBS electrodes with polysomnography to investigate the role of subcortical structures in sleep in humans [47,56,61–69]. In one of the earliest reports, Moiseeva et al. (1969) [61] described recordings during sleep from 11 patients, with electrodes in various locations including the subthalamic nucleus, pallidum, putamen, caudate nucleus, substantia nigra, ventrolateral and posterior thalamus and hypothalamus [61].

  • Temporo-spatial correlations between scalp and centromedian thalamic EEG activities of stage II slow wave sleep in patients with generalized seizures of the cryptogenic Lennox-Gastaut syndrome

    2002, Clinical Neurophysiology
    Citation Excerpt :

    Fig. 1). All-night sleep studies were performed with the same technique used in our previous work on patients with depth electrodes (Velasco et al., 1979, 1980, 1989, 1995, 1997) following routine procedures (Rechtschaffen and Kales, 1995). Briefly, the studies were performed 17–24 days after electrode implantation and after 3 nights of laboratory habituation.

View all citing articles on Scopus
View full text